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Abstract—The application of machine learning algorithms in
wireless communications has attracted increasing atterdin due
to the promising performance gains recently achieved. Stat
classification algorithms have been successfully appliea ttrain-
ing protocols that adapt transmission parameters accordig to
context information. However, in reality, there are many time-
varying reasons for fading channel quality including mobiiity
of sender, receiver, and/or obstacles within the environntd.
Moreover, time-varying noise further exacerbates the dyneics
of the channel. These problems pose new challenges for the
application of static classification algorithms in contextaware
algorithms and suggest that sequential classifiers which Verage
the temporal dynamics and correlation of context information
might be more appropriate. In this paper, we apply sequentia
training to rate adaptation (ASTRA), leveraging the temporal
correlation of context information. In particular, linear and
non-linear sequential coding schemes are used in the traing
process for selecting the modulation/coding rate that aclkeives the
highest throughput for the given context. Experimental resilts on
measurements from emulated and in-field channels demonstra
that ASTRA can significantly increase the accuracy of seleitg
these target rates by up to175% and increase the resulting
throughput by up to 66% over rate adaptation training which
uses static classifier-based methods.

|. INTRODUCTION

Wireless channels are known to have time-varying quality,
especially in mobile and vehicular networks. In such scenar

ios, algorithms attempt to adapt the transmission rate to

measuring either the packet losses [1], [2] or the channel®
quality [3], [4], [5]. As channel fluctuations increase, the
ability to converge to optimality becomes more and more
elusive [6]. Thus, recent works have proposed using the

context information and machine learning to quickly cogeer
to optimality [7], [8].

Context-aware rate adaptation schemes attempt to lever®

age existing patterns in the collected context information
adjust the transmission parameters to improve performan

Examples of such schemes include neural networks and ge-

netic algorithms for parameter adaptation in cognitiveiosad
networks [9], [10], distributed classification with dataorin
different sensors [11], and static classification-basésladap-
tation [7]. Existing works in context-aware rate adaptatio

have mainly focus on operations on static sets of attributes

these works treat measurements from sensors as indepen

and identically distributed data points, using them to rinfe

decision rules.
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classification is obsolete. Rather, the patterns changiugy o
time can be used as clues for the cause of the channel variatio
Learning these patterns can help rate adaptation mechanism
to better adapt to dynamic channels. Moreover, when noise
is introduced to the transmitter or receiver, an awarendss o
temporal patterns can lessen its effect.

The temporal correlation embedded in context information
has not yet been solved. In this paper, we design, implement
and test an algorithm on th@plication of £quential taining
to rate alaptation called ASTRA. ASTRA leverages the tem-
poral correlation among context information to improve the
performance of rate adaptation. In particular, linear and-n
linear sequential coding schemes are proposed to captdre an
exploit these temporal properties. To the best of our knowl-
edge, our work is the first to exploit temporal information
for rate prediction and adaptation. Our main contributians
summarized as follows:

o We qualify the importance of temporal information to
predict which rate will achieve the highest throughput
for the given context and form a sequential classification-
based model for adaptation. ASTRA exploits the temporal
correlation in the training data, building a decision struc
ture which can then predict the best transmission mode
based on the current contextual measurements.

We survey the performance of a series of widely-used
static classifiers on contextual measurements. We com-
pare the performance of different classifiers on accuracy
of rate prediction in different situations using two plat-
forms, a custom FPGA-based platform and an off-the-
shelf platform.

We implement linear and non-linear sequential coding
schemes for the purposes of rate adaptation (ASTRA-
L and ASTRA-N, respectively). We then demonstrate
the advantage of the non-linear coding scheme over the
linear coding scheme in exploiting temporal information
to improve the performance of rate adaptation.

« We verify the proposed ASTRA rate adaptation schemes
on measurements from emulated and in-field channels to
demonstrate the significant impact of utilizing temporal
information in rate adaptation. ASTRA-N improves the
accuracy and throughput of rate adaptation by upr@/
and66.11%, respectively.
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However, the mapping of context information with net- While in this paper we focus on the application to rate

work performance in the field is nddtatic because in-field adaptation to show gains, ASTRA has other possible applica-
channels and contexts change over time. Since the fluctuatiions to transmission parameter adaptation based on dontex
channel state cannot sensibly be represented as a fixed setugch as transmission power control. The remainder of the
measurements, it is not sufficient to simply determine whegraper is organized as follows. We introduce our sequential



classification-based framework for rate adaptation, ASTRA Output @
well as certain sequential coding approaches in Sectiom II.

