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Abstract—Throughput and per-packet delay can present strong
trade-offs that are important in the cases of delay sensitive
applications. We investigate such trade-offs using a random linear
network coding scheme for one or more receivers in single hop
wireless packet erasure broadcast channels. We capture thedelay
sensitivities across different types of network applications using
a class of delay metrics based on the norms of packet arrival
times. With these delay metrics, we establish a unified framework
to characterize the rate and delay requirements of applications
and optimize system parameters. In the single receiver case,
we demonstrate the trade-off between average packet delay,
which we view as the inverse of throughput, and maximum
ordered inter-arrival delay for various system parameters. For a
single broadcast channel with multiple receivers having different
delay constraints and feedback delays, we jointly optimizethe
coding parameters and time-division scheduling parameters at
the transmitters. We formulate the optimization problem as a
Generalized Geometric Program (GGP). This approach allows
the transmitters to adjust adaptively the coding and scheduling
parameters for efficient allocation of network resources under
varying delay constraints. In the case where the receivers are
served by multiple non-interfering wireless broadcast channels,
the same optimization problem is formulated as a Signomial Pro-
gram, which is NP-hard in general. We provide approximation
methods using successive formulation of geometric programs and
show the convergence of approximations.

Index Terms—Network Coding, Delay, Throughput, Optimiza-
tion, Geometric Programming

I. I NTRODUCTION

The growing diversity of network applications, protocols
and architectures poses new problems related to the funda-
mental trade-offs between throughput and delay in commu-
nications. For instance, applications like file downloading or
FTP protocols aim solely to maximize transmission rate and
to minimize the overall completion time. On the other hand,
applications such as real-time video conferencing are highly
sensitive to delay of any consecutive packets. Failure to meet
continuous delivery deadlines in stream of packets quickly
deteriorates the Quality of user Experience (QoE). The two
extremes in delay sensitivities by no means represent all types
of applications. Progressive downloading video, for example,
would be more delay sensitive than file downloading, but less
sensitive than real-time video streaming, since the receiver has
buffered sufficient content.

In this paper, we develop a unified framework to study rate

and delay trade-offs of coding and scheduling schemes and
to optimize their performance for applications with different
delay sensitivities. We use a class of delay metrics based on
the ℓp-norms of the packet arrivals times to represent delay-
rate characteristics and requirements of applications. Atone
extreme, the delay metric could capture the average delay and
thus the rate of transmission. At the other extreme, the metric
measures the maximum ordered inter-arrival delay. Based on
the delay metrics, we look to optimize coding and scheduling
parameters in a networking system, where various devices with
different delay requirements are served by single-hop wireless
erasure broadcast channels, each associated with an access
point (AP).

The coding scheme in this paper is a variation of the
generation-based random linear network coding, presentedin
[1] and [2]. Specifically, the sender maintains acoding bucket
for each receivers. When a transmitter is ready to send a packet
to some receiver, it reads the all the packet in the coding
bucket for the receiver and produces an encoded packet by
forming a random linear combination of all the packets in
the coding bucket. The encoded packet is then broadcasted
to all the receivers. Once a receiver collects enough packets
to decode all packets in the coding bucket through Gaussian
elimination, it uses a separate feedback channel to send an
ACK message back to the sender. The sender always receives
the ACK message after a certain delay. It then purges all the
packets in the coding bucket and moves new packets into the
bucket. The respective delay constraints of the receivers are
known to the sender, who determines adaptively the number
of packets to put in the coding buckets for each receiver,
by solving system-wise optimization problems. A precise
description of the transmission scheme is given in Section II.
The coding buckets act as the Head of Line (HOL) generations
in the most generation based scheme. However, unlike most
generation-based schemes, packets are not partitioned prior to
transmission and the bucket sizes in our scheme may vary
over time and across different receivers, depending on each
receiver’s changing delay constraints. The coding parameters
are optimized jointly with time division resource allocation
parameters to exploit the trade-offs between rate and delay.
We first illustrate the trade-offs in the case of point-to-point
erasure channels. Then, in the case of multiple receivers
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with one AP, we formulate the delay constrained optimization
problem as a Generalized Geometric Program, which can
be very efficiently solved. We compare the solutions with
fixed generation size schemes for specific examples. Finally,
in the case of multiple APs with non-interfering erasure
broadcast channels, we formulate the problem as a Signomial
Program and provide methods to approximate this non-convex
optimization with successive GPs.

