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Abstract— With the development of Internet computing tech-
niques, continuous data streams from remote sites are commonly
used in scientific and commercial applications. Correspondingly,
there is increasing demand of assuring the integrity and authen-
ticity of received data streams. Existing strategies of assuring
data integrity and authenticity mainly use message authentication
codes (MAC) generated on data blocks and transfer the MAC
to the receiver for authentication through either out of band
communication or in band communication. Transferring the
MAC via out of band communication inevitably introduces com-
munication overhead and additional complexity to synchronize
the out of band communication with the data communication.
Transferring the MAC via in band channel can be achieved by
either appending the MAC to the original data or embedding
the MAC into the original data, which would either incur
communication overhead or change the original data. It would
be desirable to be able to authenticate the stream data without
any communication overhead and changing the original data at
the same time. To deal with data packet or block loss, many
of existing stream data authentication schemes rely on hash
chaining, the current usage of which results in uncertainty in
authenticating the subsequent data blocks once the first data
packet or block loss is detected.

In this paper, we propose a novel application layer authenti-
cation strategy called DaTA. This authentication scheme requires
no change to the original data and causes no additional commu-
nication overhead. In addition, it can continue authenticating the
rest of data stream even if some data loss has been detected. Our
analysis shows that our authentication scheme is robust against
packet loss and network jitter. We have implemented a prototype
system to evaluate its performance. Our empirical results show
that our proposed scheme is efficient and practical under various
network conditions.

I. INTRODUCTION

The proliferation of the Internet has enabled more and
more scientific and commercial applications to use continuous
data streams sent from remote sites. For example, hurricane
forecasting [1] demands continuous and timely data input from
many public data archives (such as satellite images and oceanic
changes from NOAA [2]) to forecast the hurricane movement
accurately. ADVFN [3] streams real-time stock prices, price
data, and stock charts from the New York Stock Exchange
to subscribed users. Audio and video based media com-
munications (e.g., tele-conferencing, remote education, and
entertainment) are becoming ubiquitous today in our everyday
life [4]. In many such network applications, the data integrity
and authenticity need to be assured. For example, the receivers
of NOAA oceanic data want to make sure that the received
data is genuine and has not been tampered with. Subscribers

to the ADVFN real-time stock streaming services need to
be certain that the received stock prices are from ADVFN
and they have not been modified during the transmission. In
addition to the capability to detect any unauthorized change
over the transmitted content, the receivers of the continuous
data stream want to be able to detect any packet loss during
the transmission. In such applications, confidentiality is not
required as the data is meant to be public. Therefore, the
continuous data stream needs to be authenticated without
encryption.

Existing methods of assuring data integrity and authenticity
use message authentication codes (MAC) generated through
HMAC or NMAC or one-way hash functions on a block of
data [5], [6], [7], [8], [9], [10], [11]. To transfer the MAC to the
receiver for authentication, generally there are two approaches:
via out of band or in band communication. Obviously trans-
ferring the MAC via out of band channel introduces additional
communication overhead and computation complexity (i.e.,
synchronization between the out of band communication and
the in band communication). To transfer the MAC via in band
channel, the MAC can be either appended to or embedded
into the original data. Embedding is to replace some bits
in the original data that can eliminate the communication
overhead. Thus, the in band communication for MAC either
introduces additional overhead or changes the original data. It
would be desirable to be able to authenticate the stream data
without introducing any additional communication overhead
nor changing the original data content.

To be able to detect any lost packet or data block, existing
stream data authentication schemes mainly rely on hash chain-
ing when generating the MAC. Most of these schemes [12],
[13], [8] have no problem in detecting the first packet or block
loss. But once the first block or packet loss is detected, it
will result in uncertainty for them to continue authenticating
the rest data stream. It would be desirable to be capable of
detecting all packet or block loss and to continue the stream
data authentication after detecting any packet or block loss.

In this paper, we propose a novel application layer
stream data authentication method, DaTA (Data-Transparent
Authentication without Communication Overhead), to authen-
ticate data streams. Unlike all previous stream data authenti-
cation schemes, our DaTA scheme embeds the MAC into the
inter-packet timing of the data stream, which does not intro-
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duce any communication overhead1 nor change the original
stream content. By careful design of the MAC on the data
stream, our DaTA approach is able to detect multiple packet
or block loss, and it can continue authenticating the rest data
stream even if a packet (or block) loss has been detected.
This is in contrast to previous data stream authentication
approaches [12], [13], [8].

Besides analyzing the quantitative tradeoffs between the
authentication effectiveness and the bit error probability, we
have implemented a prototype of DaTA and we have empir-
ically evaluated the performance of our transparent stream
data authentication scheme in a LAN and on the Internet.
As with any other stream data authentication schemes, our
authentication scheme is subject to malicious attacks such as
packet drops and packet content modification. Our experimen-
tal results demonstrate that with appropriate redundancy, our
DaTA scheme is robust against packet loss and network jitter,
and it is able to detect packet loss at the granularity of block.
Our experiments also shows that DaTA does not introduce any
noticeable impact over the data stream application.