Section Ill, we compare the performance of various statisl

sifiers in classification-based rate adaptation. Then, we-co  Sstatic Classifier:
pare ASTRA-N and ASTRA-L with the static classification- f
based method on emulated channels. In Section IV, we evall

ate ASTRA-N based on measurements from in-field CRANNEl! e ssmresssesssssesssessssessss fssssesssessssssssseessssessseesssnees
Finally, we discuss related work in Section V and conclude ir Sequentially Coding:
Section VI. g

Il. SEQUENTIAL CLASSIFICATION MODEL @

In this section, we exploit temporal information embeddec
in contextual data and develop linear and non-linear settalen
coding based classification algorithms to train rate adipta Fig. 1. ASTRA framework.
protocols for dynamic environments. The proposed ASTRA
increases the accuracy of selecting the rate which has the
highest throughput for a given context. the notations and definitions above, the problem solved by
ASTRA can be formulated as:

[ (SVM, Decision Tree, etc) ]

A. Problem Formulation

The context information that we utilize in this paper aref + {g(Channel type, SNR, Velocity)} — optimalmode.

the channel type, node velocity and SNR. In this paper, we (3)
define that in the same channel type the effective performanc Now, we formulate the problem with a generalized math-
of various transmission modes exhibits similar behaviar f@matical representation. Lef (t) = [z'(t), 22(t),...,2™(t)]

various values of other context attributes. Many factorg.(e be the data at timé wherem is the number of attributes. In
multi-path, path loss, and shadowing) have a substantial mur application,m equals3, corresponding to channel type,
fluence on the characteristics of the channel type. HowevBNR, and velocity. Each attribute is a variable which can be
SNR and velocity fluctuate frequently while channel typespresented by a numerical value wherét) represents the
remains unchanged in a small time scale and changes iwvadue of thei” attribute at timet andY (¢) is the correspond-
larger time scale. We use the suite of ITU channels, which argy optimal transmission mode as prediction target at time
widely-accepted as representative channel types for umhdn Here, we define the optimal mode as the modulation/coding
suburban settings [12]. Moreover, velocity gradually dpes rate that achieves the highest throughput for the givenesant

in the field. For example, it is far more likely to find a situati information set. Fig. 1 depicts the main scheme of ASTRA.
in which the velocity changes frol0 km/h to 35 km/h over The figure can be represented by the following notation:

a second rather than a sudden shift in velocity fraenkm/h

to 120 km/h. This gradually change ensures that contextual FAg(X(@0)} = Y(®) (4)
measurements have an embedded temporal correlation. UsfgBackground: Static Classification

context information and this temporal correlation, we adap

o . - In our rate adaptation model, the collected context infor-
the transmission mode for each scenario based on the desjred. L .
) . mation (channel type, SNR, and velocity) is the input to the
performance metric (throughput, in our case).

Traditional static classifiers aim to find a mapping funcIioﬁSequentlal coding block. Also, each of the modulation/ugdi

£, to predict the optimal transmission mode with the hi her tes will be numbered as the set of available transmission
tHroughput as reprrésented by: 9 odes. In the training set, for each given set of channel, type

SNR and velocity values, the labeled mode represents the rat
f : {Channel type, SN R, Velocity} — optimalmode, with the highest throughput. The static classifier extrales
(1) relationship between the output of the sequential codingkol

) . . . and optimal modes.
This function, f, inherently assumes that the data points gefore considering the temporal information, we have im-
with different timestamps are independent. However, in OWfemented the static classification-based rate adaptatign
application, we consider the temporal correlation of ceAteithm, in which we directly use the classification algorithm
tual data points, which can be exploited to further improvgy extract the relationship between context informatiow an
performance of the classification-based rate adaptatioe. Tine target mode without considering the temporal infororati
proposed method can be represented using a simple two-Stggge context information is classified into the appropeiat

model. In the first stage, we perform sequential coding, higategory, the transmitter can avoid poor settings and dyick
can be formally stated as finding a sequential coding fungsnyerge to optimality.

tion, g, to capture the temporal correlation among contextual\ye consider 3 different static classification schemes,
measurements as represented by: namely, Support Vector Machine (SVM), and Adaboost in
(2) our experiments [13], [14]. SVM and Adaboost have good
performance and are used in many commercial applications,
In the second step, we perform static classification on the nespecially for binary classification problems. In contrast
representation of the input vector after sequential codivith  decision tree is able to choose subsets of available attsbu

vectorsegeod = g(Channel type, SNR, Velocity).



synapses will release chemical substances to stimulate the
@ ------ @ connected neurons in the direction of signal transmission.