There exists a significant amount of related literature and we
shall only examine a incomplete set of relevant ones.Previous
work by Walshet al. [3] considers the rate and delay trade-
off in multipath network coded networks, while [4] studies
the related issue of rate-reliability and delay trade-off by
constructing various network utility maximization (NUM)
problems. The concept of network coding is introduced in
[5] and linear network coding is extensively studied in [6]
and [7]. Other typical rateless codes that are asymptotically
optimal for erasure channels are seen in [8] [9] [10]. However,
unlike linear network codes which allow intermediate nodes
to recode packets, the class of fountain codes are generally
only used for one-hop communication systems, as the packets
can not be recoded due to stringent packet degree distribution
requirements. In our system, the delay constraints make it
difficult to apply fountain codes efficiently, as the asymptotic
optimality is only achieved with coding over relatively large
number of packets. On the other hand, we have feedback
which will allow us to dynamically change the coding pa-
rameters. The network coding gain in overall delay of file
downloading with multicast over packet erasure broadcast
channel is characterized in [11] and [12]. With the use of
similar linear network codes, broadcast coding schemes based
on perfect immediate feedback are proposed and their delay
characteristics are analyzed in [13] [14] [15]. An analysisof
random linear codes with finite block size is given in [16].

The remainder of the paper is organized as follows. Section
II introduces our model, the code and delay metrics, as well
as how the metrics apply specifically to the coding scheme.
Section III gives a concise primer on Geometric Programming
(GP), which is the basic tool for solving our optimization
program. Section IV considers a single wireless broadcast
channel with packet erasures. We construct a joint optimization
program, which is solved using GP techniques. Furthermore
we illustrate the delay and throughput trade-offs with different
system parameters and compare the solutions with fixed gener-
ation size schemes. Section V extends on the results to multiple
non-interfering wireless channels. We provide approximation
algorithms to the non-convex optimization problem in this
case. Section VI concludes the paper.

II. D ELAY METRICS AND CODING

A. Adaptive Linear Coding Scheme

Consider a point-to-point communication system illustrated
in Figure 1(a). The sender (Tx) and the receiver (Rx) are
connected by a wireless erasure channel with packet erasure
probabilityε and a perfect feedback channel with delayD. The
sender looks to transmit to the receiver a flowf consisting of

N packets. The packets are denoted as{P f
1 , · · · , P

f
N}. Each

of them is treated as a lengthm vector in the spaceFm
q ,

over some finite fieldFq. All N data packets are assumed
to be available at the sender prior to any transmissions. In
a fixed generation-based linear network coding scheme, the
sender chooses an integerK ≥ 1, and sequentially partition
theN packets into⌈N

K ⌉ generations{Gf
1 , · · · , G

f

⌈N
K

⌉
}, where

Gf
i = {P f

iK+1, · · · , P
f
min((i+1)K,N)}. At each time slott, the

sender reads the head of the line (HOL) generationGf
h =

{P f
h1
, · · · , P f

hK
}, where h = 1, · · · , ⌈N

K ⌉ is the generation
index, andhk, k = 1, · · · ,K are the indices of packets within
the generation. It then generates a coded packetP [t] that is a
linear combination of all packets inGf

h (shown in Figure 2),
i.e.

P [t] =

K
∑

k=1

ak[t]P
f
hk
, (1)

where a[t] = (a1[t], · · · , aK [t]) is the coding coefficient
vector, which is uniformly chosen at random fromFK

q [1].
The coded packet, with the coefficient vector appended in the
header, is then sent to the receiver through the erasure channel.
The receiver collects coded packets over time. Given a large
enough fieldFq, the receiver, with high probability [1], is able
to decode theK packets in the generation through Gaussian
elimination performed on the linear system formed on anyK
coded packets. Once the receiver decodes the HOL generation
successfully, it sends an ACK message through the feedback
channel to the sender. The sender, who receives the ACK after
a delay ofD time slots, will purge the old HOL generation
and move on to the next generation in the line.

Our scheme modifies such generation-based network coding
in the following ways. The packets are not partitioned into
generations prior to transmission. Instead, acoding bucket
is created and acts like the HOL generation. We use the
term bucketto avoid confusion with normal generation-based
schemes. The size of the bucket in term of number of packets is
denoted asK. The sender collects information about user-end
delay constraints and chooses the bucket sizeK dynamically.
Figure 1(b) gives a simple example. At the beginning, the
coding bucket contains three packets{P1, P2, P3}. The sender
keeps transmitting encoded packets, i.e.P [1] to P [5], of these
three packets. Upon receiving the ACK feedback, it empties
the bucket and decides to shrink bucket size to2, possibly
because of the tighter delay constraint experienced at the
receiver. Therefore, only two packets{P4, P5} go into the
bucket for subsequent transmissions. We leave the details of
adaptively determining coding bucket size to Section IV.

B. ℓp-Norm Delay Metrics

Now we define the delay metrics used in the paper. Fol-
lowing the notations used in the previous part, letTi be the
time slot in which the packetP f

i is decoded at the receiver,
and is delivered to upper layer. We require the delivery of
original data packet{P f

1 , · · · , P
f
N} to be in order. In the

case when the sequence of packet decoded is out-of-order,
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we assume that they are buffered at the receiver to ensure in-
order final delivery.Ti represents the final in-order delivery
times of packetsP f

i , and we haveT1 ≤ T2 ≤ · · · ≤ TN . We
define the inter-arrival times∆Ti of the original packets to be:

∆T1 , T1 +D (2)

∆Ti , Ti − Ti−1, i = 2, · · · , N, (3)

whereD is the feedback delay from the receiver to the sender.
Note that a feedback messageACK is always assumed to be
received correctly afterD time slots. However, when there is
more than one receiver, we assume that, in general, receivers
experience different feedback delays across the system owing
to its location and channel variations. Let the size of each data
packet beL. We define the delay cost function as a metric of
the following form,

d(p) ,
1

L

(

∑N
i=1(E[∆Ti])

p

N

)1/p

, p ∈ [1,∞), (4)

whereE[∆Ti] is the expected value of∆Ti. The expectation
is taken over the distribution of packet erasures over the
system and all the randomness associated with the coding and
scheduling scheme, which are specified in Section IV.

