
Exploitation Techniques and Defenses
for Data-Oriented Attacks

Long Cheng∗, Hans Liljestrand†, Thomas Nyman†, Yu Tsung Lee§,
Danfeng (Daphne) Yao‡, Trent Jaeger§ and N. Asokan‡

∗School of Computing, Clemson University, USA
†Department of Computer Science, Aalto University, Finland
‡Department of Computer Science, Virginia Tech, USA

§Department of Computer Science and Engineering, Pennsylvania State University, USA

Abstract—Data-oriented attacks manipulate non-control data
to alter a program’s benign behavior without violating its control-
flow integrity. It has been shown that such attacks can cause
significant damage even in the presence of control-flow defense
mechanisms. However, these threats have not been adequately
addressed. In this SoK paper, we first map data-oriented exploits,
including Data-Oriented Programming (DOP) attacks, to their
assumptions/requirements and attack capabilities. We also com-
pare known defenses against these attacks, in terms of approach,
detection capabilities, overhead, and compatibility. Then, we
experimentally assess the feasibility of a detection approach
that is based on the Intel Processor Trace (PT) technology.
PT only traces control flows, thus, is generally believed to
be not useful for data-oriented security. However, our work
reveals that data-oriented attacks (in particular the recent DOP
attacks) may generate side-effects on control-flow behavior in
multiple dimensions, which manifest in PT traces. Based on this
evaluation, we discuss challenges for building deployable data-
oriented defenses and open research questions.

I. INTRODUCTION

Memory-corruption vulnerabilities are one of the most com-
mon attack vectors used to compromise computer systems.
Such vulnerabilities can be exploited in different ways, which
potentially allow attackers to perform arbitrary code execution
and data manipulation. Existing memory corruption attacks
can be broadly classified into two categories: i) control-flow
attacks [1], [2], [3] and ii) data-oriented attacks (also known
as non-control data attacks) [4], [5], [6], [7], [8]. Both types of
attacks can cause significant damages to a victim system [9].

Control-flow attacks corrupt control data (e.g., return ad-
dress or code pointer) in a program’s memory space to
divert the program’s control flow, including malicious code
injection [1], code reuse [2], and Return-Oriented Program-
ming (ROP) [3]. To counter these attacks, many defense
mechanisms have been proposed, such as stack canaries [10],
Data Execution Prevention (DEP) [11], Address Space Lay-
out Randomization (ASLR) [12], Control-Flow Integrity
(CFI) [13], Return-Flow Guard (RFG) [14], Intel’s CET [15]
and MPX [16]. In particular, CFI-based solutions [17] have
received considerable attention in the last decade. The idea is
to ensure that the runtime program execution always follows
a valid path in the program’s Control-Flow Graph (CFG),

by enforcing security policies on indirect control transfer
instructions (e.g., ret/jmp).

In contrast to control-flow attacks, data-oriented attacks [5]
change a program’s benign behavior by manipulating the
program’s non-control data (e.g., a data variable/pointer which
does not contain the target address for a control transfer) with-
out violating its control-flow integrity. The attack objectives
include: 1) information disclosure (e.g., leaking passwords
or private keys); 2) privilege escalation (e.g., by manipu-
lating user identity data) [5]; 3) performance degradation
(e.g., resource wastage attack) [18]; and 4) bypassing security
mitigation mechanisms [19].

As launching control-flow attacks becomes increasingly
difficult due to many deployed defenses against control-flow
hijacking, data-oriented attacks are likely to become an appeal-
ing attack technique for system compromise [20], [6], [19], [7],
[21], [8]. Data-oriented attacks can be as simple as flipping a
bit of a variable. However, they can be equally powerful and
effective as control-flow attacks [22]. For example, arbitrary
code-execution attacks are possible if an attacker could corrupt
parameters of system calls (e.g., execve()) [9]. Recently,
Hu et al. [7] proposed Data-Oriented Programming (DOP),
a systematic technique to construct expressive (i.e., Turing-
complete) non-control data exploits. Ispoglou et al. [23]
presented the Block-Oriented Programming (BOP), a code
reuse technique that utilizes basic blocks as gadgets along
valid execution paths in the target binary to generate data-
oriented exploits. Though data-oriented attacks have been
known for a long time, the threats posed by them have not
been adequately addressed due to the fact that most previous
defense mechanisms focus on preventing control-flow exploits.

The motivation of this paper is to systematize the current
knowledge about exploitation techniques of data-oriented at-
tacks and the current applicable defense mechanisms. Unlike
prior systematization of knowledge (SoK) papers [4], [24],
[25] related to memory corruption vulnerabilities, our work
specifically focuses on data-oriented attacks. In addition to
generic memory corruption prevention mechanisms discussed
in [4], [24], [25] such as memory safety, software compartmen-
talization, and address/code space randomization, we mainly
discuss recently proposed defenses against data-oriented at-

ar
X

iv
:1

90
2.

08
35

9v
2

 [
cs

.C
R

]
 2

5
M

ar
 2

01
9

tacks. In particular, we experimentally assess the possibility of
a detection approach based on hardware-assisted control-flow
tracing (e.g., Intel PT) against advanced data-oriented attacks.

Our technical contributions are as follows.
* We systematize the current knowledge about data-oriented

exploitation techniques with a focus on the recent DOP
attacks. We demystify the DOP exploitation technique by
using the ProFTPd DOP attack [6] as a case study, and
provide an intuitive and detailed explanation of this attack
by analyzing its constituent steps. We also discuss repre-
sentative data-oriented exploits including their assumption-
s/requirements and attack capabilities (Section II).

* We present a three-stage model for data-oriented attacks
and discuss defense techniques according to different stages.
Then, we provide a comparative analysis of recent defen-
sive approaches specially focusing on data-oriented attacks
(Section III).

* We investigate the possibility of using the hardware-assisted
control-flow tracing for program anomaly detection against
data-oriented attacks, and study the limitation of protection
offered by such approach (Section IV).

* We experimentally assess the feasibility of a detection
approach based on control-flow tracing in particular against
DOP attacks. We demonstrate that DOP exploits may gener-
ate side-effects on control-flow behaviors in multiple dimen-
sions, and thus are more likely to be detected by a program
anomaly detector (Section V). We also discuss some open
research problems and unsolved challenges (Section VI).

II. DATA-ORIENTED ATTACKS

In this section, we introduce two categories of exploitation
techniques to launch data-oriented attacks (Section II-A). We
reproduce a real-world DOP attack against the ProFTPD FTP-
server [7] and present a detailed description of the attack to
demonstrate how the complex attack achieves rich expressive-
ness (Section II-B). Then, we map representative data-oriented
exploits in the literature to their assumptions/requirements and
attack capabilities (Section II-C).

A. Classification of data-oriented attacks

We classify data-oriented attacks1 into two categories based
on how attackers manipulate the non-control data in memory
space: 1) Direct Data Manipulation (DDM); and 2) Data-
Oriented Programming (DOP).

1) DDM refers to a category of attacks in which an
attacker directly manipulates the target data to accomplish the
malicious goal. It requires the attacker to know the precise
memory address of the target non-control-data. The address
or offset to a known location utilized in the attack can be
derived directly from binary analysis (e.g., global variable with
a deterministic address) or by reusing the runtime randomized
address stored in memory [6]. Several types of memory
corruption vulnerabilities, e.g., format string vulnerabilities,

1In this work, we mainly focus our investigation on data-oriented attacks that are
caused by memory-corruption vulnerabilities. Data-only attacks that are caused by
hardware transient faults or logic errors in code are beyond the scope of this work.

buffer overflows, integer overflows, and double free vulner-
abilities [25], allow attackers to directly overwrite memory
locations within the address space of a vulnerable application.
Chen et al. [5] revealed that DDM attacks can corrupt a
variety of security-critical variables including user identity
data, configuration data, user input data, and decision-making
data, which change the program’s benign behavior or cause
the program to inadvertently leak sensitive data.
1 vo id d o _ a u t h e n t i c a t i o n (c h a r ∗use r , . . .) {
2 . . .
3 i n t a u t h e n t i c a t e d = 0 ;
4 . . .
5 w h i l e (! a u t h e n t i c a t e d) {
6 t y p e = p a c k e t _ r e a d () ; / / C o r r u p t a u t h e n t i c a t e d
7 /∗ C a l l s d e t e c t _ a t t a c k () i n t e r n a l l y ∗ /
8 s w i t c h (t y p e) {
9 . . .

10 c a s e SSH_CMSG_AUTH_PASSWORD:
11 i f (a u t h _ p a s s w o r d (use r , password)) {
12 a u t h e n t i c a t e d = 1 ;
13 b r e a k ; }
14 c a s e . . .
15 }
16 i f (a u t h e n t i c a t e d) b r e a k ;
17 }
18 d o _ a u t h e n t i c a t e d (pw) ;
19 /∗ Per form s e s s i o n p r e p a r a t i o n ∗ /
20 }

Listing 1: DDM attack in a vulnerable SSH server [5]

Listing 1 illustrates an example of the attack on decision-
making data in SSH server, which was first reported in [5].
A local flag variable authenticated is used to indi-
cate whether a remote user has passed the authentication
(line 3). An integer overflow vulnerability exists in the
detect_attack() function, which is internally invoked
whenever the packet_read() function is called (line 6).
When the vulnerable function is invoked, an attacker is able
to corrupt the authenticated variable to a non-zero value,
which bypasses the user authentication (line 16).

2) DOP is an advanced technique to construct expressive
non-control data exploits [7]. It allows an attacker to perform
arbitrary computations in program memory by chaining the
execution of short sequences of instructions (referred to as
data-oriented or DOP gadgets). The idea is to reuse the
code in these gadgets for malicious purposes other than
the developer’s original intent. Similarly, Block-Oriented Pro-
gramming (BOP) [23] constructs exploit programs by chaining
BOP gadgets without violating CFI, where each BOP gadget
corresponds to a basic block that contains a DOP gadget.
Without loss of generality, we use DOP to represent this
exploitation technique, which misinterprets multiple gadgets
and chains these gadgets together by one or more dispatchers
to achieve the desired outcome.