1} When the stimulus is given repeatedly, the neuron would
become habituated to release less chemical substances for
Linear Sequential Coding stimulation. Primarily, habituation is a means by which-bio
é logical neural systems vary their synaptic strengths ireotd

ignore repetitive, irrelevant stimuli. It can filter largmaunt of
information from the surroundings, making repeated stiraul
become less important. In this way, the animal will be able to
Fig. 2. Linear sequential coding. focus on the more important features of the surroundingl [17
In our model, habituation acts as a model of learning

) ) o which we can leverage for making rate adaptation decisions
when there are abundant attributes. In the static clasfita py exploiting temporal properties in the training data. The

based algorithm, we use the CA4.5 algorithm, which hagpjication of a sequential coding block based on habinati
been used in commercial applications to implement decisigithe proposed framework is to encode temporal information

trees [15]. and does not necessarily imply that our method has any psy-
chological or biological relevance. Habituation has besedu
in machine learning for novelty detection, recency detecti
Sequential coding attempts to code the temporal informatiand temporal learning [16]. Our design considers mechasism
in continuous contextual data. In this work, we investigate for learning when the temporal information among contektua
sequential coding approaches: linear coding and hahiiuiatimeasurements is important. The function of temporal le@yni
one of the most widely-used non-linear coding schemes. is what we are most interested in in our application. In our
1) Linear Coding: Static classifiers are frequently usedcheme, sequential classification is implemented by fgedin
to classify data at one point in time. However, when thihe outputs of the sequential coding block into the static
variation of data over time is correlated with the data vajueclassifier.
the correlation of current data with the historical data is There are two categories of habituation with respect to the
important in classification. In this situation, the clagsifion time duration. Long-term habituation is used to descrite th
performance can be improved if the classifier takes the dafahavioral changes over days or weeks. Due to the properties
collected in the pasf time units into consideration. of fluctuating channels, data points separated by long gerio
In a linear coding scheme, as an alternative representatisintime have little correlation [18]. Sequential coding &ds
of the data, the historical data in the pggime units and the on long-term habituation makes the activation of the hisebr
data at the current time are treated as input to predi@). data decay slowly. Thus, the effect of long-term habituatio
Linear coding can be represented by: should be avoided for our application. Short-term habiturat
. . is preferred to code the short-term correlation in time agion
foiX(t=g),X@t-j+1),....X10} =Y, ©) coﬁtextual data over millisecond or second time scales.m
The static classifier is one instance of a sequential classifi Researchers in neurophysiology have developed a simplified
based on linear coding with = 0. mathematical expression for habituation. A discrete-tirae
With linear coding, sequential classification utilizes th&ion of a short-term habituation model for varying the sgtén
same set of data as the static classification but with a differ w(t), is summarized as a simple mathematical model [19]:
order to the data. Since the measurements over a period ef tim
can reflect sudden changes of measurements, linear coding wy(t+ 1) = wi(t) + 7 (ar(l — wi(t))
can improve the reliability of classification when errorsdan —wi(t)z(t)), (0<k<n) (6)
noise occur in the data. A known problem with classical
linear sequential coding is that it treats the past datalBquavhere z(¢) is the input,7; is a constant used to vary the
as current data. However, past data has less effect on Habituation rate, andy, is a constant used to vary the ratio
current performance than current data. A weighting procebetween the rate of habituation and the rate of recovery from
only changes the values of the data rather thareftscton habituation. These two parameters can be used to control the
classification, because the classifiers would not distsigtlie trade-off between the temporal range and resolution of the
effect of two attributes on classification results basedtmirt correlated data points. Both, and «;, are in the range of
order of magnitude. Also, fluctuations of measurements due(0, 1). Note that, (6) is a non-linear model due to the product
external reasons can not be represented as a linear modekim. The dimension for the output vector from the sequéntia
most situations. In other words, non-linear coding (démati coding block isn. Whenn > 1 the habituation block might
below) is an alternative approach which uses a decayiegcode sequential information better, which we will evédia
function to retain the activation from past data points [16the following section by experimentation. In (6), we forratd
the problem when the size of the input vectaris 1. When
2) Habituation Coding: Habituation comes from the nat-the input is multidimensional, one vector of sizewill be
ural biological process when humans and animals make dkerived for each dimension. Fig. 3 is the block diagram of
cisions or respond to temporally patterned stimuli. Whesm tmon-linear coding based on habituation. For each attrjhtite
animal or human receives the stimulus at the first time, tlsequential coding derives a vectar!, ws, ...w! ].

C. Sequential coding



correlation in context information, we use an experimental
setup where two wireless nodes communicate across emu-
lated channels. The Azimuth ACE-MX is used for channel
emulation, allowing controllable propagation and faditgie
acteristics with a broad range of industry-standard models
for our experiments [20]. The channel emulator can create
repeatable channels for testing each transmission mode to
measure the performance of a given wireless context. Each
mode represents a modulation/coding scheme and packet size
combination. For a given channel, we can exhaustively searc
Fig. 3. Habituation-based sequential coding. for the best transmission mode in each scenario to produce
a training set for the classification mechanisms. We then use
randomized (but reproducible) channel settings to evaltis
The recursion in (6) makes the procedure of sequentiate adaptation algorithms according to the different sypé
coding inexplicit. After the elimination of the recursiothe training.
equivalent (7) helps us to understand the procedure as well a
the selection of the key parameters in the habituation block
The termwy,(t) can be derived as follows:

vecto;;eqm J

A. Experimental Set-up for Controlled, Repeatable Chasnnel
"""" @ In order to evaluate the efficacy of exploiting the temporal

t—1 t—1
wk(t) = TrQk + Tk Z H(l — T — Tkx(h)
J=1 h=j
t—1
+ H(l — oy — TR(1))), (7)