The rest of the paper is organized as follows. Section II
describes related work. Section III presents our proposed
scheme and Section IV analyzes the accuracy of the proposed
scheme. Design issues are further discussed in Section V.
The proposed scheme is evaluated in Section VI. Section VII
concludes the paper.

II. RELATED WORK

Existing work on stream data and multicast authentication
mainly uses message authentication codes (MACs) and secret-
key cryptography. The trivial solution is to generate a MAC per
packet and send with the packet together. Various approaches
[13], [14] are proposed to lower the communication overhead
by amortizing the authentication signature (MAC) where a
single digital signature is used for the authentication of mul-
tiple packets. Gennaro and Rohatgi [13] presented a scheme
that uses signature amortization over a hash chain. In [14], a
Merkle hash tree is used to amortize a signature over multiple
packets.

Another line of work [6], [9], [11], [15] was addressing
the packet loss problem. In [11], a MAC is appended to
every packet and the key of the MAC is provided in some
subsequent packet. To tolerate packet losses, the keys are
generated by the means of a hash chain. In [6], a directed
acyclic graph is constructed and the hash of a packet is
repetitively embedded into multiple packets so that packet loss
can be tolerated. Recently, Pannetrat and Molva [9] proposed
to deal with packet loss using Erasure codes. Authentication
can be performed as long as a certain number of packets are
received. Karlof et al. [16] proposed distillation codes to cope
with packet loss and packet pollution.

Authentication of multimedia and images has also been
studied [17], [18], along the direction to protect the copyright
or the ownership of multimedia objects [19], [20]. For the
MPEG movie, Hartung and Girod proposed an approach [21]

1Note that we refer to traditional communication overhead with additional
bandwidth consumption.

that leverages the DCT transformation procedure. Lu et al. [7]
proposed to combine the content authentication and ownership
authentication.

Nevertheless, all existing strategies either embed informa-
tion to the original content, or use out-of-band channels for
authentication information communication, neither of which is
required in our proposed scheme, where covert channel [22] is
leveraged to convey information. In addition, the hash chaining
used in DaTA avoids the authentication uncertainty upon
data packet/block loss detection that exists in many existing
schemes.

DaTA is different from IPsec [23], [24], [25] in that it
focuses on authenticating the application layer streaming data,
rather than providing the data integrity and/or source authen-
ticity at the IP layer.

III. BASIC DaTA – DaTA-TRANSPARENT AUTHENTICATION

In DaTA, the authentication unit is a data block and the
authentication code is generated based on the content of the
data block, thus called Block Authentication Code, abbreviated
as BAC. DaTA works as follows. At the sender side, the
authentication information – BAC – is generated based on a
selected hash function with the packet content and a commonly
agreed key as the input. Based on the value of each bit (0/1)
of BAC, some packets are scheduled to be sent out with
additional delays. At the receiver side, the receiver extracts
the embedded BAC based on the relative packet delay and
compares the extracted BAC with the BAC generated based
on the received content for authentication. Thus, our proposed
scheme consists of the BAC generation, BAC embedding/BAC
extraction, and BAC authentication. In this section, we de-
scribe the details of these components, after which the packet
boundary recognition issue is discussed with regard to packet
loss, packet fragmentation, and out-of-order delivery.

To present our scheme, we use the following notations.

1) The stream packets are clustered to blocks, denoted as
block[i], with b packets in each block, where 0 < i <
d total packet number

b
e. Padding is used when necessary

to generate the last block;
2) The length (in terms of bits) of the BAC for each data

block is n;
3) A hash function, denoted as H(X), is a one-way hash,

using an algorithm such as MD5 [26] or SHA [27].
4) X,Y represents the concatenation of X with Y.
5) A secret key, k, is only known to the communicating

parties;
6) The origin of the data stream can be identified by a flag,

which is f bits and only known to the communicating
parties, where 0 ≤ f ≤ n;

A. BAC Generation

Figure 1 sketches the BAC generation procedure. As in-
dicated in this figure, the BAC generation for data block i
involves three steps:

1) The concatenation of data block i and the secret key k
is used as input to hash function H to generate a binary
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Fig. 1. Generating Block Authentication Code

string of n+ δ bits as (1) in Figure 1, where δ = n− f .
We call this string the first-digest.

2) The source flag, denoted as f , is concatenated to the
first-digest generated in the previous step, shown as (2)
in Figure 1, to get a binary string of 2n bits, which we
call the second-digest.

3) The first n bits of the second-digest is XORed with the
last n bits of the block i − 1’s second-digest, which
is generated following the same procedure. The result,
BAC[i], is the final BAC for data block i. It will be
embedded. This step is shown as (3) in Figure 1.

Note that for the first data block, a special second-digest (an
Initial Vector - IV) must be agreed on by the communicating
parties. In this BAC generation algorithm, if we vary the value
of δ while keeping the δ+f = n, we have different strategies.

• δ = 0: when δ is 0, the strategy becomes easy and
straightforward. There is no chain at all. It only demands
a fixed sized buffer, of b packets, at the sender side and
the receiver side. The strategy can detect packet alteration
or addition and can locate changes in the granularity of
a block. However, it cannot detect block deletion and
block (burst packet) loss, which are very important in
some stream based applications, such as streaming media
delivery, since streaming media data delivery normally
runs on UDP.