Typically, a DOP attack corrupts several memory locations
in a program and involves multiple steps. To understand the
complexity and the expressiveness of the DOP technique, we
dissect a real-world DOP attack in Section II-B.

There also exists multi-step DDM attacks, where an ad-
versary exploits memory corruption vulnerabilities multiple
times to write data to adversary-chosen memory locations. For
example, suppose an attacker needs to change two decision-

making variables while the vulnerability only allows the
attacker to change one value each time. It requires a 2-step
DDM. Morton et al. [8] recently demonstrated a multi-step
DDM with Nginx (listed in Table I). The attack leverages
memory errors to modify global configuration data structures
in web servers. Constructing a faux SSL Config struct in Nginx
requires as many as 16 connections (i.e., 16-step DDM) [8].

Like the DOP attack, a multi-step DDM attack violates data-
flow integrity. DDM is a pre-requisite for DOP. However,
DOP is much more complex than the multi-step DDM. We
summarize their key differences in the following.
* Gadgets and code reuse. DOP/BOP attacks involve reusing

code execution through CFI-compatible gadgets. Multi-step
DDM hinges on direct memory writes and does not involve
any gadget executions.

* Stitching mechanism and ordering constraint. In DOP
and BOP attacks, how to orderly stitch gadgets to form a
meaningful attack is important. Multi-step DDM attacks,
e.g., crafting and sending multiple attack payloads to ma-
nipulate memory values, do not need any special stitching
mechanism (and thus there is no ordering constraint).
A significant contribution by Ispoglou et al. in [23] is the

block-oriented programming compiler (BOPC). BOPC is the
first compiler technique that automates the BOP/DOP attack
generation (given the arbitrary memory write vulnerability).
With the automatically generated attack payloads by the com-
piler, an attacker first performs a series of DDMs to modify
memory and then launches a BOP/DOP attack by chaining
gadgets that leverage memory manipulation via DDMs.

B. Demystifying the ProFTPd DOP attack

We use the ProFTPd DOP attack crafted by Hu et al. [7]
to illustrate the typical flow of DOP attacks. The goal of
this DOP attack is to bypass randomization defenses (such as
ASLR [12]), and then leak the server’s OpenSSL private key.
The private key is stored on the heap with an unpredictable
layout, which hinders the attacker from reading out the private
key from the heap directly. Though the key is stored in a
randomized memory region, it can be accessed via a chain
of 8 pointers. As long as the base pointer is not randomized,
e.g., when the position independent executables (PIE) feature
is disabled, it is possible to exfiltrate the private key by starting
from the OpenSSL context base pointer (i.e., a known location
of the static variable ssl_ctx) and recursively de-referencing
7 times within the server’s memory space.

1) ProFTPd vulnerability: ProFTPD versions 1.2 and
1.3 have a stack-based buffer overflow vulnerability in the
sreplace function (CVE-2006-5815 [26]). The overflow
can be exploited by an attacker to obtain an arbitrary write
primitive. The server program provides a feature to display
customized messages when a user enters a directory. The
message content is saved in .message file in each direc-
tory. It can be edited by any user with write-access to the
directory. The .message file can contain special characters
(i.e., specifiers) which will be replaced with dynamic content
such as time/date and server name by the sreplace function.

For example, the string "%V" in .message will be replaced
by main_server->ServerName, and "%T" will be re-
placed by the current time and date. Changing the working
directory with a CWD command triggers the processing of
.message file, and subsequently triggers the invocation of
the sreplace function. To trigger a memory error in the
vulnerable function, the attacker crafts attack payloads to
modify the content of the .message file, and then send CWD
commands to the server.
1 c h a r ∗ s s t r n c p y (c h a r ∗d e s t , c o n s t c h a r ∗ s r c , s i z e _ t n) {
2 r e g i s t e r c h a r ∗d = d e s t ;
3 f o r (; ∗ s r c && n > 1 ; n−−)
4 ∗d++ = ∗ s r c ++;
5 . . .
6 }
7 c h a r ∗ s r e p l a c e (c h a r ∗s , . . .) {
8 . . .
9 c h a r ∗m,∗ r ,∗ s r c = s ,∗ cp ;

10 c h a r ∗∗mptr ,∗∗ r p t r ;
11 c h a r ∗marr [3 3] ,∗ r a r r [3 3] ;
12 c h a r buf [BUF_MAX] = { ’ \ 0 ’ } , ∗pbuf = NULL;
13 s i z e _ t mlen =0 , r l e n =0 , b l e n ; cp= buf ;
14 . . .
15 w h i l e (∗ s r c) {
16 f o r (mptr=marr , r p t r = r a r r ; ∗mptr ; mptr ++ , r p t r ++) {
17 mlen = s t r l e n (∗ mptr) ;
18 r l e n = s t r l e n (∗ r p t r) ;
19 i f (s t rncmp (s r c ,∗ mptr , mlen) ==0) { / / check s p e c i f i e r s
20 s s t r n c p y (cp ,∗ r p t r , b len−s t r l e n (pbuf)) ; / / r e p l a c e

a s p e c i f i e r w i th dynamic c o n t e n t s t o r e d i n ∗ r p t r
21 i f (((cp + r l e n) − pbuf + 1) > b l e n) {
22 cp = pbuf + b l e n − 1 ; . . .
23 } /∗ Overf low Check ∗ /
24 . . .
25 s r c += mlen ;
26 b r e a k ;
27 }
28 }
29 i f (!∗ mptr) {
30 i f ((cp − pbuf + 1) > b l e n) { / / o f f−by−one e r r o r
31 cp = pbuf + b l e n − 1 ; . . .
32 } /∗ Overf low Check ∗ /
33 ∗cp++ = ∗ s r c ++;
34 }
35 }
36 }

Listing 2: The vulnerable function in ProFTPd

Listing 2 shows the vulnerable sreplace function. The
vulnerability is introduced by an off-by-one comparison bug in
line 30, which allows attackers to modify the program memory.
A defective overflow check in lines 29-34 is performed to
detect any attempt to write outside the buffer boundary. When
writing to the last character of the buffer buf, (cp-pbuf+1)
equals to blen. Thus, the predicate in line 30 returns false,
and the string terminator is overwritten in line 33. Con-
sequently, the string is not properly terminated inside the
buffer because the buffer’s last character has been overwritten
with a non-zero byte. In the next iteration of the while
loop, the input blen-strlen(pbuf) of the sstrncpy
function becomes negative, which will be interpreted as a
large unsigned integer (in line 20). Hence, the invocation of
sstrncpy overflows outside buffer bounds into the stack
and overwrites local variables such as cp. Both the source
(i.e., *rptr) and the destination (i.e., cp) of the string copy
function, i.e., sstrncpy in line 20, are under the control
of the attacker, where *rptr can be manipulated by the
attacker through specifying special characters in .message

0x80d3450
mons …

0x80d3450

@0x80cf6e0

SSL_CTX* ssl_ctx@0x80de0c8

struct cert_st* cert

CERT_PKEY* key

EVP_PKEY* privatekey

struct rsa_st* rsa

BIGNUM* d

BN_ULONG* d

Private Key

0x80de0c8
main_server->
ServerName

@0x871ae4c

Dereference
main_server->ServerName

Dereference 7 times (D1—D7)

D1: @0x874d868

@0x80d9020
resp_buf

D2: @0x874d998

D3: @0x874d9d4

D4: @0x875fab8

D5: @0x875fae0

D6: @0x875fc88

D7: @0x875fca0❶ Copy

❸ Copy

❹ Dereference

❷ Read
main_server @0x871ae3c
@0x80d6e14 0x871ae3c

…

0x874d7b8

Copy

❺ ReadLeakage to client

The base pointer

offset

offset

offset

offset

offset

offset

offset

offset

Fig. 1: ProFTPd DOP attack flow. An attacker needs to know the underlined addresses and offsets to launch the attack.

(e.g., "%C" will be replaced by an attacker-specified directory
name). As a result, the vulnerability allows the attacker to
control the source, destination, and number of bytes copied
by subsequent iterations of the while loop in lines 15-35.

2) The attack flow: Fig. 1 shows a step-by-step description
of the ProFTPd DOP attack, where the underlined addresses
and offsets are required to be known before launching the
attack.

The attacker interacts with the server program (over the
course of numerous FTP commands) to corrupt program mem-
ory by repeatedly exploiting the buffer overflow vulnerability.
In this scenario, the command handler cmd_loop in ProFTPd
serves as the data-oriented gadget dispatcher. In each iteration,
the attacker triggers the execution of targeted gadgets by
sending a crafted attack payload to the server program, e.g.,
the dereference gadget *d++=*src++ located in sstrncpy
(line 4 in Listing 2). We reproduced the ProFTPd DOP attack,
and observed that the vulnerable function sreplace is called
more than 180 times during the attack.

Over the course of the attack, based on the known addresses
and offsets (underlined in Fig. 1) extracted from the ProFTPd
binary, the attacker systematically corrupts program memory
to construct a DOP program out of individual operations. The
main steps, shown in Fig. 1, are described as follows.