=0

whereqy, andr, control the rate of habituation and we assume
m = 1. In our application, the sequential coding block is used
to encode the short-term temporal information reflecting th
system and channel variations. For each attribute in thetinp
vector, such as the SNR, arrdimensional vector is derived
by the sequential coding block. Then the input to the static  Fig. 4. Gateworks 2358 with Ubiquiti XR2 and XR5 Radios.
classifier is a vector of sizen * n. The dimension of the

original input vector to the sequential coding blockrisand ~ To ensure that our results are broadly applicable across wir
represented by: less devices, we use both a FPGA-based, fully custom wieles

L L L . . . platform as well as an off-the-shelf, 802.11-based testbed
fseq : {wi(t), wa(t), ..wy (1), ..., wi"(t), w3’ (t),..wy' (1)} the custom platform, we use the Wireless Open-Access Re-
—=Y(t) (8) search Platform (WARP) [21], which allows users to define the
hysical [22], media access [23], network layer behavidi.[2
/ARP also enables programmability and observability aheac

The inputz®(t) is normalized before processing by the seque

tial coding block in our application. We sef; (0) = 1 for all |5ver hermitting detailed per-packet channel informatio be

k andi. We chooser; and oy from the range of (0,1) and ¢qjiected. For the off-the-shelf platform, we use a Linwased
satisfying a7 + 7 < 1. All these specifications guarantegsaienorks 2358 with Ubiquiti XR-2 and XR-5 radios (shown
thatwy, (¢) € [0, 1] anq the hab.ltuauon. process is stable for afﬁ Fig. 4). For the purposes of the emulator experiments,
values ofk andt. This model is not directly derived from the e Gateworks/Ubiquiti testbed allows increased number of
biological reality, nor does it model all the expected fuos  5nsmission modes as compared to WARP. In the following

of habituation. Also, the habituation model alone does ngfiion, we will leverage the increased transmission pamer
fulfill the expectation for learning behavior. Only when & i pjiit-in GPS of the Gateworks/Ubiquiti platform.

cascaded with a learner, the habituation can find its agita Fig. 5 shows the experimental set-up and data flow of
in machine learning [16]. the experimental setup of either platform with the channel
I1l. EXPERIMENTS ONEMULATED CHANNELS emulator. A computer captures the variation of the SNR and

In this section, we use emulated channels for re eatabilt e throughput values from the wireless receiver and the
! P locity value from the channel emulator according to its

and control to directly_compar_e and evaluate rate adaptati rrent setting. With the packet error rate (PER) colleced
performance when using static- and sequential-based M&{l;' o eiver for one minute, the throughput is calculated as
ods for training. The experimental results indicate that tf}O"OWS. ’

application of non-linear sequential coding can signifitan ' I

enhance the performance of linear sequential coding atid sta G, = (1 — PER) * Ry, * ‘payload 9)
classifiers in training of rate adaptation protocols. packet



where Ry, is the physical data layer rate, ar@,;, is the velocity and SNR valuesi0 for each of thet channel types.
throughput at this raté,,,0qq @andip.cre: represent the length In the test set, we choose a random velocity frorkm/h to

of payload and the length of packet, respectively. 120 km/h for each of the fixed values of attenuation specified
in Table I. Similarly, we choose a random attenuation from
0 dB to 42 dB for each of the fixed velocities found in the

Computer | Velocity | Azimuth ACE-MX training set.

Channel Emulator Table 1l shows the performance of rate adaptation trained

erR ‘ using the three static classification methods of Decisi@®eTr
Throughput Wireless Signa|4T Wireless Signal SVM, and Adaboost on the Ubiquiti and WARP platforms.
\ Td ! The metrics used are: accuracy, throughput improvement,
Transmitter Receiver and gap from maximum. In Table Il, accuracy refers to the
(Gateworks/Ubiquiti (Gateworks/Ubiquiti percentage of rate adaptation decisions that match thettarg
or WARP) or WARP) rate. The throughput improvement refers to the percentége o

throughput gain over an SNR-based rate adaptation scheme
such as [4], [5]. Finally, the gap from the maximum refers
to throughput percentage from the throughput achieved by
éhe optimal rate. We find that when the number of available
fodes is small, SVM outperforms Decision Tree in predic-
tion accuracy, and Adaboost outperforms both in accuracy

type, SNR, a_nd velpcny) is the target of predlcuon. Thgmd throughput improvement. When the number of available
learning algorithm will extract the relationship betwedre t transmission modes increases (e.g., the number of classes

context information and target mode. Later, in the testin% Decision T hi . f
hase, the learned classifier is used to predict the targeblamoI creases) Decision Tree achieves superior performanee ov
P ' SVM and Adaboost. These observations are consistent with