• δ = n: when δ is n, the strategy cannot authenticate the
source (unless the new BAC is XORed with f ). With
more bits (2n) in the authentication code, the strategy
reduces the collision rate since the number of bits in the
hash result is larger. However, it has a problem due to
chaining. For example, if the verification of the current
data block indicates that the current block is changed, it
means the hash value of the current block cannot be used
to authenticate the next block. Thus, the authentication
of the next block and all its subsequent blocks will be
uncertain. In addition, the protocol cannot distinguish the
change of a data block and the deletion (or loss) of a data

block.

The choices of δ and f have the tradeoff between authen-
ticating the source and chaining to determine if the preceding
block is lost. In most of existing hash chain based strategies,
δ is n, or the hash function takes the two consecutive blocks
as the input. This causes their authentication deficiency. Thus,
an appropriate δ should satisfy 0 < δ < n.

B. BAC Embedding and Extraction

Once the BAC has been generated, it needs to be transfered
to the receiver of the streaming data so that the streaming
data can be authenticated. Unlike most existing streaming
data authentication approaches, which either transfer the au-
thentication code via out of band communication or embed
the authentication code into the original data content, DaTA
leverage the approach used in [28] to embed the BAC into the
inter-packet timing2. Here we show how to embed and extract
one bit of the BAC. Embedding and extracting multiple bits
can easily be achieved by repeating the following process.

Assume the streaming data flow has m packets P1, . . . , Pm

with time stamps t1, . . . , tm, respectively. To embed one bit,
we first independently and randomly choose 2r (r > 0 is
the redundancy used for embedding the bit) distinct packets:
Pz1

, . . . , Pz2r
(1 ≤ zk ≤ m − 1), and create 2r packet pairs:

〈Pzk
, Pzk+1〉 (d ≥ 1, k = 1, . . . , 2r).

We are interested in the 2r IPDs (Inter-Packet Delay)
between Pzk+1 and Pzk

ipdzk
= tzk+1 − tzk

, (k = 1, . . . , 2r). (1)

We randomly divide the 2r IPDs into 2 distinct groups of
equal size, and make sure that each IPD has equal probability
to be in group 1 and group 2. We use ipd1,k and ipd2,k

(k = 1, . . . , r) to represent the IPDs in group 1 and group
2 respectively. Since each IPD has equal probability to be
in group 1 and group2, IPDs in group 1 and group 2 are
symmetric. Therefore, E(ipd1,k) = E(ipd2,k), and Var(ipd1,k)
= Var(ipd2,k).

Let

Yk =
ipd1,k − ipd2,k

2
(k = 1, . . . , r). (2)

and

Yr =
1

r

r
∑

k = 1

Yk =
1

2r
[

r
∑

k = 1

ipd1,k −
r

∑

k = 1

ipd2,k] (3)

Here Yr is the average of r normalized IPD differences.
Since all the 2r randomly selected IPDs are equal-probable to
be in group 1 and group 2,

∑r

k = 1
ipd1,k and

∑r

k = 1
ipd2,k

must have the same distribution and mean. Therefore Yr is
symmetric, and has zero mean. In other word, Yr has equal
probability to be positive and negative.

We embed bit 1 by increasing Yr by a > 0 so that its
probability to be positive will be greater than 0.5. Similarly,
we embed 0 by decreasing Yr by a > 0 so that its probability

2Please note that the BAC to be embedded is very different from the
watermark in [28], and the authentication based on BAC is completely new.
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to be negative will be greater than 0.5. To increase or decrease
Yr by a, we can simply increase or decrease each of the r Yk’s
by a. To increase Yk by a, we can increase ipd1,k by a and
decrease ipd2,k by a. Similarly, we can decrease Yk by a by
decreasing ipd1,k by a and increasing ipd2,k by a.

Apparently the embedding is probabilistic in that there is a
small chance that the bit will not be successfully embedded.
As shown in [28], the embedding successful rate can be made
arbitrarily close to 100% with sufficiently large redundancy r.

Assuming that the receiver shares the secret of which
packets are used for encoding and decoding the BAC, we can
calculate Yr at the receiver side from the timestamps of the
received packets. To extract an embedded bit, we check the
value of Yr. If it is greater than 1, we decode the embedded
bit as 1, otherwise, we decode the embedded bit as 0.

It is true that decoding a particular bit could be wrong due
to the probabilistic nature of encoding and network delay jitter.
However, analysis in [28] has shown that the correct decoding
rate can be made arbitrarily close to 100% with sufficiently
large redundancy despite of network delay jitter.

C. Authentication

With the extracted BAC bits and received data packets, the
receiver applies the same hash function (H) on the received
data packets with the same secret key (k) to generate the
content based BAC following the same procedure used for
BAC generation at the sender side (see section III-A). Then
the extracted BAC is compared with the content based BAC.

The comparisons consist of two parts: the first part is on the
first δ bits, while the second is on the rest f (= n − δ) bits.
Considering the possible scenarios, Table I briefly summarizes
the authentication result.