¶ To read data from arbitrary addresses in the server,
the attacker needs to overwrite string pointers used by
a public output function (e.g., send). To this end, the
attacker manipulates 12 pointers in a local static mons array
located at 0x80cf6e0 to a global writable location (i.e.,
the attacker specifies this location, denoted by G_PTR). As
shown in Fig. 1, the mons array is filled with G_PTR’s
address 0x80d3450. Thus, when the server returns the
date information to the client, it prints the value pointed by
G_PTR. This step builds an exfiltration channel which can
leak information from the server to the network.
· The attacker knows the memory address of the global
pointer main_server at 0x80d6e14, and reads the
main server structure address pointed by main_server,
i.e., 0x871ae3c. The read operation is implemented by
writing the address of the main server structure to the global

writable location G_PTR, and then transmitting the output
via the exfiltration channel to the attacker side.
¸ The attacker knows the offset of the field ServerName
in the main server structure, which is 0x10 according
to the binary of ProFTPd. Then, the attacker is able to
calculate the address of main_server->ServerName,
i.e., 0x871ae3c+0x10=0x871ae4c. Given the memory
address 0x80de0c8 of ssl_ctx, i.e., the base pointer of
a chain of 8 pointers to the private key, the attacker writes
this address to main_server->ServerName located at
0x871ae4c.
¹ Deference the base pointer ssl_ctx, where
the output is 0x874d7b8. The dereferencing
operation dereferences the value currently located at
main_server->ServerName, by triggering the
execution of the dereference gadget in line 4 of Listing 2.
The dereferenced value will be copied to a known position
in the response buffer resp_buf. Then, the attacker
obtains the address 0x874d868 of cert by adding the
offset 0xb0 to the dereferenced value 0x874d7b8 (D1 in
Fig. 1). After that, the attacker copies the address of cert
to main_server->ServerName for the next iteration
of deference. This step repeats 7 times (D1∼D7 in Fig. 1)
following the dereference chain as shown in Fig. 1. The
attacker needs to know the offset of the relevant field to
the base address in each iteration, which can be derived
from the binary or source code. Finally, the final address
of the private key is obtained.
º The attacker sequentially reads 8 bytes from the private
key buffer via the information exfiltration channel con-
structed in the first step. This process repeats for 64 times
to retrieve a total of 512 bytes data.

C. Representative data-oriented attacks

In the seminal work of non-control data attacks [5] and
later FlowStitch [6], the authors have described more than 20
different data-oriented exploits (most of them are single-step
DDM attacks). More recently, several research efforts have
shown that data-oriented attacks pose serious threats to real-
world programs.

Targeted Application
and Year Type Assumption/Requirement Capability

Chrome [27], 2016 DDM Identified security-critical variables, and
arbitrary read/write capability Bypass the same-origin policy

Linux Page
Table [28], 2017 DDM Kernel code writable, and arbitrary

read/write capability Bypass the kernel CFI

InternetExplorer,
Chrome [29], 2017 DDM Identified security-relevant variables, and

arbitrary read/write capability
Information leakage, bypass the

same origin policy, etc.

Nginx [8], 2018 Multi-step
DDM

Identified security-critical data structures,
known unused portion of the data section,

and arbitrary read/write capability

Disable or degrade services,
information leakage, etc.

ProFTPd [7], 2016 DOP
Memory addresses of multiple involved data,
identified gadgets/dispatchers, and arbitrary

read/write capability
Private key leakage w/ ASLR

TABLE I. Recent data-oriented attacks pose serious threats against real-world programs.

Jia et al. [27] utilized data-oriented attacks to bypass the
same-origin policy (SOP) enforcement in the Chrome browser.
By manipulating the values of in-memory flags related to
SOP security policy checking (which requires an arbitrary
read/write privilege), the SOP enforcement can be undermined
in Chrome. Davi et al. [28] showed that a data-only attack
on page tables can undermine the kernel CFI protection. By
manipulating the memory permissions in kernel page entries,
the attack makes kernel code pages writable and subsequently
enables malicious code injection to kernel space.

Rogowski et al. [29] introduced a new technique, called
memory cartography, that an adversary can use to navigate
itself at runtime to reach security-critical data in process
memory, and then modify or exfiltrate the data at will. They
demonstrated the feasibility of data-oriented exploits against
modern browsers such as Internet Explorer and Chrome, where
possible attacks range from cookie leakage to bypassing the
SOP. Morton et al. [8] demonstrated the potential threat of
data-oriented attacks against asynchronous web servers (e.g.,
Nginx or Apache). By manipulating only a few bytes in
memory, it is possible that an attacker re-configures a running
asynchronous web server on the fly to degrade or disable
services, steal sensitive information, and distribute arbitrary
web content to clients. The attack consists of multiple steps
(i.e., a multi-step DDM). It starts with locating the security-
critical configuration data structures of the server and exposing
their low-level state at runtime by leveraging memory disclo-
sure vulnerabilities. Then, an adversary constructs faux copies
of security-critical data structures into memory by exploiting
memory corruption vulnerabilities. By redirecting data point-
ers to faux structures, a running web server instance can be
re-configured by the attacker without corrupting the control-
flow integrity or configuration files on disk. However, in the
end-to-end exploits, authors in [8] simulated the arbitrary
write vulnerability in the recent version of Nginx, rather than
exploiting a real-world vulnerability.

Table I summarizes these recent data-oriented attacks. Be-
cause existing CFI-based solutions are rendered defenseless
under data-oriented exploits, such threats are particularly
alarming. To construct a data-oriented exploit, attackers must
have an in-depth knowledge of the vulnerable program’s exact
memory layout at runtime. In comparison to the DDM attack,

a DOP attack requires non-trivial engineering efforts to chain
gadgets for malicious effect.

III. DEFENSES AGAINST DATA-ORIENTED ATTACKS

In this section, we first describe a three-stage model for
data-oriented attacks, and a taxonomy of existing applicable
defense techniques. Then, we provide a comparative analy-
sis of recent defensive approaches, particularly against data-
oriented attacks.

A. Three-stage model for launching data-oriented attacks

Fig. 2 illustrates the abstract view of three stages in data-
oriented attacks. To launch such attacks, it starts with trig-
gering a memory error of a vulnerable program (i.e., Stage
S1), which empowers an attacker with control of the memory
space, e.g., read/write capability. In Stage S2, the targeted non-
control-data is modified (through either DDM or DOP). In
Stage S3, the manipulated data variable is used and takes effect
to change the default program behavior. Note that S3 does not
necessarily happen immediately after the data manipulation.
The back edges pointing from S3→S1 and S2→S1 indicate
that an attacker may need to corrupt non-control-data multiple
times to achieve the malicious goal.

We discuss requirements in different stages (i.e., the threat
model) that are essential to launching a successful DOP attack.
The first three requirements apply for DDM exploits.

* The presence of a memory corruption vulnerability (such
as a buffer or heap overflow) in the target program, which
allows attackers to modify the content of the application’s
memory (i.e., write capability). This is a reasonable assump-
tion since low-level memory-unsafe languages (e.g., C/C++)
are still in widespread use today due to interoperability
and speed considerations, even though memory corruption
vulnerabilities are an inevitable security weakness in these
languages.

* Knowing the exact location of target non-control data in
memory. Due to the wide deployment of exploit mitigation
technologies such as DEP and ASLR, it is likely attackers
need to first leverage memory disclosure vulnerabilities to
circumvent the address space randomization [8]. In this
case, an exfiltration channel to achieve information leakage

S1:	Trigger a
memory error

S3:	Use the
corrupted data

S2:	Manipulate	non-control data

DDM:	Direct data manipulation

DOP: Data manipulation by
misinterpreting existing gadgets

Data-flow integrity
Memory safety	

Data space randomization

Monitoring	and	detection

Attack	
payload

Defenses

Data-
oriented	
attacks

Memory	corruption	
vulnerability	 Requirements

Precise	memory	
addresses	of	target	
data	and	gadgets	

Availability	of	
gadgets	and	
dispatcher	

Avoid	program	
crash	or	CFI	
violation	

Software	compartmentalization	

Fig. 2: Stages in data-oriented attacks and mitigation in different stages

is needed (i.e., read capability), such as reading data from
arbitrary addresses of the target program.

* Knowing exactly the transformation of an attack payload
to the impact on memory space of the target program. For
example, a continuous buffer overflow may generate side
effects that cause the program to crash. When launching
a data-oriented exploit, attackers need to avoid any CFI
violation and program crash.

* Availability of DOP gadgets that are reachable by the
memory corruption vulnerability, and triggerable by the
attack payload.

* Stitchability of disjoint DOP gadgets. A gadget dispatcher is
needed to dispatch and execute the functional DOP gadgets.
However, it is non-trivial to find gadget dispatchers in a
program since they require loops with suitable gadgets and
selectors controlled by a memory error.

B. Taxonomy of applicable defense techniques

We briefly discuss defenses focusing on preventing these
requirements from being satisfied at different points/stages.
More generic memory corruption prevention mechanisms (in
Stages S1 and S2) can be found in [4], [24], [25].

1) S1 Defense – Preventing exploitation of memory errors:
Memory safety enforcement is the first line of defense, which
aims to prevent both spatial and temporal memory errors,
such as buffer overflows and use-after-free errors. Memory-
safe programming languages achieve this with built-in runtime
bounds checks and garbage collection that make them immune
to memory errors. In contrast, memory-unsafe languages such
as C/C++ lack built-in memory safety guarantees. Programs
written in memory-unsafe languages therefore commonly ex-
hibit memory errors that may make them vulnerable to runtime
exploitation. Enforcing all memory accesses staying within
the bounds of intended objects would completely eliminate
the pre-conditions for attacks that rely on gaining access
to a prohibited area of memory. Despite considerable prior
research in retrofitting memory-unsafe programs with memory
safety guarantees, memory-safety problems persist due to an
trade-off between effectiveness and efficiency: low-overhead
approaches usually offer inadequate protection/coverage, while

comprehensive solutions either incur a high performance over-
head or provide limited backward compatibility [4], [30].

SoftBound [31] and HardBound [32] perform pointer
bounds checks against metadata stored in a shadow memory
area. SoftBound incurs an average performance overhead of
67% in standard benchmarks. HardBound is a hardware-
assisted scheme where the processor checks associated pointer
bounds implicitly when a pointer is dereferenced. As the check
is performed by hardware logic, the average performance
overhead is reduced to around 10%. Both schemes have a
worst-case memory overhead of 200%. Fat-pointer schemes
store the associated bounds metadata [33] together with point-
ers, e.g., by increasing their length [34] or by borrowing
unused bits from pointers [33]. But changing the represen-
tation of pointers in memory breaks both binary and source
code compatibility. Code-Pointer Integrity (CPI) [35] provides
control-flow hijacking protection with a very low performance
overhead (e.g., 8.4% slowdown for C/C++ program). However,
it only focuses on code-pointer checking without providing the
complete memory safety.

2) S2 Defense – Providing a barrier to access to data
or guess memory layout: The purpose of S2 defenses is
to mitigate the consequences of attacks in the presence of
memory vulnerabilities. S2 defenses include software com-
partmentalization [36], [37], [38] and address space or data
layout randomization [12], [39] techniques. They serve as the
second line of defense, which creates a barrier for attackers
trying to access target data or guess the memory layout.