B. Performance of Static Classification-Based Algorithms findings from the machine learning community: SVM and

The performance of static classifiers depends on the sféj—abOOSt were designed for binary-label classificationbpro.
nario used, because for different kinds of data, the intterdfMms and then extended to multi-label problems. Thus, it is
relationship and the property are different. To verify th&xpected that the performance will dete_rlorate with insieg
applicability of classifiers in our framework, we now eval-nu:jnbﬁr of rr]nodesr.] In Sl;mmary, cor;sllsjen_ng bO_IEh accuracy
uate the performance of different classifiers when traini throughput, the performance of Decision Tree in our
rate adaptation algorithms according to diverse conteiss. application is better than the other two algorithms. Paféidy,
discussed previously, the available transmission modes %emsmn Tree is very stable for different situations. Thuis
different based on the capabilities of the hardware platfort!® following experiments, we incorporate the DecisioneTre
(see Table I). For WARP, we us transmission modes3 for comparison with our sequential classification-basee ra
modulation schemes ardpacket sizes. For Ubiquiti, we useadaptatlon_ sch_eme, ASTR.A' In contrast with these schemes,
18 modes:9 coding and modulation pairs arpacket sizes ASTRA will build the relationship between the context and
We use both platforms for our static-classifier experiment@te adaptation decisions using sequential coding.

where each test is run for a given contextual data set camgist, N Table Il, we also observe that the accuracy of SVM
of channel type, attenuation (SNR), and velocity for onf§ higher than that of Decision Tree, but thg through_put
minute per transmission mode. We average measured SifiProvementand throughput gap from the maximum achiev-

Fig. 5. Experimental Set-up for Emulated Channels.

In the training of each of the classification-based schem
the mode with the highest throughput for context (i.e., cten

values in every minute independently. able throughput of SVM_ are less than 'ghose of the de(_:ision
tree. One reason for this discrepancy is that the maximum
TABLE | throughput used for the gap is different for each data point
CHANNEL SCENARIOS AND TRANSMISSIONMODES in the testing set. SVM would give wrong predictions on
points which are classified correctly by the decision trelee T
ypes Values throughput gap from these points are larger than the gap from
Channel Models (ITU) | Ch. A, Ch. B, Ch. C, Ch. D ghput gap ESE p Arg gap
Velocities Em/h) 0, 30, 60, 90, 120 the points which are given wrong predictions by the decision
Attenuation {B) 0, 6, 12, 18, 24, 30, 36, 42 tree but correct predictions by SVM. Another reason for this
Modulafion (VARP) BPSK, QPSK, 16-QAM peculiarity is that both the classifiers may fail to yield the
Rates Obiquiti) (Mbps) | 6, 9, 11, 12, 18, 24, 36, 48, 5% target rate. However, the prediction from the classifierhwit
Packet Size Bytc) 100, 1000 lower accuracy provides a throughput that has a smaller gap

from the maximum achievable throughput than the classifier

For these experiments, we u$ehannel types correspond-Wlth the higher accuracy.
ing to 4 different environments where each channel type i
a pedestrian or vehicular channel model as specified by the
ITU standard. For our training data set, each channel type isWe now evaluate the performance of using linear and non-
emulated with each of th&) different pairs of attenuation andlinear sequential coding (ASTRA-L and ASTRA-N, respec-
velocity values specified in Table | for one minute. In totakjvely) for training rate adaptation protocols. Since sequ
there arel60 points in the training set. We prepare a test séial training exploits the temporal properties of the chealnn
of the same size as the training set witb0 unique pairs of we must form a testing environment on the emulator with

Performance of Sequential Classification-based Algorg



TABLE Il
PERFORMANCE OFSTATIC CLASSIFIERS ONWARP AND UBIQUITI MEASUREMENTS

Classifier Accuracy Throughput improvement Gap from maximum
Platform | Number of modes| of predicting optimal mode| over SNR-based rate adaptatign possible throughput

Decision Tree| WARP 6 72.5% 70.35% 6.28%

SVM WARP 6 73.75% 68.53% 7.28%

Adaboost WARP 6 78.75% 74.43% 4.04%

Decision Tree[ Ubiquiti 18 73.1% 17.1% 16.6%

SVM Ubiquiti 18 59.62% 0.53% 28.37%

Adaboost Ubiquiti 18 48.27% 0.42% 33.83%
representative mobility patterns where the relative vigyoc 43 ‘ ‘ ‘ ‘ 3

between the two nodes is increasing on a particular channel |
type (e.g., Ch. A from Table I). We choose to use the Ubiquiti
platforms for the following two reasong(i) it has more
transmission modes available, thereby limiting the effefct
static classification and clearly demonstrating the impzct
temporal information, angli) it is better suited for deployment
in field trials due to the platform’s with increased transsiogs
power and built-in GPS.