Note that in our scheme, every received data block is
authenticable independently, which is based on the f bits
matching in the BAC comparisons. We always check this part
first. The first δ bits can indicate whether the preceding data
block is deleted or lost. Thus,

• in case 1, the extracted and generated BACs are com-
pletely matched, the current data block is authenticated
to be genuine;

• in case 2, the second part authentication failure indicates
that the current data block is changed; although the first
part authentication succeeds, we cannot conclude the
preceding block is genuine;

• in case 3, the success of the second part authentication
indicates the current block is genuine. Therefore, the first
part authentication failure indicates that the preceding
data block has been changed/deleted3;

• in case 4, the authentication failure on both parts strongly
suggests that the current data block is changed. The status
of the preceding block is uncertain.

Considering the situations of the preceding data block
authentication, DaTA can distinguish the deletion/loss from
alteration. For example, given two consecutively received
data blocks, if the second part of the preceding data block

3Theoretically, there is false positive if the change of the current block does
not alter the second part. But the probability is very small.

authentication is successful, while the first part of the current
block authentication fails and the second part succeeds, some
data blocks between these two are lost/deleted.

Through the above analysis, DaTA exhibits the following
features:

• It can detect any tampering, including content alteration
and packet/block deletion;

• It is able to locate the change to the data block level
so that in some circumstances, the application can make
decisions (e.g. retransmission) accordingly;

• It is capable of ensuring that each block is authenticable
even if any preceding data block is found to be changed.
In another word, it is not a fragile scheme;

• Besides authenticating the content itself, the scheme is
also able to authenticate the content source. This is due
to the splitting of the authentication into two parts, where
the second part authenticates both content and the content
source.

D. Block Boundary Recognition

In our scheme, it is important that the receiver can correctly
delimit packets into an appropriate data block. If a packet
is mistakenly delineated at the receiver side, both the BACs
extracted from the packet arrival IPDs and generated based
on the received packets are not consistent with the sender
side. This makes authentication impossible. Since packet loss
always causes trouble with block boundary recognition, we
discuss it in this section.

To enable the receiver to delineate the data block boundary
at the sender side, the last packet of the previous data block
and the first packet of the current data block should be
specially utilized. In our proposed scheme, the BAC bit is
embedded by slightly adjusting the packet delivery time, so
if we intentionally add a sufficient large delay between these
two packets (but still in the allowable range), this delay serves
as the boundary delineating purpose.

In our scheme, the normal inter-packet delay adjustment is
limited by a, where a is the adjustment size (see Section III).
Thus, if we find the maximum inter-packet delay in the data
stream (through online profiling), and add an extra a, this
number is sufficient to be used as block boundary delimiter
if there are no network fluctuations. In practice, some extra
space can be added to allow for network fluctuations. Thus,
we propose to use 2a and will evaluate this value in the
experiments.

Packet loss is not uncommon in streaming based com-
munications, particularly when the streaming runs on UDP.
Although existing research [29] and measurement [30] find
that packet loss is less than 0.1% on the Internet backbone,
our strategy is very sensitive to that since the loss of a packet
not only damages the current data block, but may also cause
a change in the block boundary and result in incorrect BAC
extraction.

A simple method for DaTA to deal with packet loss is to
examine both the number of packets and the artificial block
boundary delay. At the receiver side, whenever an artificial
block boundary delay is found, the receiver considers that a
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case number δ bits n − δ = f bits Current Data Block Other Implications

1 match match true None
2 match mis-match false current data block changed
3 mis-match match true preceding data block loss/deletion or alteration
4 mis-match mis-match false current data block changed

TABLE I

AUTHENTICATION SCENARIOS

block is completely received and the next packet belongs to
the next block. If the received packet number is less than b,
clearly, some packets are lost.

Regarding the packet boundary, a particular concern comes
from the effect of additional delay on the application’s per-
formance in the proposed scheme. Since the additional delay
introduced by our scheme is always in the granularity of
several milliseconds, it could hardly affect the application’s
performance. In addition, it is common that at the sender and
receiver sides, applications always use buffers to buffer some
transmitted data before they are used. For example, for Internet
video streaming, normally there is always a few second initial
buffer. Taking these facts into consideration, the additional
delay introduced for boundary recognition by our proposed
scheme can be easily absorbed by the application buffer.

Two other factors that may raise concerns are the packet
fragmentation and out-of-order delivery. Since the packet
fragmentation rate is very low today [31], we don’t consider
the problem caused by the normal packet fragmentation. For
out-of-order delivery, it is observed that only about 0.3%
packets arrive out of order [32]. Thus, we don’t consider its
effect in this study.

IV. DaTA ANALYSIS

In DaTA, the authentication information is generated based
on the content of the data block (see section III-A), which we
call content BAC. The BAC embedded to (or extracted from)
the inter-packet timing is called the reference BAC. At the
receiver side, when the receiver receives the stream flow, the
reference BAC extracted from the inter-packet timing will be
used as a reference for the content BAC calculated from the
packet content.