Software compartmentalization isolates software compo-
nents into distinct protection domains in order to limit the
utility of existing memory errors (i.e., when the memory
error and data to be manipulated exist in different protec-
tion domains), but also limit the abilities of a compromised
software component. For example, Software Fault Isolation
(SFI) [36] compartmentalizes software in a single address
space by sandboxing untrusted modules into separate fault
domains. This compartmentalization ensures that code in the
fault domain is unable to directly access memory or jump to
code outside the reserved portion of address space, but must

interact with code outside it’s domain through well-defined
call interfaces.

Randomization aims to hide attack targets by randomizing
the layout of memory space [24], [40], [41], layout of the
code [42], layout of data [39] or the data itself [43] so that
unauthorized access would lead to unpredictable behavior. In
particular, data space randomization [39], [44] aims to ran-
domize the representation of data stored in program memory
at runtime to make it unpredictable for unauthorized accesses,
and thus reducing the possibility that attackers can leak
security-critical memory addresses or manipulate the content
of targeted data. ASLR [12] randomly chooses the base ad-
dresses of the stack, heap, code segment, and shared libraries.
Data Space Randomization (DSR) [39] encrypts data stored in
memory, rather than randomizing the location. Though strong
randomization can stop memory corruption attacks with a high
probability, the protection is confined to all data/addresses that
are randomized/encrypted. In practice, to avoid a significant
performance degradation, not all data/addresses are protected
by randomization defenses [4]. On the other hand, information
leaks can undermine randomization techniques. In addition,
data/address encryption based solutions are not binary compat-
ible (i.e., protected binaries are incompatible with unmodified
libraries) [4].

3) S3 Defense – Preventing/detecting use of corrupted
data: Data-Flow Integrity (DFI) [47] mitigates data corrup-
tion before the manipulation takes effect. Before each read
instruction, DFI ensures that a variable can only be written
by a legitimate write instruction which can be derived by
reaching definitions analysis (i.e., for each value read instruc-
tion, it statically computes the set of write instructions that
may write the value). However, DFI usually overestimates
the set of valid write instructions since the set is statically
determined without runtime information. Moreover, Software-
based DFI incurs a high performance overhead [7] due to
the frequent read instruction checking. Intra-procedural DFI
incurs 44% and inter-procedural DFI incurs 103% runtime
performance overhead, respectively, and approximately 50%
space overhead for instrumentation [47]. Hardware-based DFI,
e.g., HDFI [46], is efficient, but limited by the number of
simultaneous protection domains it can support.

Depending on the granularity of compartmentalization and
the boundaries of the security domain, software compartmen-
talization can also function as a defense in S3. It can prevent
the use of corrupted data. For example, when a corrupted
pointer is referencing memory in another protection domain,
it thwarts the dereference operation.

Szekeres et al. [4] provide a systematic overview of mem-
ory corruption attacks and mitigations. They highlighted that
though a vast number of solutions have been proposed,
memory corruption attacks continue to pose a serious se-
curity threat. Real-world software exploits are still possible
because currently deployed defenses can be bypassed. Program
anomaly detection complements the aforementioned mitigation
techniques, and serves as the last line of defense against data-
oriented attacks. As shown in Fig. 2, passive monitoring based

program anomaly detection has the potential to detect anoma-
lous program behaviors exhibited in all the three stages of
data-oriented attacks. We will discuss its detection capabilities
in details in Sections IV and V.

C. Defense mechanisms against data-oriented attacks

In addition to generic memory corruption prevention mech-
anisms, a number of detection and prevention techniques
specially focusing on data-oriented attacks have been proposed
in the literature. In this section, we discuss these defenses.

YARRA [20] is a C language extension that validates a
pointer’s type for critical data types annotated by developers,
which is an S1 defense. It guarantees that critical data types
are only written through pointers with the given static type.
YARRA is suitable for hardening access to isolated pieces of
critical data, such as cryptographic keys stored in program
memory at runtime. However, when applied for the whole
program protection, it incurs a performance overhead in the
order of 400%∼600%. In addition, YARRA relies on the
programmers’ manual annotations, which is undesirable for
complicated programs.

HardScope [21] is a hardware-assisted variable scope en-
forcement approach to mitigate data-oriented attacks by intro-
ducing intra-program memory isolation based on C language
variable visibility rules derived during program compilation.
On each memory access (i.e., load/store), HardScope enforces
that the memory address requested is in the accessible memory
areas. Nyman et al. [21] demonstrated the effectiveness of
HardScope for the RISC-V open instruction set architecture,
by introducing a set of seven new instructions. HardScope
instructions are instrumented at compile-time, and memory
access constraints are enforced at runtime. It shows that
HardScope has a real-world performance overhead of 3.2%
in embedded benchmarks. Although HardScope significantly
reduces the usefulness of DOP gadgets and thwarts Hu et
al. [7]’s example attacks, HardScope cannot guarantee the
absence of DOP gadgets in arbitrary programs.

PrivWatcher [45] is a framework for monitoring and protect-
ing the integrity of process credentials (i.e., task_struct
that describes the privileges of a process in the Linux kernel)
against non-control data attacks. It involves a set of kernel
modifications including relocating process credentials into a
safe region, code instrumentation and runtime data integrity
verification, in order to provide non-bypassable integrity as-
surances. It ensures the Time of Check To Time of Use (TOCT-
TOU) consistency between verification and usage contexts
for process credentials by adopting a dual reference monitor
model. The authors implemented the PrivWatcher prototype in
Ubuntu Linux. The experiment results show that PrivWatcher
incurs an overhead less than 3%. But it incurs more than
94% overhead for applications that involve installing new
task_struct structures to processes.

Hardware-Assisted Data-flow Isolation (HDFI) [46] extends
the RISC-V architecture to provide an instruction-level isola-
tion by tagging each machine word in memory (also known
as the tag-based memory protection). The one-bit tag of

Defense and Year Stage Approach Security Guarantee Overhead General
Approach

YARRA [20], 2011 S1 (Pointer safety) Program
instrumentation User-specified critical data 400%∼600% (whole

program) 3

HardScope [21], 2018 S2 & S3
(Compartmentalization) Hardware extension Context-specific memory isolation ∼3.2% 7

PrivWatcher [45], 2017 S2
(Compartmentalization) Kernel modification Protect process credentials data in

Linux kernel
∼3% (94% in
extreme cases) 7

HDFI [46], 2016 S2
(Compartmentalization) Hardware extension Coarse-grained data-flow isolation ∼2% 7

PT-Rand [28], 2017 S2 (Randomization) Kernel modification Protect kernel page tables 0.22% 7

DFI [47], 2006 S3 Program
instrumentation Data-flow integrity ∼100% 3

CVI [48], 2018 S3 Program
instrumentation Selective data-flow integrity ∼2.7% 7

TABLE II. Comparison of defensive mechanisms against data-oriented attacks

a memory unit in HDFI is defined by the last instruction
that writes to this memory location. At each memory read
instruction, HDFI checks if the tag matches the expected value.
However, unlike software-enforced DFI, HDFI only supports
two simultaneous protection domains.

Davi et al. [28] presented a data-oriented attack against
kernel page tables to bypass CFI-based kernel hardening tech-
niques, and subsequently attackers can execute arbitrary code
with kernel privileges. To mitigate the threat, they proposed
PT-Rand, which randomizes the location of page tables to
prevent attackers from manipulating page tables by means of
data-oriented attacks. Evaluation results show that PT-Rand
on Debian only incurs a low overhead of 0.22% for common
benchmarks. However, it is still possible attackers undermine
these schemes if the secret information (e.g., randomization
secret) is leaked or inferred [21].

CVI (Critical Variable Integrity) [48] verifies define-use
consistency of critical variables for embedded devices. The
define-use consistency is defined as the property that the
value of a variable cannot change between two adjacent
define- and use-sites. After identifying critical variables (either
automatically identified or manually annotated), the compiler
inserts instrumentation at all the define- and use-sites for these
critical variables, to collect values at runtime and send them
to an external measurement engine. CVI checking compares
the current value of a variable at every use-site, and the
recorded value at the last legitimate define-site. However, like
DFI [47], CVI is based on compile-time instrumentation and
frequent runtime checking, which incurs a high overhead for
the complete protection.

Table II compares representative data-oriented attack spe-
cific defensive mechanisms. PrivWatcher [45], HDFI [46], PT-
Rand [28], and CVI [48] protect specific non-control data.
HardScope [21] can protect against all DOP attacks that
violate variable visibility rules at runtime. However, it requires
developer assistance in certain settings. The main drawback
of HarScope and other solutions based on new hardware
extensions [46] is the high bar for deployment. They cannot
be directly applied to protect user-space applications against
general data-oriented attacks, in particular DOP attacks. On the
hand, the two general approaches DFI [47] and YARRA [20]
incur a high performance overhead at runtime.

IV. OVERVIEW OF DETECTABILITY BASED ON
CONTROL-FLOW TRACING

This and the next sections describe our effort of understand-
ing the data-oriented attacks from the defense perspective. In
particular, we consider the scenario where one can efficiently
trace control flows. With new hardware development, namely
the Intel Processor Trace (PT)2, runtime control-flow tracing
becomes realistic. Real-time control-flow monitoring without
significantly slowing down the program execution can be
widely deployed. Control-flow based detectability analysis
may sound like an oxymoron, because data-oriented attacks
do not violate control-flow integrity. However, this superficial
view is incomplete. There exist cases where the anomalies
may be detected by correlating or aggregating multiple (legal)
control-flow observations.

The necessary condition for detecting a data-oriented at-
tack using control-flow tracing is that the attack directly or
indirectly affects the flow of a program’s execution. Typically,
uses of non-control data in a program can be classified either
as predicate uses or non-predicate uses, such as computation
uses. A predicate-use directly affects the control flow. While
a non-predicate use may affect the computation or the output
of a program [49]. Suppose that PT-style control-flow tracing
(namely, recording indirect control transfers and conditional
branches) is enabled. In what follows, we categorize the cases
where data-oriented attacks are impossible to detect (i.e.,
undetectable cases) and cases where such attacks may be
detected (i.e., detectable cases) by control-flow tracing. For
the detectable cases, we provide more specific experimental
observations in Section V. We report our overhead and per-
formance measurement in Section V-D.

