
Split Null Keys: A Null Space Based Defense for
Pollution Attacks in Wireless Network Coding

Andrew Newell Cristina Nita-Rotaru
Department of Computer Science, Purdue University

305 N. University St., West Lafayette, IN 47907 USA
{newella,crisn}@cs.purdue.edu

Abstract—Recent work in defending against pollution attacks
for intra-flow network coding systems proposed a null spaces
based algebraic approach which has a smaller computation cost
than previous pollution defenses. The approach requires the
source to distribute keys periodically, but in order to scale
involves forwarder nodes in the creation of new keys and their
distribution. As a result the key distribution is secure only in
specific network topologies such as those created by large-scale
peer to peer systems, and is not secure in wireless networks
where such topologies do not exist. We propose Split Null Keys,
which splits the keys such that only a small portion of the key
is updated periodically. The small updates allow for a scalable
key distribution scheme that does not involve forwarder nodes in
creating keys and thus does not rely its security on constraints
imposed on the network topology. We prove that our scheme is
secure despite splitting the key and we show that when compared
with existing defenses our scheme imposes lower communication
and computation overhead, is resilient to colluding adversaries,
and does not require time synchronization.

I. INTRODUCTION

Network coding routing deviates from traditional store-
and-forward routing by allowing intermediate nodes to code
packets together. Network coding is particularly applicable in
wireless networks where the broadcast nature and opportunis-
tic reception of the wireless medium allows network coding
to surpass traditional routing by taking advantage of any
overheard packets. Numerous practical systems [1], [2], [3],
[4], [5], [6] have been proposed for wireless networks.

Network coding systems are vulnerable to pollution attacks
[7] in which adversaries acting as intermediate nodes inject
bogus packets into the network. The injection of polluted
packets can also occur in traditional store-and-forward routing
protocols. In this case, since intermediate nodes just forward
packets, any scheme that provides data source authentica-
tion (such as digital signatures) is an effective defense in
detecting packets that were not created by the source. In
random network coding, intermediate nodes code new packets
by computing random linear combinations of the packets
received from upstream nodes. In this case, traditional data
source authentication mechanisms are not applicable. Such
authentication schemes need to have homomorphic properties
in order to allow intermediate nodes to verify that the packets
they are coding are in turn linear combinations of packets that
originated at the source. Even more, while pollution attacks
require little resources from the attacker they have an epidemic
effect in network coding systems as honest intermediate nodes

unknowingly amplify the attack by creating new packets based
on the received bogus packets and forwarding the resulting
new malformed packets in the network.

Several defenses exist for pollution attacks relying on
cryptographic, information theory, or algebraic mechanisms.
Cryptographic-based schemes [8], [9], [10], [11], [12] cre-
ate homomorphic digital signatures and hashes. While such
schemes are effective in peer-to-peer systems, they impose
prohibitive communication and computation overhead in wire-
less networks. A cryptographic solution based on MACs [13]
imposes prohibitive overhead in the presence of multiple
byzantine adversaries. Information theoretical-based schemes

[14], [15] code redundant information into packets, allowing
receivers to recover correct packets in spite of polluted packets.
Such approaches hinder the system performance as they limit
the throughput of the network coding system based on the
adversary’s available bandwidth or impose restrictions on
broadcasts of intermediate nodes.

Algebraic-based schemes verify that packets received by
forwarders belong to the space defined by the original packets
sent by the source. Two representative approaches are the
schemes in [16] and [17]. The scheme in [16] creates non-
cryptographic checksums and relies its security on the dif-
ference between the time when a packet was received and the
time when the checksum used to verify the packet was created.
The scheme is effective but requires time synchronization
and delays packets before forwarding them. The scheme in
[17] uses null space properties to provide nodes with vectors
(referred to as null keys) belonging to the null space of
source packets that are used to algebraically verify that the
packets belong to the same space as the source packets.
Because the defined null keys are large and would impose high
load on the source and high communication in the network,
the source distributes null keys only to first hop neighbors
and relies on the homomorphic property of the null keys to
have intermediate nodes create null keys for their downstream
nodes. Thus, the scheme relies its security on path diversity, to
ensure that each node will have a null key that spans a space
much larger than any one adversary can know about. Path
diversity is possible in peer-to-peer networks because links can
be inserted and deleted easily. However, this assumption is not
valid in wireless networks where there is less path diversity
and where the topology is optimized based on the wireless link
qualities, making the scheme insecure in wireless networks.

We propose a new defense against pollution attacks based on
the null space properties and without relying on any assump-
tions about the network topology or time synchronization.
Specifically:

• We propose Split Null Keys (SNK), a new defense against
pollution attacks that splits a null key in two components,
a small generation dependent one and a larger generation
independent one chosen randomly1. As a result, after
an initialization phase when the generation independent
component is distributed, only a small portion of a null
key (160 bytes) that is dependent on the data from
each generation must be updated for each generation.
The small communication overhead allows the source
to securely distribute the update individually to each
forwarder. Since each forwarder receives its own update
securely an attacker cannot exploit the knowledge of the
null key, and thus no path diversity is required. SNK has a
smaller communication cost per generation than previous
work and a very small computation cost which consists
of inexpensive matrix multiplications. Our scheme also
does not delay packets for verification and scales with
the number of colluding adversaries in the network.