Let C = b1, . . . , bn be the original content BAC and
the original reference BAC (they are always equal), C1 =
b1,1, . . . , b1,n be the reference BAC of the received stream
flow, and C2 = b2,1, . . . , b2,n be the content BAC of the
received streaming flow. In ideal case, C1 = C2 = C. In real
world, both C1 and C2 could deviate from C due to reasons
such as packet loss, content change or network delay jitter.
Our goal is to determine whether C2 equals to C. However,
the receiver of the streaming flow does not know C and he/she
only knows C1 and C2. Therefore, the receiver has to use C1

and C2 to determine whether C2 equals to C.
After getting C1 and C2 from the received streaming flow,

the receiver uses the following rules to determine whether C2

equals to C:
{

C2 = C if C1 = C2,

C2 6= C if C1 6= C2.
(4)

Here we use C1 as the reference for checking the value of
C2. Since C1 could be different from C, it is possible that

1) C2 is falsely determined to be equal to C; or
2) C2 is falsely determined to be different from C.

We regard the first case as a false positive, and the later case as
a false negative. The false positive rate and the false negative
rate can be quantitatively represented as Pr[C1 = C2|C2 6= C]
and Pr[C1 6= C2|C2 = C] respectively.

Assume the probability that any particular bit in C1 and C2

is different from the corresponding bit in C is independent
from each other. Let Pr[b1,i = bi] = p1 and Pr[b2,i = bi] = p2,
where 1 < i < n.

The false negative rate is thus

Pr[C1 6= C2|C2 = C] (5)

= 1 − Pr[C1 = C2|C2 = C]

= 1 −
Pr[C1 = C ∧ C2 = C]

Pr[C2 = C]

= 1 − Pr[C1 = C]

= 1 − pn
1

Let Xk be the probability that both C1 and C2 (where C1 =
C2) have exactly the same 0 ≤ k ≤ n bits different from
C, and let Yk be the probability such that C2 have exactly
0 ≤ k ≤ n bits different from C, then we have

Xk =

(

n
k

)

pn−k
1 (1 − p1)

k × pn−k
2 (1 − p2)

k

and

Yk =

(

n
k

)

pn−k
2 (1 − p2)

k

When 0 < p1 ≤ 1, 0 < p2 < 1, the false positive rate is

Pr[C1 = C2|C2 6= C] (6)

=
Pr[C1 6= C ∧ C2 6= C ∧ C1 = C2]

Pr[C2 6= C]

=

∑n

k = 1
Xk

∑n

k = 1
Yk

=

∑n

k = 1

(

n
k

)

pn−k
1 (1 − p1)

k × pn−k
2 (1 − p2)

k

∑n

k = 1

(

n
k

)

pn−k
2

(1 − p2)k

=
[p1p2 + (1 − p1)(1 − p2)]

n − pn
1pn

2

1 − pn
2

Based on Equation 5, it is easy to see that the larger p1 is,
the smaller the false negative rate. Equation 6 indicates that
when p1 approaches 1, the false positive rate approaches 0.
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Therefore, it is desirable to make the reference BAC as robust
as possible so that both the false positive and false negative
rates are small. This analysis result demonstrates the neces-
sity of enhancing the robustness of our basic authentication
strategy.

Given any fixed p1 and p2, larger n will decrease the false
positive rate as implied in Equation 6. Besides the fact that
the false positive rate decreases with the increase of n, there is
always a maximum value for the false positive rate for different
n as indicated in these figures.

Simply increasing the BAC length is not always possible. In
the next section, we will introduce some other optimizations
for improving p1 and reducing delay impact to the applica-
tion’s performance.

V. OPTIMIZATIONS AND DISCUSSIONS

The analysis in the previous section shows that it is nec-
essary to increase the robustness of the reference BAC. The
accuracy of the reference BAC could be affected by many
factors, such as network jitter, packet loss, adjustment size,
and BAC length. Thus, it is necessary to optimize the basic
design to make it practical. In this section, we discuss several
issues and strategies for this purpose.

A. Redundancy Level

In an ideal environment, where there is no network fluctua-
tions, embedding a BAC bit using two packet pairs (4 packets)
is enough (redundancy level r = 1). For example, to embed
a 24-bit BAC, we only need 96 packets if these packets are
not repetitively used. A block size of 96 packets will make
locating a changed packet easier. This provides convenience
and reduces cost for a remedy: if the application decides to
retransmit the tampered block, only 96 packets need to be
re-transmitted.

However, due to network fluctuations, a redundancy level
of 1 will make the embedded BAC error-prone since the BAC
embedding in our scheme is probability based. An occasional
large jitter could delay one of these packets, resulting in an
error of the corresponding embedded BAC bit, and decreases
the authentication accuracy of our scheme.

According to Equation 3, the larger the redundancy level r,
the more centralized to 0 of the Yr distribution. In another
word, the instance of Yr will be more likely to fall into
[−a, +a]. Given a fixed adjustment size a, a large redundancy
level leads to a higher authentication accuracy. Thus, to make
our scheme robust, it is desirable to increase the redundancy
level.

But the higher the redundancy level, the more packets are
needed in a data block. For example, if the redundancy level is
increased to 20 for the 24-bit BAC, at least 1920 packets are
needed. If any of these packets is lost or tampered with, 1920
packets have to be retransmitted. Thus, we should always use
an appropriate redundancy level. We further explore this via
experiments in Section VI.