Mathematically, the delay metric is a normalizedℓp-norm of
the vector[E[∆T1] · · ·E[∆TN ]]T . Physically, however,p mea-

sures the delay sensitivity of the receiver and is predominantly
dependent on the type of applications running on the receiver.
As the value ofp varies from1 to ∞, the delay function
becomes increasingly biased towards the large components in
the vector, hence indicating increasing user sensitivity toward
large inter-packet delay. As an example, consider the case
when p = 1. Since

∑N
i=1 E[∆Ti] = E[TN ] + D, the delay

in (4) simplifies to,

d(1) =
E[TN ] +D

LN
, (5)

that is, d(1) is the average delay per packet, normalized by
the total size of the received data. Minimizingd(1), therefore,
is equivalent to average rate maximization for the receiver. On
the other hand, consider the case whenp = ∞. Because of
the max norm, the delay function in (4) reduces to,

d(∞) =
maxi E[∆Ti]

L
. (6)

Effectively, minimizingd(∞) translates into minimizing the
maximum expected inter-arrival time between any two suc-
cessive packets. We call this theper-packet delay.

The flexibility in choosing variousp-value for delay metrics
provides a unified way of looking at the delay sensitivity at the
user side. If a user is downloading a file, he is certainly more
concerned about shortening the overall completion time or
average delay per packet. Consequently,d(1) is the appropriate
delay metric to be optimized. On the other hand, if the
user is running a real-time video applications, thend(∞)
is more likely to be the right metric to be minimized as it
allows sequence of packets to catch up quickly with respective
delivery deadlines.

C. Delay In Adaptive Coding Scheme

In the adaptive coding scheme, a receiver will decode all
packets in the current bucket before informing the sender to
empty the bucket and move in new packets. Assume that the
rate at which the coded packets are transmitted isr. Consider



the transmission of a bucket ofK packets{Pi1 , · · · , PiK}.
Once the receiver collectsK linearly independent coded
packets of the bucket, it decodes allK packets together. Hence,
the ordered inter-arrival times of original packets will satisfy,
E[∆Ti1 ] =

K
r + D and∆Ti1 = · · ·∆TiK = 0. In general,

consider the case when the bucket size remains the same for
a sequence ofN packets,{Pi1 , · · · , PiN }. N is divisible by
K, as the bucket size may only change when the bucket is
emptied. The packets will sequentially enter the bucket in
groups ofK packets. Then, for the inter-arrival time of the
j-th packet, we have,

E[∆Tij ] =

{

K
r +D, if j ≡ 1 (mod K),
0, otherwise.

(7)

Therefore, if the adaptive scheme chooses bucket size ofK
of a sequence ofN packets, we can simplify (4) to measure
the delay cost function for the transmission of theN packets,
resulting in:

d(p) =
1

L

(

N
K

∑K
j=1(E[∆Tij ])

p

N

)1/p

(8)

=
1

L

(

N
K (Kr +D)p

N

)1/p

(9)

=
K
r +D

LK1/p
. (10)

In particular, under this coding scheme, the delayd(p) seen
by the receiver over the period is independent ofN as long
as the coding bucket size remains to beK. Hence, we drop
N and only consider the bucket sizeK for rest of the paper.
Furthermore, in practice,K takes only positive integer values
in [1,Kmax], where Kmax is the maximum bucket size,
limited by the maximum tolerable computation complexity of
the target system. In this work, for simplicity, we assume that
K takes on real value in the same region[1,Kmax].

III. G EOMETRIC PROGRAMMING

We give a concise primer of Geometric Programming be-
fore looking specifically into our system model. For more
comprehensive coverage of the topic, we refer the reader to
[17], [18]. Geometric program (GP) is a class of mathematical
optimization problems characterized by some special formsof
objective functions and constraints. A typical GP is nonlinear
and non-convex, but can be converted into a convex program
so that a local optimum is also a global optimum. The theory
of GP has been well studied since the 60s [19]. Well developed
solution techniques, such asinterior point methodsare capable
of solving GPs efficiently even for large scale problems. Many
high-quality GP solvers are available (e.g. MOSEK and CVX
[20]) for providing robust numerical solutions for generalized
GPs (GGP).