A. Undetectable cases

Detecting data-oriented attacks using control-flow tracing
requires that an attack manifests incompatible/unusual control-
flow behaviors, e.g., incompatible branch behaviors or fre-
quency anomalies. However, when a manipulated variable is
only used for computation or output (i.e., non-predicate use),
and the exploit does not incur any side effect on control
transfers, such an attack is undetectable by PT control-flow

2PT is a low-overhead hardware feature on Intel CPUs that enables the
construction of the complete control flows during program execution.

tracing. We list typical undetectable cases, which are mainly
direct data manipulation (DDM) attacks.
* Corrupting user identity for privilege escalation: Simply

corrupting user identify data (e.g., UID) may lead to a com-
promise of the root privilege. However, for an undetectable
data manipulation with the privilege escalation, an attacker
usually goes after malicious actions once obtaining the new
privilege, e.g., launching a shell. Such malicious actions can
be easily detected by control-flow tracing.

* Corrupting configuration data: Corrupting configuration
data via format string vulnerabilities may evade PT-based
detection, since format string vulnerabilities allow a single
memory write without a side effect on control-flow behavior.

* Constructing exfiltration channels for information leakage:
Attackers exploit an existing information outlet (also known
as sink functions such as printf or send) for informa-
tion leakage by replacing the pointer value of the outlet
function’s parameter with the address of the data to be
exfiltrated. Such an attack may not incur any anomalous
control-flow behavior.

B. Possibly detectable cases

We observe that data-oriented attacks can potentially cause
three types of anomalous control-flow behaviors.
* Incompatible branch behavior: Manipulating a predicate-

use variable (e.g., decision-making data) can change the
default branch behavior of a program. If there exist two
correlated conditional branches that are data-dependent on
the manipulated variable before and after the data manipu-
lation site, it is likely the data manipulation incurs incom-
patible branch behaviors that can be detected by control-
flow tracing. For example, in Listing 1, the conditional
branches in lines 5 and 16 are correlated, since they both are
data-dependent on the variable authenticated. Suppose
authenticated is corrupted at line 6 and there is no
write to authenticated after the data manipulation. As
a result, while(!authenticated) in line 5 returns
true, but if(authenticated) in line 16 also returns
true. We observe an incompatible branch behavior, which
is detected when the corrupted variable authenticated
is used in line 16 (i.e., in Stage 3 of the attack).
In addition, a continuous buffer overflow may generate side
effects on control-flow behavior, which could result in an
incompatible control-flow path observable in Stage S2. For
example, though the target buffer is not used for predicate-
use, some decision-making variables close to the buffer
may be inevitably corrupted. We manually analyzed 14
vulnerable programs in a test suite for buffer overflows [50],
and found that 5 out of 14 overflows cause side impacts
on decision-making variables (i.e., involved in predicate
expressions).
In Section V-B, we experimentally characterize the branch
correlation behaviors of ProFTPd under the DOP attack and
report our findings.

* Macro-level interaction frequency anomaly: In DOP (also
BOP) attacks, an attacker normally needs to interact with

a vulnerable program to repeatedly corrupt variables to
achieve the attack purpose and avoid segmentation faults.
This attack activity inevitably results in frequency anomalies
during the client-server interaction, which can also be cap-
tured by control-flow tracing. For example, in the ProFTPd
DOP attack introduced in Section II, an attacker needs to
send a large number of FTP commands with malicious
inputs to the ProFTPd server to corrupt the program memory
repeatedly.

* Micro-level control-flow frequency anomaly: Short control-
flow paths may exhibit unusual execution frequencies. For
instance, corrupting variables which directly or indirectly
control loop iterations can cause such frequency anoma-
lies. Micro-level control-flow frequency anomalies may be
observed in different stages of data-oriented attacks. In ad-
dition, control-flow bending (CFB) attacks [9] and resource
wastage attacks [18] may also lead to unusual control-flow
frequencies.
In Section V-C1, we experimentally compare the frequency
differences of both the macro-level interactions and micro-
level control-flows in normal ProFTPd executions and under
a DOP attack.

V. CHARACTERIZATION OF DOP BEHAVIORS WITH PT
In this section, we provide more concrete observations about

DOP’s detectability based on control-flow tracing. Specifically,
we experimentally measure the execution patterns of the
ProFTPd DOP attack on a computer with Processor Trace
(PT) enabled. The ProFTPd DOP attack is the only publicly
demonstrated end-to-end DOP attack [7]. Our goal is to
illustrate the DOP’s non-negligible impact on PT traces, as
opposed to proposing a specific anomaly detection system.

We organize our experiments according to the detectable
cases discussed in Section IV. Our experiments mainly aim to
answer the following research questions (RQs).
RQ1: Does the ProFTPd DOP attack exhibit any incompat-
ible branch behavior? How feasible of using branch correla-
tion for detecting incompatible branch behavior in real-world
programs. (Section V-B)
RQ2: Does the ProFTPd DOP attack exhibit any frequency
anomalies that can be captured by PT tracing? (Section V-C)
RQ3: What is the runtime performance overhead of PT
tracing when monitoring the ProFTPd server? (Section V-D)
We ported the original ProFTPd DOP attack to a 32bit

Ubuntu 16.04 with PT support. The attack heavily relies on
the precise knowledge of the library and memory layout. In
particular, we modified the original metasploit module and
created an automated script to scan the ProFTPd binary, which
automatically locates the targeted memory addresses. This
porting effort was non-trivial3. Our testing platform for the
experiments is a desktop computer with an Intel i7-8700 CPU
and 32GB of RAM unless otherwise specified. We collected
control-flow traces using the Linux Perf-PT tool.

3The automated script of launching the ProFTPd DOP attack, our LLVM-
based analysis tools, and all traces of the case studies are provided at
https://goo.gl/5hmaZH

A. Tracing indirect and conditional branches with PT

In this section, we briefly explain what control-flow in-
formation PT records, which is needed to understand our
experimental results. PT tracing is at the instruction level,
which is much more fine-grained than system- or function-call
level tracing. To capture control-flow information, PT records
target addresses of indirect branches (i.e., TIP packets/events
for the indirect call, indirect jmp, and ret) and taken/non-
taken decisions of conditional direct branches (i.e., TNT
packets/events). The trace format in PT is highly compressed
to achieve efficient logging at runtime. For example, it uses
one bit to indicate taken or not-taken for a conditional branch.

Recent research has shown PT’s applicability for on-line
security enforcement to defend against control-flow attacks
(referred to as dynamic CFI solutions). GRIFFIN [51] is an
operating system mechanism (running in the kernel) that
leverages the PT feature to enforce CFI policies. PT-CFI [52]
and FLOWGUARD [53] are two backward-edge control-flow
violation detection systems using PT tracing. To address the
over-approximation problem of control targets in forward-edge
CFI, PITTYPAT [54] utilizes PT to track basic block execution
to compute the legal control transfer target sets through
runtime path-sensitive point-to analysis. But PITTYPAT still
makes approximations, as an incomplete execution context is
used in its points-to analysis. µCFI [55] improves PITTYPAT
by recording full execution context with PT to perform an
accurate points-to analysis, and thus getting a unique code
target for each indirect control-flow transfer.

However, none of these existing work investigates the PT-
based detection against data-oriented attacks. In what follows,
we look into the possibility of PT-based detection against DOP
attacks, which can also be applied to detect DDM attacks.

B. RQ1: Branch behavior patterns

We first utilize correlations among branches to spot incom-
patible branch behavior in the ProFTPd DOP attack. Then, we
characterize the branch correlation in benchmark programs to
show the feasibility and generality of this approach.

We define the subsume and mutually exclusive deterministic
relations among branch conditions/predicates. If a branch
condition BRi returns true/false, another branch condition
BRj must return true/false, we say BRi subsumes BRj .
BRi and BRj are mutually exclusive, if they always return
different results. For example, (x>10) subsumes (x>5), and
(x>10) and (x<5) are mutually exclusive.

1) Identifying branch correlation in ProFTPd DOP:
For ProFTPd’s vulnerable function sreplace (Listing 2),
the conditional branches in lines 21 and 30 of Listing 2 are
correlated. Both are data dependent on the same variables cp,
pbuf, and blen. Fig. 3 shows these two correlated branches,
denoted as BR1 and BR2, respectively.

Take the example in Fig. 3, we could use the satisfiability
modulo theories (SMT) solver Z3 [56] to determine any
subsume or mutually exclusive relationship between correlated
branches. If the SMT solver could not find a solution for the
combined constraints (BR2) and Not(BR1) (i.e., the logical

Line 21

Line 30 If ((cp – pbuf + 1) > blen) {
cp=pbuf+blen-1;

pr_log_pri (”Warning...”);

}
*cp++=*src++;

sstrncpy(cp, *rptr, blen - strlen(pbuf));

if (((cp + rlen) - pbuf + 1) > blen) {

cp=pbuf+blen-1;

pr_log_pri (”Warning...”);

}
pbuf cp

…

blen

pbuf cp

x…

BR1

BR2

strlen(pbuf) > blen
…

buf

buf

❷

❶

Subsume

Fig. 3: Branch correlation and an incompatible branch behav-
ior in the ProFTPd DOP attack

not of BR1), we derive that BR2 subsumes BR1. In order
to derive the subsume relationship from BR2 to BR1, we
first add the predicate BR2 as a constraint into Z3 solver.
However, cp gets redefined in line 31 (Listing 2), which is
true-control-dependent on the branch in line 30. Thus, we
need to replace BR2 with the statement in line 31 as the
constraint, i.e., cp==pbuf+blen-1. Then, we add the con-
straint Not(((cp+rlen)-pbuf+1)>blen) to the solver.
Because the variable rlen is the length of a non-null string
(derived from the source code), we add rlen > 0 as an
additional constraint. At the end, the solver returns unsat
(satisfiable), and thus we derive that BR2 subsumes BR1, i.e.,
if BR2 returns true, BR1 should also take the true branch.