B. Trade-off Between Redundancy Level and BAC Length

In the above, we have shown that an appropriate redundancy
level should be determined when the block size can vary.
Under this condition, the block size should be kept relatively
small. In other situations, if a block size is limited or fixed, a
new issue arises.

Given a fixed data block size, increasing the redundancy
level will increase the robustness of the extracted BAC bits,
thus increasing p1 in the above equation. However, with
a limited number of packets in the block, increasing the
redundancy level also reduces the number of BAC bits that
can be embedded. That is the BAC length. The BAC length
determines the collision rate and the false positive rate of
the scheme. Thus, a longer BAC length is always desired.
Clearly, increasing the redundancy level and increasing the
BAC length have conflicting interests and thus must be well
balanced. That is to say, when the block size is determined,
a trade-off between block size and BAC length exists, and
an appropriate redundancy level should be used. This will be
further evaluated in Section VI.

C. Bidirectionally Embedding A Bit

So far to embed a BAC bit, we always increase the IPD
value of two packets. Intuitively, to embed bit 1, we always
delay the first and the second packet of the first and second
packet pair, respectively. That means those two packets are
sent a later than their original scheduled delivery time, while
the other two packets are sent as usual. To embed bit 0, the
second and the first packet of the first and second packet pairs
are sent with a delay. Based on the previous analysis, the larger
the adjustment size a, the higher the accuracy. However, if
a is large, it may adversely affect the performance of some
real-time applications. For example, for online video data
authentication, a very large delay of the packet may cause
the packet to be dropped, or cause the client to experience
playback jitter. Neither of these situations is pleasant.

To alleviate the delay effect, an optimization can be done
as follows: to embed bit 1, we send the first packet in the first
pair a

2
later than its originally scheduled delivery time and the

second packet a
2

earlier than its originally scheduled delivery
time. For the second packet pair, the first packet is delivered
a
2

earlier while the second is delivered a
2

later. Similarly we
can embed bit 0.

This optimization is constrained by buffer availability at
the sender side and is thus advantageous only for some
applications. If there is a non-zero-second buffer (such as
encoding buffer) at the sender side, this optimization can be
applied.

VI. PERFORMANCE EVALUATION

To study the effectiveness of our proposed scheme, we
implemented a real-time Linux kernel based packet-level au-
thentication prototype system. The system runs at the precision
of 100 microseconds (the normal Linux system runs at the
10 milliseconds) and is capable of online embedding and
extracting authentication information. Based on the prototype
system, we first performed 5 sets of experiments in a local
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(and more controllable) network to study various aspects of
our proposed scheme with artificially introduced network jitter
and packet loss. The experimental results over the Internet are
omitted due to page limit. Interested readers can refer to our
technical report [33].

A. Experiment Setup

In local experiments, the workload we used is a 160 second
streaming video, which is encoded at 300 Kbps with a rate of
15 frames/second, with a total of 10299 packets.

The experimental platform consists of three machines. A
Linux box of 2.4 GHz CPU with 1 GB memory running
Fedoral Core 2 is used for Darwin Streaming server [34] or
TCP Replayer, and a second Linux machine of CPU 2.4 GHz
and 1 GB memory running our prototype system is set up
as a router, where the BAC bits are added before the data is
streamed to the destination machine, which runs Windows XP
with 1.8 GHz CPU 1.8 and 512 MB memory.

To generate the content based BAC, we use MD5 with the
payload of the data packets as the input. The output hash value
consists of 128 bits, of which the first and the last 12 bits are
cut off and concatenated as the BAC for that data block. In
these experiments, the number of BAC bits is always 24 and
the block length is 1000 if not explicitly noted. We set the
packet distance as 1 and the distance between the selected
packet pair (for embedding) is 2. With different redundancy
levels, the required number of packets varies. For example,
with a redundancy level of 6, a total of 576 packets is used
for adjusting the inter packet delay, since we use one packet
only once in a packet pair.

One particular important factor affecting our proposed
scheme is the network jitter. In local experiments, we run
experiments when two types of jitter distribution (uniform and
normal) present. For each distribution, we also test the jitter
with different probabilities to simulate the normal network
jitter (1%) and the extreme case (100%). A jitter probability
of 1% means among 100 packets only 1 packet is randomly
selected to be delayed and this emulates the normal network.
A 100% jitter probability is to emulate the network upon
network congestion (and thus packet burst, or a spike), where
all packets are delayed. The delay of selected packet is always
limited by the maximum jitter value in each experiment.

B. Block Boundary Detection

In our proposed scheme, the correct block boundary detec-
tion is the basis for authentication. The data block boundary
is determined by examining and looking for the artificially
introduced large inter-packet delay. A sufficiently large delay
indicates that a boundary is met. With the dynamics of network
fluctuations, it is possible that the network fluctuations may
affect the correctness of the block boundary detection. In
addition, a packet loss or deletion may introduce large inter-
packet delays.