Consider a vector of decision variablesx = [x1 . . . xn]
T . A

real functiong : Rn → R is said to be amonomialif it can

be written in the form,

g(x) = c

n
∏

i=1

xai

i , (11)

where the coefficientc is positive, and the exponents
a1, . . . , an are arbitrary real numbers. A functionf : Rn → R

in the form

f(x) =

K
∑

k=1

ck

n
∏

i=1

xaik

i , (12)

with all ck being positive real numbers, is called a posynomial.
A posynomial is the sum of arbitrary number of monomials.
On top of this, any functioñf , which can be constructed with
posynomials using addition, multiplication, positive power and
maximum operations is called ageneralized posynomial.

A standard formgeometric program is presented as follows,

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, . . . ,m,

gj(x) = 1, j = 1, . . . , p,

(13)

wherefi(x) are posynomials andgi(x) are monomials, andxi

are the decision variables, which are also implicitly assumed
to be positive, i.e.xi > 0, i = 1, . . . , n. In particular,
the objective of the optimization has to be minimizing some
posynomial. That says, for solving maximization problems
with GP, the objective function has to be in the form of
some monomialg(x), so that instead of maximizingg(x),
we can minimize 1

g(x) , which is itself a monomial. In the case
where anyfi(x) is a generalized posynomial, the optimization
program is said to be ageneralized geometric program(GGP).
All generalized geometric programs can be converted into
standard geometric programs and solved efficiently.

Note that a GP in its standard form is non-convex, as in
general posynomials are non-convex. In order to apply general
convex optimization methods, a GP is usually transformed into
its convex form. Letyi = log xi so thatxi = eyi , the standard
form GP can be transformed into its equivalent convex form,

minimize log f0(e
y)

subject to log fi(e
y) ≤ 1, i = 1, . . . ,m,

log gj(e
y) = 1, j = 1, . . . , p.

(14)

In particular, a monomial constraints

gj(x) = dj

n
∏

k=1

x
ajk

k = 1

is converted to

log gj(e
y) = log dj +

n
∑

k=1

aik yk = 0, (15)

which is affine and convex. On the other hand, the posynomial
parts are converted into log-sum-exp functions, which can be
easily shown to be convex. Therefore, although the original
standard formulations of GPs are nonlinear and non-convex,
they can be converted into convex form as in (14) and solved



efficiently. In this paper, we use GP to optimize the coding
parameters and resource allocation at the transmitter with
respect to theℓp-norm delay metric defined previously.

IV. SINGLE BROADCAST CHANNEL WITH PACKET

ERASURES

A. System Model

The motivating scenario of the work comes from a typical
home network environment with multiple user networking
devices. The receivers are wirelessly connected to a WiFi
access point (AP), which is then linked with the gateway to the
Internet. All the flow of packets from the Internet to the user
devices goes through the gateway and the access point. The
applications running on different devices have very different
delay sensitivities and constraints, as discussed before.The
gateway and the access point look for the optimal coding and
scheduling parameters to ensure the QoE of all the users within
the network.

Conceptually, we represent the system using the following
model. We assume that the link between the AP and gateway
has a high capacity and is lossless. Thus, we represent both
the gateway and the AP together as a single nodes. We denote
the set of receivers byT = {t1, · · · , tM}. Each receiver needs
to obtain a flow of packets from some source over the Internet.
Let F = {f1, · · · , fM} be the set of flows, wherefi is the
packet flow requested by receiverti. Note that allfi enter the
system from nodes, which in turn acts as a source node. The
flows for different receivers are assumed to be independent.
The original data packets in each flow are numbered, with
P fi
j representing thej-th packet in flowfi. We assume that

there are always enough packets to be served for each flow,
since that is the case when there is a heavy traffic condition.
Furthermore, all packets are assumed to have the same sizeL
in the system and the system is time slotted. At any time slot,
the nodes is able to broadcast a sizeL packet to all receivers,
through the packet erasure broadcast channel. Erasures happen
independently across all receivers and all time slots, i.e.the
channel is memoryless. We denote the erasure vector bye =
[ε1 · · · εM ], whereεi represents the erasure probability seen by
receivertj. Figure 3 gives an illustration of the system model
in the discussion.
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Fig. 3. System Model with Single Transmitter

1) Scheduling Strategies:Most of the works we discussed
in Section I focus on linear network codes for multicast, in
which all the receivers request the same content from the
sources. In the system we consider here, however, we have
a multiple unicast scenario, as each sink looks to receive
its own flow, independently from others. The resource at
nodes has to be shared among all the receivers. Specifically,
for every time slot, the senders has to make a decision
on which receiver to transmit to. While many sophisticated
scheduling algorithms are available, for simplicity, we use
a simple stochastic scheduling algorithm. At any time slot,
the nodes serves receivertj or flow fj with probability aj ,
independently from of any other time slots. In the long run,
equivalently, the transmitter nodes is spendingaj portion of
time serving receivertj . We call the vectora = (a1, · · · , aM )
the vector ofscheduling coefficients.