w &5 S
=) (=3 —_—
T T

[
o
T

Accuracy of prediction (%)

N}
N
Throughput Gap from the maximum (%)

We consider operation on 11 data rates with the Ubiquiti 37§

A
radio: 1, 2, 5.5, 11, 6, 9, 12, 18, 24, 48 and 54 Mbps. To y ‘ ‘ |- - - Througtput Gap)
increase the granularity of context-data, we modify theickeyv 0 L2 B 4 5
driver of the wireless card so that it can report SNR and i (No. of historical data points in input vector)

throughput values for each packet. At the transmitter, wento
the number of transmissions (including retransmissiores) p
successful packet. With the ratio of this successful patiket
total transmissions, we can calculate the throughput aacgr
to (9). For each rate, the total number of successful packetslo test the performance of ASTRA-N and the effect of the

in each experiment duration is different, |eading to a ddfeg parametem in the habituation-based analysis block (i.e., the
number of throughput samples per experiment. To account @}tput vector as described in Section II), we use the same
the rates with less throughput samples, we downsample #@irs of training and test sets as used to compare the static
data points including SNR, velocity, and throughput befor@assification-based schemes and ASTRA-L. The results are
feeding them into the sequential coding block. To do so, w&own in Fig. 7. With the increase of the performance shows
measure the time between two consecutive packets of §fdne patterns: increasing initially, reaching its peakigaind
lowest transmission rate and average the throughput valBgn decreasing. These patterns can be used to determine the
and contextual data of the other transmission rates whigh h&ptimalr in practice.

been collected during this time. Even with the aforememibn For Fig. fig:nonlinearresults, it can be observed that:
averaging, the fluctuation of values in the training points
greatly exceed that of the training points used in SectibBlI

Fig. 6. Performance of ASTRA-L on data from emulated chasnel

« ASTRA-N can significantly improve the performance of
rate adaptation. When = 3, the throughput improve-
Next, we compare the performance of two sequential coding ments over the static classification-based method and

schemes: ASTRA-L and ASTRA-N. Similar to the static = ASTRA-L wheni = 4 (when ASTRA-L has the highest

classifier case, we use 160 data points for training. Each accuracy) ar€6.47% and21.90%, respectively. And the
data point includes the context information of channel type  accuracy improvement over the static classification-based
velocity and SNR and the transmission mode that achieves the method is10.93%. These resutls reveal the advantages of
highest throughput (e.g., the target mode). We use a test set ASTRA-N over the static classification-based method and
of the same size as the training set. The results of ASTRA-L ASTRA-L.

are shown in Fig. 6. The static classifier is a special case ofe Whenn = 1, we do not increase the dimension of

linear sequential classifier when the number of used hestbri data, which means the sequential coding block does not

data points equals 0. Thus, in Fig. 6, th& point where increase any time complexity for the static classification,

i = 0, shows the performance of static classifier on this and the throughput is still improved. With the same time

pair of training and testing sets for comparison. As before, complexity of classification, ASTRA-N can still improve

accuracy is the percentage of time the classifier chooses the the performance, which demonstrates the applicability of
target rate and throughput gap refers to the percentagetfrom temporal information for rate adaptation.

maximum achievable. ASTRA-L with differentvalues does « Whenn increases from to 3, the performance increases

not show desirable improvements over the static classiicat dramatically. Whenn = 3, ASTRA-N has the best

based method. The degradation of performance demonstrates performance in target mode prediction. The result is very
that the correlation between continuous measurementsatan n  consistent with the observations in [19]. Namely, multi-
be interpreted as a linear relationship. dimensional habituation coding (i.e. is 2 or greater) can
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Fig. 7. Performance of ASTRA-N. Fig. 8. Testbed on a campus bus for repeatable in-field trials

obtain better performance over habituation coding with FY Experimental Design for In-Field Data Collection
single dimension. For our experimental set-up in the field, we deploy the Gate-
« When n increases fromd to 20, the performance de- works/Ubiquiti platform on a campus bus as shown in Fig. 8

creases but is still better than the performance whevhich makes a loop from off-campus graduate apartments
n = 1. Multi-dimensional habituation coding has betteto the center of campus. We installed multiple mobile-mount
performance in terms of capturing temporal informatiorantennas on the roof of the bus, however, in this test we only
We note that when increases beyont] the performance use the 5 GHz antenna specifically in this section. Another
changes very slowly. node and antenna is located on the roof of a 3-story building

The preceding analysis indicates that multi-dimension?’:\?ar campus. The bus takes about 45 minutes to complete one

L ; . . [oop and runs on the hour everyday from 7:00 am to 9:00 pm.