First, in our experiments we study the impact of network
fluctuations. In these experiments, we set the block size as
100 and have 103 data blocks in total. Figure 2 and Figure 3
show the boundary detection error rates when the network

fluctuations follow a uniform distribution for the video stream.
In the figures, x-axis represents the network jitter in ms, while
y-axis denotes the sum of false positive and false negative
(due to page limit). We simply refer to them as the error rate
in the following context. False positive is defined as the error
when a non-boundary is recognized as a boundary, while false
negative means the error when a boundary is not recognized
as boundary. Each experiment is repeated 100 times. Since the
maximum inter-packet delay in the original packet flow is 69
ms, and the average is 15.221 ms, we apply the adjustment
size a, from 1 to 10 ms and shown on the figures with all even
values.

In Figure 2 and Figure 3, packet jitter occurs with proba-
bility 1% and 100%, respectively. As shown in both figures,
given certain network jitter, the larger of the adjustment size,
the smaller the error rate. If the maximum jitter is smaller than
the adjustment size, the error rate is always 0 or close to 0
in both cases. Note in Figure 3, the error rate is larger than
1 when the adjustment size is 2 ms and maximum jitter is
larger than 7 ms. This is reasonable since when each packet
is delayed and the jitter is much larger than the adjustment
size, a boundary could be found between each packet pair.
These results suggest that an adjustment size of 4 ms is good
to consider average network jitter (less than 1 ms) as reported
by [30]. We will further test this in the Internet experiments.

Experiments have also been performed when the jitter fol-
lows a normal distribution with a mean value in the range of 2-
8 ms. Compared to the uniform distribution, the jitter following
a normal distribution has less impact on the correctness of
boundary detection. We omit the figures for brevity.

Second, we study the impact of packet loss to boundary
detection. We artificially delete packets from the data block
randomly with the deletion probability of 1/100, 1/1000,
1/10000, 1/100000, and 1/1000000 in the entire packet flow,
respectively. Experiments are repeated 100 times to check if a
false boundary is found. Figure 4 shows the result. Roughly,
adjustment sizes do not make much difference. As reported
in [30], the regular packet loss rate on the Internet is less than
0.1%. So a a of 4 ms can detect the boundary with more than
99% accuracy.

C. Redundancy Level/BAC Length

In a regular network environment, network fluctuations
are common and may cause the extracted BAC bits to be
wrong. Thus, it is important to increase the redundancy of the
embedded BAC so that our scheme can survive with dramatic
network jitter.

First, experiments are conducted to find an appropriate
redundancy level for embedding authentication code to our
data streams. The basic BAC bits are 24 bits, and we set the
adjustment size as 4 ms. We only add BAC to a data block with
2000 packets, so that different redundancy levels can be tested.
Again, we artificially introduce data flows with the uniform
and normal jitter with probabilities of 1% and 100%.

We define the error bit as the total number of error bits
in the experiments in average. Figure 5 and Figure 6 show
the number of error bits when the redundancy level varies
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Fig. 2. Boundary Detection: Uniform Jitter Dis-
tribution (1%)
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Fig. 3. Boundary Detection: Uniform Jitter Dis-
tribution (100%)
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Fig. 4. Boundary Detection: Packet Loss
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Fig. 5. Redundancy Level: Uniform Jitter Distri-
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Fig. 6. Redundancy Level: Uniform Jitter Distri-
bution (100%)
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Fig. 7. Redundancy Level vs. BAC Length:
Uniform Jitter Distribution (100%)

while the maximum network jitter is 1, 5, and 10 ms, re-
spectively. In general, both figures show that the number of
error bits decreases when the redundancy level increases. A
more important observation from these two figures is that a
redundancy level of 8 produces a nearly 0 error bit in the 24
bits, even when the jitter follows a uniform distribution with
the maximum delay in the range of 1-10 ms and 100% packet
jitter probability.

As discussed in section V-B, given a fixed data block size,
there is always a trade-off between the redundancy level and
the BAC length. They should be kept in balance. In the
following experiments, we explore this by testing a data block
consisting of 1000 data packets. Given a block size of 1000
packets, there are a few pairs of the redundancy level and BAC
length, including (6, 24), (7,23), (8,20), (9,18), (10, 16).

Because the BAC length varies, when the network jitter
follows a uniform distribution in the range of 1 - 10 ms with
the probability of 1% and 100%, experiments are conducted
to test the error bit rate. The error bit rate is defined as the
total error bits of the 100 experiments divided by the product
of the BAC length and the number of experiments.

When the packet jitter probability is 1%, the error bit rate is
always 0. When the packet jitter probability is 100%, Figure 7
shows the error bit rate when the maximum jitter is in the range
of 6-10 ms. When the maximum jitter is less than 6 ms, the
error bit rate is always 0.

As shown in this figure, although in general the error bit rate
approaches 0, a redundancy level of 10 clearly achieves the

best result with a BAC length of 16 bits. When the redundancy
level further increases, the error bit rate increases, since the
collision rate increases due to the shortness of the BAC length.

This set of experiments verifies the existence of the trade-
off. Thus, for a fixed block size, the appropriate BAC length
and redundancy level should be found to achieve the best
authentication performance.