2) Intra-session Coding:The adaptive coding scheme de-
scribed in Section II is used in the system. In the multiple
receiver case, we use intra-flow coding, i.e. each unicast
flow is coded independently and separately from others. The
coding bucket sizes and scheduling coefficients, however, are
determined by solving system-wise optimizations. In this case,
for a given time slot, if the transmitter decides to serve receiver
tj , it looks for packets in the coding bucket of flowfj, and
encodes these packets using random linear network codes.
The coded packet is broadcasted to all the receivers. With
probability 1 − εj , the targeted receivertj will receive it
correctly. Note that we assume the coding coefficients are
embedded in the header of the packet and the size is negligible
compared to the size of the packetL. The coding bucket
size for flow fj is denoted asKj . In general,Ki 6= Kj for
i 6= j, andKj may vary over time as the delay requirements
at the receivers changes. LetK = (K1, · · · ,KM ). We aim to
optimize botha andK, based on the varying delay constraints
at the receivers.

B. Delay Optimization

We first consider the case where there is only a single
receiver, i.e.M = 1. Since there is no scheduling issue
or system-wise fairness consideration in the case, it makes
sense to minimize the delay cost function associated with the
receiver. As there is no ambiguity of notations, we drop all
the subscripts. It is easy to see that the packet transmission
rate in this case is1−ε for the receiver and thus the expected
time for receivingK coded packets isK1−ε . Subsequently, the
ℓp-norm delay cost function minimization problem is given as
follows,

minimize d(p) =
K
1−ε +D

LK1/p
(16)

subject to 1 ≤ K ≤ Kmax. (17)

The optimal block sizeK∗ can be obtained by setting zero to
the gradient of the Lagrangian of objective function. We have

K∗ =

(

(1− ε)D

p− 1

)

[1,Kmax]

, 0 < ε < 1, (18)



where the subscript denotes the projection,

(x)[a,b] , min(max(a, x), b).

For better understanding of the delay metrics, consider the
relation betweend(1) andd(∞). From (4), we have,

K =
D(1 − ε)

(1− ε)Ld(1)− 1
. (19)

Hence, the trade-off betweend(1) andd(∞) can be expressed
as follows,

d(∞) =
D

L− 1
d(1)(1−ε)

. (20)

Ignoring the bucket size constraints for simplicity, givenD,
we can varyK from 1 to ∞, and plot the values ofd(∞)
againstd(1) for the trade-off curve. Each point on the curve
corresponds to a choice ofK, which is equivalent to a choice
of optimizingd(p) for somep, because of (18). Therefore, the
choice ofp at the receiver indicates the a point on the trade-off
curve ofd(1) andd(∞) that is desired by the receiver.

We can also use the zero duality gap in GP to obtain the
optimal d(p) directly from the dual function. Note that the
dual function of (16) is given by,

v =

(

1

(1− ε)Lβ1

)β1
(

D

Lβ2

)β2

(21)

whereβ = (β1, β2), can be obtained from solving a simple
linear system,
{

(1− 1/p)β1 + (−1/p)β2 = 0, (normality condition)

β1 + β2 = 1, (orthogonality condition)
(22)

C. Delay Constrained Optimization with GP

1) GP Formulation:ForM > 1, instead of minimizing the
delay of a specific receiver, we are interested in optimizingcer-
tain system-wise utility function with the constraints that the
ℓp-norm delay requirements must be satisfied at each receiver.
We assume the each receivertj monitors the delay constraints
for targeted QoE of its applications and set a maximum
acceptable delaŷd(pj), corresponding to its delay sensitivity
pj . For the objective function, we choose to maximize the
min rate of all receivers. If the packet transmission rate totj
is rj , then the actual data rate received bytj is LKj

Kj

rj
+Dj

, where

Dj is the feedback delay oftj . Let r = (r1, · · · , rM ). The
optimization problem is then given as follows:

max K,r,a min
j

LKj

Kj

rj
+Dj

(23)

subject to

Kj

rj
+Dj

LK
1/pj

j

≤ d̂j(pj) ∀j = 1, . . . ,M (24)

rj ≤ aj(1− εj) ∀j = 1, . . . ,M (25)
∑

j

aj ≤ 1 (26)

1 ≤ Kj ≤ Kmax ∀j = 1, . . . ,M. (27)

In the above formulation, constraints (24) and (25) represent
the delay and rate constraints respectively for receivertj ,
while (26) is the scheduling probability constraint at the sender
nodes. The problem is a Generalized Geometric Program. In
particular, all constraints can be converted into upper bound
of posynomials ofK, r anda. The only non-posynomial part
is the objective function, which can be transformed into upper
bounding posynomial constraints and monomial objective by
adding auxiliary variablex,

max
K,r,a,x

x (28)

subject to
x(

Kj

rj
+Dj)

LKj
≤ 1, ∀j. (29)

Combining this with (24) to (27), we have a GP that can be
efficiently solved.