!:,i?ggggg?h‘e:%?mgngizt,?'gfsingitttigngz{gpanceg*%t adnyghtWireless traffic is sourced from the bus node to the building
. . o ' node (i.e., uplink). The performance data is transmitted to

thus increases the complexity of c;IaSS|f|c_:at|on. As the size backbc()ne ne?worll autom%tically using a different frequyen

the output vector from the sequential coding blecikcreases, ' | .

the time complexity increases: very slowly to— sand then when the bus approaches around a 3-story building. We match

. . o o the throughput to location, velocity, and timestamp frora th

dramatically beyond that point. However, this increasinget GPS builginpto the Gateworks bogrd SNR is collgcted from

complexity does not limit the applications of ASTRA-N for he Ubiquiti XR5 radio '

tV\;]o rea§ons:(|)" ASTRl'lA";I achieves 'tﬁ peak perforlma}ncé In Fig. 9, we place rr;easurements for a single day on a map

\gf Xg?l'«:;-?\lm\;avh_e%s#ig Egrg?n;[gsétl.tr-:—e i;:,rnn: ;Smt?]gfc\lltﬁ/ergpcording to their geographi_cal locations. I_Different agybf

« ~ 1 i) The most tme-consuming phase is varing 1 0¥ CHeles epresen atrent tansmison ot

decision tree [15]. After training, the testing process tas transmission power ta7 ng gnd use 8 data rates for our in-

same complexity as a static classification method (|.e.er§rvf. Id dat ”p tion6. 9. 12. 18. 24. 36. 48 and 54 Mb

fast) [15]. Thus, the time complexity increased by ASTRA- €ld data collectiond, 9, 12, 18, 24, 56, 4 an PS.

is limited to the training process. Considering the perfance >/"ce the bus repeats many loops of its route every day, we

of classification as well as the time complexity, we set 3 have collected extensive measurements over the course of a
in the following in field experiments. week. We use data points in ﬂwaluatlon reglorwhere the
transmitter and the receiver can communication effegtivife
divide the evaluation region into smaller regions and assum
IV. IN-FIELD EXPERIMENTATION that the communication is experiencing the same type of
channel condition every time the bus is located in that par-
While in the previous section, the emulator was configurdffular region (as signified by GPS coordinates). We evaluat
to model an acceleration process with gradually changi _T_RA'N baseq on the collecte_d conte>_(t_ual measurements by
velocity and fixed attenuation, in field trials the velocity'2NN9 af‘d testing the sequential classifier with datanftbe
exibit random variations. Also, the change of one contdxtusMe regron.
attribute may interact with the change of another attribut i . . e
These variations are critical for the temporal property rof i E In-Field Evaluation of Sequential Classification
field measurements and the corresponding evaluation of oufFor each of ther regions, we collectl0 data points. We
algorithms. To test the performance of ASTRA-N on in-field¢hoose the firsR0 points for training and the remainin2)
channels, we use a bus on SMU campus with a repeatapénts for testing the rate adaptation accuracy of our seiiple
mobility pattern for data collection and show that signifita training. We show the accuracy and gap from the maximum
gains can be achieved for rate adaptation. achievable for both the static-based training and ASTRA-N



TABLE Il
PERFORMANCE OFASTRA-N ON DATA FROM IN-FIELD CHANNELS

Region Accuracy of predicting Accuracy of prediction Gap from maximum Gap from maximum
9 optimal mode (static-based) optimal mode (ASTRA-N)| possible throughput (static-based)possible throughput (ASTRA-N
Region 1 100% 100% 0% 0%
Region 2 45% 55% 29.55% 19.50%
Region 3 90% 90% 0.13% 0.13%
Region 4 95% 95% 0.15% 0.15%
Region 5 35% 55% 43.33% 5.86%
Region 6 20% 55% 31.24% 29.26%
Region 7 30% 45% 14.95% 9.17%
3
Donigl Ave S o g both accuracy and throughput.
& . e TABLE IV
gwd  Burleson  University Bhed = Eﬁ; IMPROVEMENT OFASTRA-N OVER STATIC CLASSIFICATION
i Fark @
- Fendren Dr Improvement in:| Region 2] Region 5] Region 6 [ Region 7
g .? Accuracy 18.18% | 57.14% 175% 50%
B ieFarin Blvd f Throughput 14.27% | 66.11% 2.88% 6.80%
Compared to the performance on data collected from em-

ulated channels in last section, the performance of ASTRA-
N on data from in-field channels is far more promising. To
collect data from emulated channels, we configure the channe
emulator to model an acceleration process with increasing
relative velocity, which can result in losing temporal infoa-
tion. However, real measurements exhibit the natural ceang
of velocity values on system’s performance, showing strong
temporal correlation. This experiment on in-field data clie
demonstrates that ASTRA-N is more suitable and very robust
to the practical situations and could achieve even greater
results for more dynamic channels.