D. Detect/Locate Content Change

As aforementioned, the BAC in our scheme is content based.
Ideally, when the content is changed, the extracted BAC should
not be consistent with the reference content BAC. However, if
due to network fluctuations, the extracted BAC is also changed,
and is same as the new content BAC, a false positive happens.
The following two experiments are performed to evaluate these
situations by either deleting a packet, or changing a bit in a
packet randomly.

Firstly, we run an experiment upon packet loss. For this test,
we first embed BAC to the workload with the redundancy level
of 8 and the adjustment size as 4 ms for the 24 bit BAC. In
the embedded workload, we randomly drop a packet. We also
randomly perturb the embedded workload with network jitter
using the uniform perturbation where the max delay varies
from 1 to 10 ms and for each distribution. The experiment
runs for 10000 times for each jitter setting to randomly select
a packet to drop.

Figure 8 and Figure 9 show the result when the jitter in
uniform distribution with 1% and 100% probabilities. In these
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Fig. 10. Authentication Accuracy: Uniform Jitter
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figures, the x-axis represents the allowed error bit. This means
how many erroneous BAC bits are allowed to be ignored. An
allowed error bit of 0 means that all the 24 BAC bits must be
matched. An allowed error bit of 1 means that if only 1 bit
is different, the authentication is taken as a success. The y-
axis represents false positive, which means a failure to detect
and locate a dropped packet. It is expected that the larger the
allowed error bit number, the larger the false positive. Both
figures indicate that unless the allowed error bit is very large
(> 8), our scheme can always successfully locate a packet
change in a data block. Note an allowed error bit of 8 means
among the 24 BAC bits, 1/3 bits are not required to match.
This is not commonly acceptable in normal applications.

We further test without deleting a packet, but changing
the content of a randomly selected packet and repeated the
experiment. The result shows the alteration can be detected
with 100% accuracy, with the uniform distribution of 1% or
100%.

E. Authentication Accuracy

The previous experiments have successfully determined that
when the BAC length is 24, an adjustment size of 4 ms and
a redundancy level of 8 are good for our experimental data
streams. With these fixed parameters, the following exper-
iments are conducted to examine the accuracy, denoted as
true positive, of our authentication scheme when the jitter on
packets comes with a 1% or 100% probability.

When the jitter follows a uniform distribution with a proba-
bility of 1%, our scheme always achieves 100% true positive.
Thus, we only show the true positive for the authentication
scheme when the packet jitter probability is 100% in Fig-
ure 10. As shown in the figure, when the maximum jitter
increases beyond 4 ms, our scheme cannot achieve a 100%
true positive. However, even when the maximum jitter is 10
ms, our scheme still achieves a true positive above 99%.

F. Impact on Applications

Having experimented our scheme with different network
fluctuation distributions, block sizes, and redundancy levels,
now we study the impact of our embedded BAC (delay) on
sensitive applications.

First, we watch the movie after it is embedded with the 24
bit BAC, redundancy level of 8, and an adjustment size of 4 ms
when artificially introduced network jitter follows the uniform
or normal distribution with probabilities of 1% and 100%. We
did not observe any jitter even when we set up a 0-second
buffer at the client side. To study the effect scientifically,
we conducted experiments to calculate the packet-timestamp
difference and inter-packet-delay.

Figure 11 shows the timestamp differences of the three
flows, represented by trial1, trial2, and trial3. In trial1, we
did not embed BAC to the original data flow and captured the
data packets at the client side. To reflect the network jitter in
our experimental environment, we repeated the playback and
captured the flow as trial2. trial3 is the flow we captured at the
receiver side after the original flow is embedded with BAC.
Thus, the difference between trial1 and trial2 indicates the
local network jitter. The result indicates that network jitter in
our local experimental environment is trivial, and thus should
not affect the correctness of our conducted experiments. The
difference between trial1 and trial3 represents the experimen-
tal network jitter and the additional jitter introduced by our
authentication scheme. As shown in the figure, 81% timestamp
difference for both scenarios falls into the same range, from
-6 to 8 ms. This is trivial to the client side player, particularly
when these players normally have a non-zero second buffer.

Figure 12 further shows the IPD values of the flow captured
at the client with or without embedded BAC, denoted by
embedded and original. Our introduced BAC does shift the
distribution a little bit (about 1 ms) at the beginning. However,
The largest portion of the IPD values is still around 15 ms.

VII. CONCLUSION

Data streams have been commonly used in many Internet
applications, such as grid computing and streaming media.
More and more such applications demand a reliable and
effective authentication mechanism to ensure the data streams
transferred over the Internet are genuine. Although plenty of
research work has been conducted, existing work shares the
characteristics of either sending the authentication information
with the original data or out-of-band, which causes additional
communication overhead, particularly when the redundancy is
added to deal with packet loss, or embedding authentication
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into the original data by replacing some non-critical bits,
which changes the original data. In this study, we propose a
new scheme by adjusting packet timing (delay) to authenticate
the data stream. Thus, authentication is done without changing
the original packet content and without sending additional
authentication information. Extensive experiments are con-
ducted locally and over the Internet based on an implemented
prototype system. The results show that our scheme is robust
under various network conditions and practical.
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