D. Illustrations of Trade-offs
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Fig. 4. Tradeoff ofd(1) vs d(∞) with varying D

1) Trade-off: Average Delay vs Per-packet Delay:Figure 4
demonstrate the trade-off betweend(1) and d(∞) following
Equation (20) with various values ofD and erasure probability
ε = 0.4. As discussed previously, if we parameterized(1) and
d(∞) on the optimal bucket sizeK∗, asp varies from1 to ∞,
we obtain the same curves. The shaded area bounded by each
curve is the area of all achievable pairs(d(1), d(∞)) for the
specific feedback delay. With smallD, both low delay ind(1)
and d(∞) can be achieved. However, when feedback delay
increases, the trade-off becomes increasingly stronger. This is
evident from Equation (20), whereD appears in the numer-
ator. It is expected as for average delay, coding over larger
generations amortizes the feedback delay over more packets.
But for the per-packet delayd(∞), increased feedback delay
must be compensated by even smaller generation size for more
frequent decoding. This is also consistent with Equation (18)
whereK∗ increases with feedback delayD and decreases as
delay sensitivityp.

2) Adaptive Scheme vs Fixed Generation Coding:Fig-
ure 5 to 7 shows some comparisons between adaptive cod-
ing schemes with fixed generation size coding schemes,
as the delay sensitivityp1 of the first receiver increases.
In this example, we have5 receivers, with erasuree =
[0.4, 0.1, 0.15, 0.2, 0.25], the sameD = 5, L = 1 and
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d̂j = 50/L. Except for receiver1, whosep1 value varies, we
havepj = 1 for all other receivers. For the fixed generation
size schemes, we chooseK = 25 and K = 100 for
representing small and large generation respectively. In this
cases, scheduling coefficients are the only decision variables
in the optimization for min rate. From Figures 5 and 6, we
can see that, initially, the min rates for different schemes
are relatively close. The adaptive scheme is able to choose
a much larger coding bucket size to obtain some rate gain
compared toK = 25 case. Asp1 increases, the fixed coding
generation schemes are unable to reduce generation size. In
order to meet the growingly stringent delay constraint, the
sender has to devote increasingly more time to receiver1, as
seen in Figure 7. Inevitably, the time for serving other receivers
is greatly reduced and the min rate of the system decreases
quickly. In theK = 100 case, the delay requirements cannot
be satisfied forp1 > 2.9. On the contrary, for the adaptive
scheme, which optimizes bucket size and scheduling jointly,
there is little decrease in min rate. For low delay sensitive
receivers, the scheme will assign them large coding bucket
sizes to allow rate gain. As a results, the sender is able to
meet their delay-rate constraints with less serving time and
save time for higher receivers. On the other hand, asp values
for some receiver increases, its coding bucket size is reduced
to quickly decreases the per-packet delay. Hence, the scheme
is able to accommodate high delay sensitive receivers much
better.

V. M ULTIPLE WIRELESSPACKET ERASURE CHANNELS

With the proliferation of low cost access points, many
devices may be covered by more than one access points in
wireless home, campus or enterprise networks. That leads toan
important extension of the work to the case of multiple broad-
cast erasure channels covering the same set of receivers. Asin
the previous section, we still have the same set of receivers,
T = {t1, · · · , tM}. However, there are nowW access points,
or transmitters, denoted by the setS = {s1, · · · , sW }. Instead
of an erasure probability vector, we have an erasure probability
matrix e = [εij ], whereεij is the erasure probability between
node si and tj . An example of the system is illustrated in
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Figure 8. We assume that the channels are orthogonal or non-
interfering.

The same coding and scheduling scheme is used for the
new system. We usea = [aij ] to represent the probability
of transmittersi serving the flowfj at any time slot. The
scheduling and coding optimization is done at the gateway
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Fig. 8. An example system with2 senders and4 receivers



nodeG, who coordinates all senders who perform encoding.
Furthermore, for each flowfj in F , all senders inS have
the same coding bucket sizeKj , dictated by nodeG. This
ensures that, for each flow, every sender sends coded packets
in the coding buckets consisting of the same data packets
and guarantees the decodability. An important feature of the
randomly linear coding is that all coded packets from the same
bucket are exchangeable. That avoids complicated scheduling
based on sequence numbers of the uncoded packets and helps
to reduce transmission redundancy in erasure channels.

A. Signomial Program Formulation

Similarly to the single sender case, we can formulate
an optimization program for determiningK, a and r. For
example, the rate product maximization is given as,

min
K,r,a,R

∏

j

R−1
j (30)

subject to

Kj

rj
+Dj

LK
1/pj

j

≤ d̂j ∀j = 1, . . . ,M (31)

rj ≤
∑

i

aij(1 − εij) ∀j = 1, . . . ,M (32)

Rj ≤
LKj

Kj

rj
+Dj

∀j = 1, . . . ,M (33)