el

o BRI

Fig. 9. Map of performance data measured from the bus. V. RELATED WORK
Machine learning borrows many concepts from the biolog-
_ ) ) ical area to provide efficient solutions to problems in thal re
for each of the7 regions in Table Ill. Results for Regions3  world. SVM and Adaboost are the most widely used classifiers
and 4 have a high accuracy of predicting the optimal modg commercial applications [13], [25]. SVM represents data
no less tham0% (including 100%) when all points in the classification as points in space and maps them, into a higher
testing set and training set are assigned to the defauls.clasimensional space to “space” them or separate them. Adaboos
The default class is the one that would be selected by mgjordonstructs a “strong” classifier by a combination of several
voting in the training set. The high accuracy indicates thagimple” and “weak” classifiers. Decision trees represdret t
we can achieve minimal additional performance gains wit|ationship of categorical attributes and classes asealite
ASTRA-N over the static classification-based algorithm fostructure. Each decision node in the tree represents dpLeétr
that particular region. Each branch will lead the deduction to another decision node
However, ASTRA-N achieves significant improvements ior a final decision based on thresholds or conditions from
accuracy (up to175%) and throughput (up to66.11%) training. The user can easily deduce the decision following
over static classification-based training in Regidhs5, 6 branches with the given categorical attributes.
and 7. The relative improvement of ASTRA-N over the Machine learning has been applied to communication sys-
static classification-based algorithm is shown in Table I\tems [26], [27], [28]. The classification algorithms canabst
We note that for some regions the improvements in terntish a connection between the context information and ogitim
of accuracy are much higher than throughput. A key reasoamte. Cognitive Radio (CR) uses learning and adaptation of
for this discrepancy is that the throughput gap achieved Iparameters according to the propagation environment. A CR
static classification-based method and correspondinghpate model incorporating a machine learning engine into theaadi
improvement thereof is small. For example, in Region architecture is described in [10]. A series of algorithme ar
the gap for static classification-based method1&95%, based on this model (e.g., a CR evolved as the chromosome
which is much smaller than that in Regidn i.e. 43.33%. in genetic algorithms [29]). The KNN classifier is modified fo
Thus, the advantages of ASTRA-N are more obvious whemline classification [26]. KNN is a classification algoritiof
both the accuracy and throughput are low. For instance, low complexity, but the training process is implementedirodf|
Region5, ASTRA-N gains more than0% improvement for and the classification model is not adaptive online to a new



data point [26]. In [27], the authors design a modulation angk]
coding adaptation scheme with an SVM for binary classifiers.

Some works on context awareness have discussed the ¢
istence of temporal correlation among contextual measure-
ments. The conditional probability of losing thHé" packet
following a lost packet has been calculated in [18]. Alsos
the mutual information between two packets separated by a
time interval is used to demonstrate the statistical catiah
in system behaviors. These works indicate that the fate &
a later packet depends on a previous packet to some extent
because during a relatively short transmission period, thél
propagation environment is relatively stable. In contrast |
utilize this observation to select the best transmissite wath
the sequential classification methods.

Context information is time-varying due to the fluctuatio
of channel property. A central issue is how “historical” an{
mation is represented and stored. This issue can be solved3

f1]

storing measurements in the recent past and presenting theg

for processing along with current measurements. The ldstor
weather information is used in weather forecasting based
on a temporal classification scheme in [19]. Alternativel){m]
past information can be indirectly represented by a switabl
memory device such as changes in the internal states [
the processing cells [30]. Temporal classification has beﬁ@]
widely used in the biomedical field to explore the temporal
information in biomedical signals [30]. Some researchenseh [17]
also studied spatio-temporal sequence recognition mésrnan 18]
in other applications, such as speech recognition [31].

VI. CONCLUSION [19]

In this work, we applied sequential training to rate adapta-
tion (ASTRA) to leverage the temporal correlation of wirsde [20]
channels in different environments. We did so by first t@stirhl]
and comparing the performance of different static clagsifie
to ASTRA. In our experimental analysis, we evaluated the
performance of rate adaptation mechanisms on two diffdf?l
ent hardware platforms over emulated and in-field channels.
Experimental results demonstrate that ASTRA-N can signifi3]
cantly increase the accuracy and throughput of rate adaptat
over the static classification-based method by up@@s and [24]
66.11%, respectively. Since the size of output vector has an
effect on the prediction performance and time complexity, i25]
future work we plan to adapt its size in different situationé
Finally, we also plan to consider the spatial information if26]
contextual measurements.
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