2) Incompatible branch behavior in ProFTPd DOP:
During the course of the ProFTPd DOP attack, the attacker
first triggers the memory corruption error in sreplace, by
filling up buf (where BR2 returns true) and overwriting
buf’s terminator with a non-zero byte (in line 33 of Listing 2),
as shown in ¶ in Fig. 3. Since buf’s last character is a non-
zero value, it becomes a non-terminated string. As a result,
strlen(pbuf)>blen (· in Fig. 3), which enables the
attacker to corrupt the local variables such as cp and blen
in line 20. To bypass the overflow checking in lines 21-27 in
the following iterations, the attacker needs to make sure that
the predicate in line 21 returns false. From the PT trace,
we could observe the predicate in line 21 (i.e., BR1) takes the
false branch. Since BR2 subsumes BR1, and BR2 has taken
the true branch, the runtime branch behavior of BR1 and
BR2 are incompatible. Note that the observed incompatible
branch behavior is not specific to DOP attacks. For any DDM
attack against the ProFTPd, as long as the attacker exploits the
same vulnerability (CVE-2006-5815 [26]), we could observe
this incompatible branch behavior.

3) Branch correlation in benchmarks: Our case study of
the ProFTPd DOP attack demonstrates that correlated branches
are useful for identifying incompatible branch behaviors. To
reflect the possibility of data-oriented attacks to manifest
incompatible branch behaviors, we characterize the prevalence
of branch correlation in benchmark programs.

In order to capture branch correlations with arbitrary pred-
icate expressions, we define the correlated branches to be
branches that have joint data dependency, including i) direct
data-dependent branches that share at least one common pred-
icate variable; and ii) indirect data-dependent branches that
use different predicate variables, but they are data-dependent

on at least one common variable. We also define the simple
forms of branches, where a branch predicate simply compares
a variable with a constant value, e.g., the conditional branches
in lines 5 and 16 in Listing 1 are simple branches. Previously,
Zhang et al. [57] used correlation among simple forms of
branches to detect infeasible program paths caused by memory
corruptions.

We developed a branch correlation analysis tool based on
LLVM [58]. Our tool handles inter-procedural branch corre-
lations and arbitrary predicate expressions. We performed our
branch correlation analysis on eight programs. They include
four Linux utility programs (flex, grep, gzip, sed) from
the Software-artifact Infrastructure Repository (SIR) [59] and
four vulnerable programs (wu-ftpd, orzhttpd, ghttpd,
sudo) from the FlowStitch benchmarks [6].

Table III reports the branch correlation results. Overall,
24% of the branches exhibit simple forms of conditional
predicates, and 18% of the branches with simple forms are
correlated (including direct and indirect correlations). For the
direct correlations with simple forms (i.e., correlated branches
use the same predicate variable), we used the SMT logic
solver Z3 [56] to determine any "subsume" or "mutually
exclusive" relationship. Our results show that for a limited
number of branch correlations (around 2%), we can directly
derive the deterministic correlation relationship (denoted as
"directly derivable simple BRs" in Table III). It also reflects
that the branch correlation analysis in [57] has a very limited
coverage.

Application Total
BRs

Correlated
BRs

Simple
BRs

Correlated
Simple BRs

Directly Derivable
Simple BRs

flex 1142 813 (71%) 557 (49%) 356 (31%) 62 (5%)
grep 1664 1456 (87%) 278 (17%) 216 (13%) 32 (2%)
gzip 737 533 (72%) 241 (9%) 169 (23%) 60 (8%)
sed 1081 1017 (94%) 172 (16%) 142 (13%) 12 (1%)

wu-ftpd 2781 1943 (70%) 688 (25%) 398 (14%) 84 (3%)
orzhttpd 35 23 (66%) 13 (37%) 7 (20%) 0 (0%)
sudo 675 499 (74%) 163 (24%) 116 (17%) 0 (0%)
ghttpd 107 90 (84%) 16 (15%) 11 (10%) 0 (0%)
Average 1028 77% 24% 18% 2%

TABLE III. Branch correlation analysis in benchmarks
We observed 77% of the branches have at least one cor-

related branch, i.e., given BRi, we can find at least one
branch BRj 6= BRi, where BRi and BRj have joint data
dependency. Though our analysis only captures the coarse-
grained branch correlations as opposed to the deterministic re-
lationships among branches, this result suggests the prevalence
of branch correlations with complex predicate expressions in
a program, which can be potentially used as checkpoints to
detect incompatible branch behaviors (e.g., first using symbolic
execution or dynamic analysis techniques to identify determin-
istic relationships among these correlated branches).

C. RQ2: Frequency patterns
We characterize how DOP impacts the quantitative behav-

iors of ProFTPd by comparing the frequency distributions in
DOP attacks and normal executions. We conducted two sets
of comparisons, i) on macro-level interaction frequencies and
ii) on micro-level control-flow frequencies. Both are defined
in Section IV.

1) Macro-level interaction frequencies: To detect interac-
tion frequency anomalies under the DOP attack, we derived the
FTP commands sent from clients by tracing control-flow trans-
fers of the FTP command dispatcher function _dispatch
in the ProFTPd server program. PT captures the control-flow
transfers from _dispatch to different command handlers,
e.g., core_cwd indicates that the command CWD (i.e., change
working directory) has been received.

To characterize the baseline FTP interaction frequencies,
we used the LBNL-FTP-PKT [60] dataset. It contains all
incoming anonymous FTP connections to public FTP servers
at the Lawrence Berkeley National Laboratory over a ten-day
period, a total of 21482 FTP connections. Each connection
session is considered as a behavior instance, and we extract
FTP commands in each connection from the dataset.

We computed the frequency distributions of 2-gram FTP
command sequences. Each 2-gram transition corresponds to a
high-level execution feature. We applied the Principal Com-
ponent Analysis (PCA) technique for dimension reduction, as
such a distribution-based profiling produces a large number of
features. We adopted the X-means clustering approach [61] to
cluster all behavior instances in baseline FTP command se-
quences, where the center of each of the X-clusters represents
a normal program execution context.

RMD->MKD

MKD
->PU

T

PW
D->MKD

CWD->CWD

PU
T->

GET

CWD->MKD

PW
D->DELE

RMD->DELE

PU
T->

CWD

DELE
->RMD

MKD
->CWD

CWD->PW
D

CWD->DELE

GET
->CWD

DELE
->PU

T
0

50

100

150

200
Co

un
t

Fig. 4: For macro-level interaction frequencies, 2-gram dis-
tribution of FTP commands within a connection during the
ProFTPd DOP attack.

Fig. 4 shows the macro-level frequency distribution of 2-
gram FTP commands within a connection during the ProFTPd
DOP attack. Over the course of the attack, it involves more
than 1000 client-server FTP commands. In contrast, the av-
erage interactions per session in the normal LBNL-FTP-PKT
dataset [60] is 41.

Fig. 5 illustrates the X-clustering for 2-grams of FTP
commands with PCA reduction to 3-dimension. The DOP
instance (i.e., red triangle) does not belong to any normal
clusters (i.e., blue dots). These results suggest that the client-
server interactions under the DOP attack drastically differ from
the baseline executions.

2) Micro-level control-flow frequencies: The .message
file is the input to vulnerable function sreplace. Its content
determines the control-flow behaviors in sreplace, which
we measure with PT tracing in this experiment. In the ProFTPd

−50 0 50 100 150 200 250 300 350 −20
0
20

40
60

80
100
−60
−40
−20
0
20
40
60
80

Fig. 5: For macro-level interaction frequencies, X-clustering
for 2-grams of FTP commands with PCA reduction to 3-
dimension using LBNL-FTP-PKT dataset [60]. The DOP
attack involves an abnormally high number of client-server
interactions.

DOP attack, an attacker crafts .message (i.e., as mali-
cious payloads) to repeatedly fill up the allocated buffer and
write bytes beyond the buffer in sreplace, which exhibits
anomalous behaviors of control-flow transfers. We defined
all control-flow transfers in each sreplace invocation as
a behavior instance, following the approach in [62]. Since
it is difficult to harvest .message files from old version
FTP servers, in this experiment, we randomly generated
1000 .message files without triggering the overflow as the
baseline executions. For each .message file, we inserted
a character string4 with random length less than 100 non-
specifier characters and then appended a random specifier (out
of 20 different specifiers defined in ProFTPd). We repeated
this process with random rounds up to 10 times to generate a
.message file.

10 5 0 5 10 15 20 10
0

10
20

30
40

50
60

70
1.0

0.5

0.0

0.5

1.0

1.5

Fig. 6: For micro-level control-flow frequencies, X-clustering
for 2-gram control-transfers with PCA reduction to 3-
dimension in sreplace. The DOP attack exhibits a unique
pattern of control-flow transfers in comparison to baseline
executions.

The feature extraction and dimension reduction procedures
are similar to the macro-level analysis described above. After
applying PCA, we reduced the original high-dimensional data

4The content of non-specifier character string does not impact on the
control-flow behavior in sreplace, which blindly copies non-specifier
characters to the output buffer.

to 3-dimensional data and then performed the X-clustering.
Our result comparing the control-flow frequency properties
in sreplace is shown in Fig. 6. The baseline dataset is
clustered into 23 clusters. Similar to Fig. 5, the DOP instance
is an obvious outlier. The distance between the DOP instance
and any normal cluster is significant, where the average
distance is larger than 60-unit length in the 3D space.

D. RQ3: Tracing Overhead

 0.03

 0.04

 0.05

 0.06

 0.07

5 10 15 20 25 30 35 40

 E
xe

cu
tio

n
tim

e
(m

s)

Number of specifiers in .message

Without PT tracing
With PT tracing

Fig. 7: Tracing overhead of the sreplace function. PT
tracing constantly incurs a low overhead ranging from 3.3%
to 7.8% slowdown in different settings.