1 ≤ Kj ≤ Kmax ∀j = 1, . . . ,M (34)
∑

j

aij ≤ 1 ∀i = 1, . . . ,W, (35)

where the delay constraint (31) and complexity constraint (34)
remain the same. Auxiliary variablesRj and (33) are used
to represent the average rates for the receiver. Maximizing
rate product is equivalent to minimizing the product of av-
erage delaysR−1

j , hence the objective
∏

j R
−1
j . The packet

transmission rate for each receiver in this case is bounded by
∑

i aij(1− εij). However, owing to the existence of this new
transmission rate constraint (32), the problem becomes truly
non-convex. In particular, the constraint can be written as

rj +
∑

i

(−aij)(1 − εij) ≤ 0, (36)

which is an upper bound constraint on a signomial. A signo-
mial is a sum of monomials whose multiplicative coefficients
can be either positive or negative. The problem therefore
belongs to a more general class of problem calledSignomial
Program, which is truly non-convex and NP-hard in general.
Only local optimal solutions can be efficiently computed.
Based on the most widely used monomial condensation meth-
ods, we provide an efficient way to approximate the solution
with successive GP solutions.

B. Successive GP Approximation

Consider an arbitrary signomialh(x). It can always be
written as the difference between two posynomials, i.e.h(x) =
f+(x) − f−(x). The inequalityh(x) ≤ 0 is then equivalent
to f+(x)

f−(x) ≤ 1. We can approximate the left hand side

with a posynomial using commoncondensation methods[18].
In single condensation, the posynomial denominatorf−(x)
is approximated using a monomialg−(x), which in turn
allows f+(x)

f−(x) to be approximated by a posynomialf
+(x)

g−(x) .
In double condensation, both f+ and f− are approximated
using monomials, which creates a monomial approximation of
f+(x)
f−(x) . In our case, both methods are equivalent, since we have
f+(x) = rj , which is itself a monomial. One of the commonly
used condensation methods is based on the following Lemma
[18].

Lemma 1:Given a posynomialf(x) =
∑

i ui(x), choose
βi > 0, such that

∑

i βi = 1, then the following bound holds,

f(x) ≥ g(x) =
∏

i

(

ui(x)

βi

)βi

. (37)

Furthermore, equality holds whenx = x0 andβi =
ui(x0)
f(x0)

.
Proof: The results can be easily proved using Inequality of
Arithmetic and Geometric Mean (AM-GM).

Using Lemma 1, we can approximate constraint (32) in the
signomial program with the following,

rj ≤
∏

i

(

aij(1 − εij)

βij

)βij

. (38)

In particular, the optimization program is then a Geometric
Program, if we replace (32) with (38). Furthermore, given the
monomial approximation in (38), we can construct successive
GP based on refined approximations of constraint (32) to
approach local optimal solutions of the original Signomial
Problem. The algorithm is summarized in Algorithm 1.

Algorithm 1: Successive GP Approximation of SP

Begin: A feasible solution(K0, a0, r0,R0), t = 0;
repeat

Computef(at) =
∑

i a
t
ij(1− εij);

Computeβij =
at
ij(1−εij)

f(at) ;
Construct thet-th approximation and replace
constraint (32) with the monomial constraint,

rj ≤ g(at) =
∏

i

(

atij(1− εij)

βij

)βij

t = t+ 1;
Solve the resulting GP to get(Kt, at, rt,Rt);

until Convergence;

C. Convergence

Given Lemma 1, it is easy to show the Algorithm 1 always
converges. According to Lemma 1, the valuesβij are chosen
such that for the local approximation ata

t in the t-th iteration,
we have,

g(at) = f(at) ≥ f(at−1). (39)

Let the optimal objective for iterationt be Z∗,t. Then we
haveZ∗,t ≤ Z∗,t−1. Furthermore, at local optimala∗, it can



be verified, thatf(a∗) = g(a∗) and∇f(a∗) = ∇g(a∗), which
shows that the algorithm will indeed converge to an optimal
that satisfies the KKT condition. In fact, in many cases, it
converges to the global optimum. Figure 9 and 10 shows the
convergence of min rate and bucket sizes for a example system
with 3 receivers and2 transmitters.
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VI. CONCLUSIONS

In this paper, we consider the trade-off between rate and
delay in single-hop packet erasure broadcast channels with
random linear coding schemes. We characterize the delay and
rate requirements of various users with a unified framework
based on theℓp-norm delay metrics defined on the in-order
packet arrival times. Using the optimal trade-off curve between
the average delay, which can be viewed as the inverse of
rate, and the per-packet delay, we demonstrate how feedback
delays and the choice of coding bucket sizes affect the trade-
offs. In the multiple receiver case, we formulate geometric
optimization problems to exploit the trade-off together with
the transmission time allocate at the senders. With an adaptive
coding scheme, for low delay sensitive receiver, the sender
could allocation less time while compensating the rate loss
with larger coding bucket. That allows the sender to allocate
more time to high delay sensitive receivers who, at the same
time, are assigned with smaller coding bucket sizes. We show
that the adaptive scheme is more robust and resilient toward
high and varying delay sensitivities, since the feedback infor-
mation about receiver delay constraints adds extra flexibility

to the coding and scheduling design. In particular, in many
systems, this comes with little cost because of the availability
of feedback channels. Finally, when there are multiple senders,
we formulate the same optimization problem into a non-
convex signomial problem and approximate the solution with
successive GP approximations based on single condensation
methods and we demonstrate the convergence of the algorithm.