To measure the PT tracing overhead (i.e., Linux Perf-PT),
we instrumented the ProFTPd server program with execution
time measurement functions at entry and exit points of the vul-
nerable function sreplace, and the FTP command handler
function cmd_loop, respectively. We compared the execution
time of sreplace as well as the execution time of processing
an FTP command with and without PT tracing. All the results
have been averaged over 1000 runs, and the related standard
deviations are provided as error bars.

The control-flow behavior in sreplace depends on the
number of specifiers and non-specifier characters in the
.message file. In this test, we changed the number of
specifiers from 5 to 40 and fixed the length of non-specifier
characters to 100 in each .message file. With increasing the
number of specifiers, sreplace takes more time to replace
these specifiers with dynamic content. Correspondingly, the
number of control-flow transfers involved in sreplace in-
creases from 3181 to 4323. Fig. 7 shows that the PT tracing
overhead is constantly low in different settings. We observed
that Perf-PT tracing incurs a low overhead ranging from
3.3% to 7.8% slowdown. Processing an FTP command incurs
around 2.1% slowdown (the average execution delay with and
without PT tracing is 0.191ms and 0.187ms, respectively).

The tracing storage overhead is linearly proportional to the
number of control-flow transfers during the program execution.
To trace control-flow behaviors of sreplace, the size of
decoded PT traces ranges from 25.5KB to 34.6KB as the
number of specifiers increases from 5 to 40. The low-overhead
tracing by PT increases the feasibility for practical deployment
of program anomaly detection.

We also experimentally compared the tracing slowdown
performance of Perf-PT against three commonly used

system-call tracing tools including PIN, SystemTap, and
Strace [62]. We measured the elapsed time between the
entry and exit points in three utility applications (i.e., tcas,
replace, and schedule) from the Software-artifact Infras-
tructure Repository (SIR) benchmark suite [59] on a desktop
computer (Ubuntu 16.04, Intel i7-8700 and 32GB of RAM).

Application Baseline PIN SystemTap Strace Perf-PT
tcas 0.008ms 17.59ms 0.009ms 0.020ms 0.009ms

replace 0.038ms 39.311ms 0.039ms 0.079ms 0.040ms
schedule 0.047ms 59.108ms 0.050ms 0.086ms 0.049ms

TABLE IV. Average tracing overhead of different tracing tools

The average tracing overhead results out of 1000 runs are
shown in Table IV. The baseline refers to the execution time
without tracing. It shows that Strace tracing incurs 113%
slowdown on average, and PIN incurs a rather significant
runtime overhead because of the dynamic binary instrumenta-
tion. SystemTap and Perf-PT show comparable tracing
overhead less than 10% in our test. This is because there
are a limited number of system-call invocations in these three
programs, and thus the binary instrumentation in SystemTap
does not introduce too much overhead. However, SystemTap
requires a very long instrumentation delay before the program
execution. Perf-PT captures all control-flow transfers and
thus provides a finer tracing granularity the system-call tracing.

In addition, we measured GRIFFIN’s [51] (a customized
PT tracing tool in the Linux kernel) tracing overhead on
another Intel PT machine (Intel Core i7-7700 CPU and
32GB of RAM). When tracing sreplace of ProFTPd, we
observed 4.33%∼8.57% (with a standard deviation ranging
from 0.004ms to 0.006ms) runtime overhead from GRIFFIN,
which is consistent to the results using Perf-PT. Since both
Perf-PT and GRIFFIN follow a trace-all-and-then-filter strat-
egy, their slowdown overhead for tracing the whole program or
selectively tracing particular memory regions show very close
results. We did observe certain PT startup overhead. This one-
time PT startup overhead is expected to be amortized across
the entire span of the program execution.

Summary of findings.

* Branch correlations. In ProFTPd’s vulnerable function
sreplace (Listing 2), we observed an incompatible
branch behavior, which exposes the DOP’s attack footprint.
We also developed a branch correlation analysis tool to
demonstrate branch correlations with complex predicate ex-
pressions are somewhat prevalent in benchmark programs.
These results suggest that the approach of enforcing the
branch correlation integrity (which is a principled defense
mechanism), with PT-based branch tracing, could be useful
to defend against data-oriented attacks.

* Macro-level and micro-level frequencies. The ProFTPd DOP
attack exhibits drastically different frequency distributions.
An attack session triggers the sreplace function more
than 180 times. It involves >1000 client-server FTP com-
mands, while the average interactions per session in the
normal LBNL-FTP-PKT dataset is 41. The normal and DOP

traces (2-gram distributions of PT traces) exhibit strong
differences in simple PCA-and-clustering analysis.

* Runtime and storage overheads. Our performance evalua-
tion with Perf-PT and GRIFFIN shows that PT’s tracing
overhead is acceptable, under the trace-all-and-then-filter
strategy. The storage overhead is linearly proportional to
the number of control-flow transfers during the program
execution. With only tracing selective functions or memory
regions, the storage overhead is expected to be affordable (in
practice, PT log is usually configured as a circular buffer).

VI. CONCLUSION AND FUTURE RESEARCH
OPPORTUNITIES

In this SoK work, we systematized the current knowledge on
data-oriented exploits and applicable defense mechanisms. We
experimentally explored the possibility of using low overhead
tracing techniques, namely PT, for characterizing data-oriented
attacks. We hope that this systematization will stimulate a
broader discussion about possible ways to defend against
data-oriented attacks. We highlight some interesting future
directions in this area.

Automation of Small Footprint DOP Attacks. An interesting
research direction is how to minimize the footprints (i.e., side
effects) of a DOP attack while achieving the same attack
goal. Our experiments in Section V showed that DOP alters
the correlation or statistical properties of control flows. Our
empirical study using the FlowStitch benchmarks [6] revealed
that on average 43% data-oriented gadgets are involved in
at least one conditional branch. Gadgets may have different
impacts on control-flow behaviors. Attackers may prefer data-
oriented gadgets that cause a minimum deviation from normal
executions. Such a selection process requires automation to
be efficient. Besides automation, one also needs to define
metrics to measure the footprints, i.e., the amount of alteration
caused by a DOP execution. Ispoglou et al. [23] made the first
step towards automating data-oriented programming through
a powerful Block Oriented Programming Compiler (BOPC).
Searching for gadget chains under specific constraints is a new
research direction.

Assessment of Programs’ Susceptibility to Data-Oriented
Attacks. Such a characterization – statically or dynamically
– would help one understand the threats that CFI cannot
protect against. A promising direction is to quantify the degree
of control-flow decisions that are dependent on adversarially
controlled data (e.g., user input). Such a characterization also
helps prioritize the defense effort, enabling one to address
programs with the highest susceptibility first.

Low False Positive PT-based Anomaly Detection. DOP
attacks exhibit occasional anomalous execution behaviors at
runtime, as we have demonstrated in Section V. However, to
design a successful anomaly detection solution targeting DOP,
much more work is needed. Specifically, one needs to show the
instruction-level detection does not trigger many false positives
in normal executions. Virtually all existing learning-based
program anomaly detection demonstrations are at the higher

system-call and method-call levels. Reasoning instruction-
level PT traces for anomaly detection is challenging.

Deep Learning for Control-Flow Behavior Modeling. Non-
control data violations may involve control flows in multi-
ple locations that are far apart. How to detect incompatible
control-flow paths, given a relatively long control-flow se-
quence, is challenging. Exploring deep learning techniques,
such as Long Short-Term Memory (LSTM), may be promis-
ing, as LSTM keeps track of temporally distant events.

Selection of Tracing Checkpoints. Due to the storage con-
straint, it is probably impractical to monitor the complete
control-flow transfers of a program. Given a limited overhead
budget, how to systematically determine strategic checkpoints
for tracing (e.g., setting filters to monitor key functions) would
be useful in practice.

REFERENCES

[1] A. Francillon and C. Castelluccia, “Code injection attacks on harvard-
architecture devices,” in ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2008.

[2] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2007, pp. 552–561.

[3] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Trans. Info.
& System Security, vol. 15, no. 1, Mar. 2012.

[4] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in IEEE Symposium on Security and Privacy (S&P), 2013,
pp. 48–62.

[5] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-
data attacks are realistic threats,” in USENIX Conference on Security
Symposium, 2005.

[6] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Automatic
generation of data-oriented exploits,” in USENIX Conference on Security
Symposium, 2015, pp. 177–192.

[7] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control data
attacks,” in IEEE Symposium on Security and Privacy (S&P), 2016, pp.
969–986.

[8] M. Morton, J. Werner, P. Kintis, K. Z. Snow, M. Antonakakis, M. Poly-
chronakis, and F. Monrose, “Security risks in asynchronous web servers:
When performance optimizations amplify the impact of data-oriented
attacks,” in IEEE European Symposium on Security and Privacy (Eu-
roS&P), 2018.

[9] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
flow bending: On the effectiveness of control-flow integrity,” in USENIX
Conference on Security Symposium, 2015, pp. 161–176.

[10] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang, “Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks,” in USENIX Con-
ference on Security Symposium, 1998.

[11] “Microsoft. Data Execution Prevention (DEP),”
http://support.microsoft.com/kb/875352/EN-US/, [Accessed 07-26-
2018].

[12] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” in ACM Con-
ference on Computer and Communications Security (CCS), 2004, pp.
298–307.

[13] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow in-
tegrity,” in ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2005.

[14] “Microsoft. Return Flow Guard (RGF),”
https://technet.microsoft.com/en-us/security/dn425049.aspx, [Accessed
07-26-2018].

[15] “Control-flow Enforcement Technology Preview,”
https://software.intel.com/sites/default/files/ managed/4d/2a/control-
flow-enforcement-technology-preview.pdf, [Accessed 07-26-2018].

[16] “Intel’s Memory Protection Extensions,” https://software.intel.com/
en-us/isa-extensions/intel-mpx, [Accessed 07-26-2018].

[17] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer, “Control-flow integrity: Precision, security, and performance,”
ACM Computing Surveys, vol. 50, no. 1, pp. 1–33, Apr. 2017.

[18] A. Baliga, P. Kamat, and L. Iftode, “Lurking in the shadows: Identifying
systemic threats to kernel data,” in IEEE Symposium on Security and
Privacy (S&P), 2007, pp. 246–251.

[19] J. Xiao, H. Huang, and H. Wang, “Kernel data attack is a realistic
security threat,” in SecureComm, B. Thuraisingham, X. Wang, and
V. Yegneswaran, Eds., 2015, pp. 135–154.

[20] C. Schlesinger, K. Pattabiraman, N. Swamy, D. Walker, and B. Zorn,
“Modular protections against non-control data attacks,” in IEEE Com-
puter Security Foundations Symposium, 2011, pp. 131–145.

[21] T. Nyman, G. Dessouky, S. Zeitouni, A. Lehikoinen, A. Paverd,
N. Asokan, and A. Sadeghi, “Hardscope: Thwarting DOP with hardware-
assisted run-time scope enforcement,” CoRR, vol. abs/1705.10295, 2017.
[Online]. Available: http://arxiv.org/abs/1705.10295

[22] C. Song, B. Lee, K. Lu, W. R. Harris, T. Kim, and W. Lee, “Enforcing
Kernel Security Invariants with Data Flow Integrity,” in Annual Network
and Distributed System Security Symposium (NDSS), 2016.

[23] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block oriented
programming: Automating data-only attacks,” in ACM SIGSAC Con-
ference on Computer and Communications Security (CCS), 2018, pp.
1868–1882.

[24] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated
software diversity,” in IEEE Symposium on Security and Privacy (S&P),
2014, pp. 276–291.

[25] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and
M. Franz, “SoK: Sanitizing for Security,” ArXiv e-prints, Jun. 2018.

[26] “ProFTPD remote exploit,” http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2006-5815.

[27] Y. Jia, Z. L. Chua, H. Hu, S. Chen, P. Saxena, and Z. Liang, “"the
web/local" boundary is fuzzy: A security study of chrome’s process-
based sandboxing,” in ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2016, pp. 791–804.

[28] L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “Pt-rand: Practical
mitigation of data-only attacks against page tables,” in Annual Network
and Distributed System Security Symposium (NDSS), 2017.

[29] R. Rogowski, M. Morton, F. Li, F. Monrose, K. Z. Snow, and M. Poly-
chronakis, “Revisiting browser security in the modern era: New data-
only attacks and defenses,” in 2017 IEEE European Symposium on
Security and Privacy (EuroS&P), 2017, pp. 366–381.

[30] K. Sinha and S. Sethumadhavan, “Practical memory safety with rest,”
in Annual International Symposium on Computer Architecture (ISCA),
2018.

[31] S. Nagarakatte, J. Zhao, M. Martin, Milo, and S. Zdancewic, “Soft-
Bound: Highly compatible and complete spatial memory safety for C,”
in ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2009, pp. 245–258.

[32] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic, “Hard-
bound: Architectural support for spatial safety of the c programming
language,” in Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2008, pp. 103–114.

[33] D. Kuvaiskii, O. Oleksenko, S. Arnautov, B. Trach, P. Bhatotia, P. Felber,
and C. Fetzer, “SGXBOUNDS: Memory safety for shielded execution,”
in European Conference on Computer Systems (EuroSys), 2017, pp. 205–
221.

[34] G. C. Necula, S. McPeak, and W. Weimer, “CCured: Type-safe
retrofitting of legacy code,” in ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), 2002.

[35] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity,” in USENIX Conference on Operating Systems
Design and Implementation (OSDI), 2014.

[36] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in ACM Symposium on Operating Sys-
tems Principles (SOSP), 1993, pp. 203–216.

[37] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula, “XFI:
Software guards for system address spaces,” in Symposium on Operating
Systems Design and Implementation (OSDI), 2006, pp. 75–88.

[38] Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich, and M. F. Kaashoek,
“Software fault isolation with api integrity and multi-principal modules,”
in ACM Symposium on Operating Systems Principles (SOSP), 2011, pp.
115–128.

https://software.intel.com/en-us/isa-extensions/intel-mpx
https://software.intel.com/en-us/isa-extensions/intel-mpx
http://arxiv.org/abs/1705.10295

[39] S. Bhatkar and R. Sekar, “Data space randomization,” in International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA), 2008.

[40] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Enhanced operating
system security through efficient and fine-grained address space ran-
domization,” in USENIX Conference on Security Symposium, 2012, pp.
475–490.

[41] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi, “Timely
rerandomization for mitigating memory disclosures,” in ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2015,
pp. 268–279.

[42] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A. R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical code randomization
resilient to memory disclosure,” in 2015 IEEE Symposium on Security
and Privacy (S&P), 2015, pp. 763–780.

[43] C. Cadar, P. Akritidis, M. Costa, J.-P. Martin, and M. Castro, “Data
randomization,” Microsoft Research, Tech. Rep. MSR-TR-2008-120,
September 2008. [Online]. Available: https://www.microsoft.com/en-us/
research/publication/data-randomization/

[44] B. Belleville, H. Moon, J. Shin, D. Hwang, J. M. Nash, S. Jung, Y. Na,
S. Volckaert, P. Larsen, Y. Paek, and M. Franz, “Hardware assisted
randomization of data,” in Research in Attacks, Intrusions, and Defenses
(RAID), 2018, pp. 337–358.

[45] Q. Chen, A. M. Azab, G. Ganesh, and P. Ning, “Privwatcher: Non-
bypassable monitoring and protection of process credentials from mem-
ory corruption attacks,” in ACM on Asia Conference on Computer and
Communications Security, ser. ASIA CCS ’17, 2017, pp. 167–178.

[46] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee,
and Y. Paek, “HDFI: Hardware-assisted data-flow isolation,” in IEEE
Symposium on Security and Privacy (S&P), 2016, pp. 1–17.

[47] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing
data-flow integrity,” in Symposium on Operating Systems Design and
Implementation (OSDI), 2006.

[48] Z. Sun, B. Feng, L. Lu, and S. Jha, “OEI: operation execution integrity
for embedded devices,” CoRR, vol. abs/1802.03462, 2018. [Online].
Available: http://arxiv.org/abs/1802.03462

[49] S. Rapps and E. J. Weyuker, “Selecting software test data using data flow
information,” IEEE Transactions on Software Engineering, vol. SE-11,
no. 4, pp. 367–375, 1985.

[50] “Testing Exploitable Buffer Overflows From Open Source Code,” https://
samate.nist.gov/SRD/view.php?tsID=88, [Online; accessed 01-08-2018].

[51] X. Ge, W. Cui, and T. Jaeger, “Griffin: Guarding control flows using intel
processor trace,” in International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2017,
pp. 585–598.

[52] Y. Gu, Q. Zhao, Y. Zhang, and Z. Lin, “PT-CFI: Transparent backward-
edge control flow violation detection using intel processor trace,” in ACM
Conference on Data and Application Security and Privacy (CODASPY),
2017, pp. 173–184.

[53] Y. Liu, P. Shi, X. Wang, H. Chen, B. Zang, and H. Guan, “Transparent
and efficient cfi enforcement with intel processor trace,” in IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2017, pp. 529–540.

[54] R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and W. Lee, “Efficient
protection of path-sensitive control security,” in USENIX Conference on
Security Symposium, 2017, pp. 131–148.

[55] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris, T. Kim,
and W. Lee, “Enforcing unique code target property for control-flow in-
tegrity,” in ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2018, pp. 1470–1486.

[56] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, C. R.
Ramakrishnan and J. Rehof, Eds. Springer Berlin Heidelberg, 2008,
pp. 337–340.

[57] X. Zhuang, T. Zhang, and S. Pande, “Using branch correlation to identify
infeasible paths for anomaly detection,” in IEEE/ACM International
Symposium on Microarchitecture (MICRO’06), 2006, pp. 113–122.

[58] “LLVM,” http://llvm.org/, [Accessed 07-26-2018].
[59] “Software-artifact Infrastructure Repository,” http://sir.unl.edu/, [Ac-

cessed 07-26-2018].
[60] “Anonymous FTP connections dataset at the Lawrence Berkeley Na-

tional Laboratory,” https://ee.lbl.gov/anonymized-traces.html, [Online;
accessed 07-26-2018].

[61] D. Pelleg and A. W. Moore, “X-means: Extending k-means with efficient
estimation of the number of clusters,” in International Conference on
Machine Learning (ICML), 2000.

[62] X. Shu, D. Yao, and N. Ramakrishnan, “Unearthing stealthy program
attacks buried in extremely long execution paths,” in ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2015.

https://www.microsoft.com/en-us/research/publication/data-randomization/
https://www.microsoft.com/en-us/research/publication/data-randomization/
http://arxiv.org/abs/1802.03462
https://samate.nist.gov/SRD/view.php?tsID=88
https://samate.nist.gov/SRD/view.php?tsID=88

	I Introduction
	II Data-oriented Attacks
	II-A Classification of data-oriented attacks
	II-B Demystifying the ProFTPd DOP attack
	II-B1 ProFTPd vulnerability
	II-B2 The attack flow

	II-C Representative data-oriented attacks

	III Defenses Against Data-Oriented Attacks
	III-A Three-stage model for launching data-oriented attacks
	III-B Taxonomy of applicable defense techniques
	III-B1 S1 Defense – Preventing exploitation of memory errors
	III-B2 S2 Defense – Providing a barrier to access to data or guess memory layout
	III-B3 S3 Defense – Preventing/detecting use of corrupted data

	III-C Defense mechanisms against data-oriented attacks

	IV Overview of Detectability Based on Control-flow Tracing
	IV-A Undetectable cases
	IV-B Possibly detectable cases

	V Characterization of DOP Behaviors with PT
	V-A Tracing indirect and conditional branches with PT
	V-B RQ1: Branch behavior patterns
	V-B1 Identifying branch correlation in ProFTPd DOP
	V-B2 Incompatible branch behavior in ProFTPd DOP
	V-B3 Branch correlation in benchmarks

	V-C RQ2: Frequency patterns
	V-C1 Macro-level interaction frequencies
	V-C2 Micro-level control-flow frequencies

	V-D RQ3: Tracing Overhead

	VI Conclusion and Future Research Opportunities
	References