REFERENCES

[1] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413–
4430, Oct. 2006.

[2] P. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proceedings
of the Annual Allerton Conference on Communication Controland
Computing, vol. 41, 2003, pp. 40–49.

[3] J. MacLaren Walsh, S. Weber, and C. wa Maina, “Optimal Rate-Delay
tradeoffs and delay mitigating codes for multipath routed and network
coded networks,”IEEE Transactions on Information Theory, vol. 55,
no. 12, pp. 5491–5510, Dec. 2009.

[4] Y. Li, M. Chiang, A. R. Calderbank, and S. N. Diggavi, “Optimal
Rate-Reliability-Delay tradeoff in networks with composite links,” IEEE
Transactions on Communications, vol. 57, no. 5, pp. 1390–1401, May
2009.

[5] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network information flow,”
Information Theory, IEEE Transactions on, vol. 46, no. 4, pp. 1204–
1216, 2000.

[6] S. Y. Li, R. W. Yeung, and N. Cai, “Linear network coding,”IEEE
Transactions on Information Theory, vol. 49, no. 2, pp. 371–381, Feb.
2003.

[7] R. Koetter and M. Médard, “An algebraic approach to network coding,”
Networking, IEEE/ACM Transactions on, vol. 11, no. 5, pp. 782–795,
2003.

[8] M. Luby, “LT codes,” in The 43rd Annual IEEE Symposium on Founda-
tions of Computer Science, 2002. Proceedings. IEEE, 2002, pp. 271–
280.

[9] A. Shokrollahi, “Raptor codes,”IEEE Transactions on Information
Theory, vol. 52, no. 6, pp. 2551–2567, Jun. 2006.

[10] D. J. MacKay, “Fountain codes,”Communications, IEE Proceedings-,
vol. 152, no. 6, pp. 1062– 1068, Dec. 2005.

[11] A. Eryilmaz, A. Ozdaglar, M. Médard, and E. Ahmed, “On the delay and
throughput gains of coding in unreliable networks,”Information Theory,
IEEE Transactions on, vol. 54, no. 12, pp. 5511–5524, 2008.

[12] D. Nguyen, T. Tran, T. Nguyen, and B. Bose, “Wireless broadcast using
network coding,”IEEE Transactions on Vehicular Technology, vol. 58,
no. 2, pp. 914–925, Feb. 2009.

[13] J. K. Sundararajan, P. Sadeghi, and M. Médard, “A feedback-based
adaptive broadcast coding scheme for reducing in-order delivery delay,”
in Workshop on Network Coding, Theory, and Applications, 2009.
NetCod ’09. IEEE, Jun. 2009, pp. 1–6.

[14] L. Keller, E. Drinea, and C. Fragouli, “Online broadcasting with network
coding,” in Fourth Workshop on Network Coding, Theory and Applica-
tions, 2008. NetCod 2008. IEEE, Jan. 2008, pp. 1–6.

[15] P. Sadeghi, D. Traskov, and R. Koetter, “Adaptive network coding for
broadcast channels,” inWorkshop on Network Coding, Theory, and
Applications, 2009. NetCod ’09. IEEE, Jun. 2009, pp. 80–85.

[16] D. S. Lun, P. Pakzad, C. Fragouli, M. Médard, and R. Koetter, “An
analysis of Finite-Memory random linear coding on packet streams,”
in 2006 4th International Symposium on Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks. IEEE, Apr. 2006, pp. 1– 6.

[17] S. Boyd, S. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial on
geometric programming,”Optimization and Engineering, vol. 8, pp. 67–
127, Apr. 2007.

[18] M. Chiang,Geometric programming for communication systems. Now
Publishers Inc, 2005.

[19] R. Duffin, E. Peterson, and C. Zener,Geometric programming: theory
and application. Wiley, 1967.

[20] M. Grant and S. Boyd, “CVX: matlab software for disciplined convex
programming,” 2008.


	I Introduction
	II Delay Metrics and Coding
	II-A Adaptive Linear Coding Scheme
	II-B p-Norm Delay Metrics
	II-C Delay In Adaptive Coding Scheme

	III Geometric Programming
	IV Single Broadcast Channel With Packet Erasures
	IV-A System Model
	IV-A1 Scheduling Strategies
	IV-A2 Intra-session Coding

	IV-B Delay Optimization
	IV-C Delay Constrained Optimization with GP
	IV-C1 GP Formulation

	IV-D Illustrations of Trade-offs
	IV-D1 Trade-off: Average Delay vs Per-packet Delay
	IV-D2 Adaptive Scheme vs Fixed Generation Coding


	V Multiple Wireless Packet Erasure Channels
	V-A Signomial Program Formulation
	V-B Successive GP Approximation
	V-C Convergence

	VI Conclusions
	References