• We formally prove that a probabilistic polynomial time
adversary that can control any set of byzantine forwarder
nodes and overhear all communication in the network,
cannot pollute a target victim node. The intuition is that
the large, generation independent portion of the null key
serves as a secret between the source and forwarder, so
keeping this portion constant across multiple generations
does not deteriorate security as long as it remains secret.
Even if forwarders collude the adversary cannot know
how the null key of the target victim node and the null
keys known by the adversary overlap due to the fact that
all null keys are generated independently and randomly.

• We validate the performance and overhead of our scheme
with extensive simulations using a well-known network
coding system for wireless networks (MORE [1]) and
realistic link quality measurements from the Roofnet [18]
experimental testbed. Our results show that SNK imposes
little communication overhead with an average of 25
kbps to distribute null keys. SNK outperforms previous
defenses against pollution attacks in both benign and
adversarial networks achieving better throughput and la-
tency. Finally, SNK retains the benefits of network coding
by performing better than a traditional, secure, store-and-
forward routing protocol ARAN (a secure version of the
well-known shortest path routing protocol AODV).

II. RELATED WORK

Detecting polluted packets at intermediate nodes. Several
homomorphic signature schemes proposed to provide a veri-
fication function for intermediate nodes in the network. The
works in [8], [9], [10], [11], [12] utilize cryptographic primi-
tives that rely on the discrete logarithm problem for security,

1In a network coding scheme the source disseminates the entire sequence
of packets in sub-sequences called generations.

which causes two major performance issues. A lower bound
is enforced on the symbol size, and a high computational
overhead is imposed by numerous modular exponentiations or
elliptical curve operations. Work has been done to address the
computational overhead of cryptographic pollution defenses at
intermediate nodes. Zhao et al. [19] proposes to speed up com-
putations by utilizing graphical processing units while Gkant-
sidis et al. [20] proposes to probabilistically verify received
blocks in peer-to-peer networks. Gennaro et al. [21] show
that the scheme [8] could use smaller coefficients near the
source to reduce computational and communication overhead.
The coefficients become larger with each hop and eventually
approach the overhead imposed by previous cryptographic
schemes, so topologies with many hops will still suffer.

Boneh et al. [22] propose the first homomorphic signa-
ture scheme over binary field sizes by using lattice-based
techniques. Their construction limits the number of times
signatures can be combined, and the key sizes are much larger
than traditional cryptographic constructions.

Agrawal et al. [13] present a homomorphic MAC that
relies on pseudo-random functions to overcome performance
limitations. A work [23] shows an efficient way to overcome
a problem unique to homomorphic MACs known as tag

pollution. However, the underlying scheme still does not scale
with the number of attackers in the network.

Dong et al. [16] propose a protocol for wireless networks
that relies on checksums being disseminated periodically
throughout the network. Attackers cannot conduct a forgery
attack by observing a checksum because intermediate nodes
verify received packets against checksums that were created
at the source at a later time than the time when packets
were received by intermediate nodes. The scheme has a
lower overhead than cryptographic defenses but causes coded
packets to be delayed before being verified.

Kehdi et al. [17] propose an algebraic based approach that
uses null space properties to defend against pollution attacks.
The scheme is suitable for large peer-to-peer networks with
path diversity but not applicable in wireless networks where
such diversity cannot be guaranteed. Our scheme is also based
on null space properties but does not rely on path diversity and
has a small communication overhead per generation.

Ensuring reconstruction of correct packets at receivers.
The work [14] encodes redundant information to reconstruct
the valid coded packets at the receiver in the presence of a
byzantine adversary. However, the throughput of the network is
dependent on the adversary’s network capacity to the receiver,
so an adversary with high network capacity can potentially
reduce the throughput of the network to zero. The work [15]
proposes to limit nodes’ network capacity by limiting the
broadcasts of each node to ensure the scheme [14] retains high
throughput in the presence of adversaries. Limiting broadcasts
is inconsistent with practical wireless network coding systems.

Identifying polluting attackers. The work [24] uses the
homomorphic MACs [13] to determine the subspaces a node
has received and the subspaces a node has forwarded. This
is sufficient information to determine if a node is a pollution

TABLE I
NOTATION

Name Description
n Number of plain packets per generation
m Number of symbols per plain packet
q Field for a symbol, the symbol size is log2(q)
X Data matrix of plain packets, size n by m
I Identity matrix
A Augmented data matrix of size n by n+m A = [I|X]
c Coded packet, it is an element of the row space of A
V Coding header at a destination used for decoding
B Null space matrix of A which has size n+m by m
0 Matrix of all zeros

Ki Null key for forwarder i which is subspace of the
column space of B

ω Security parameter for the number of null keys a
forwarder uses for verification

K̃i Generation dependent null key, first n rows of Ki

K̄i Generation independent null key, last m columns of Ki

S First n rows of B
T Last m rows of B

Gi Null key generator for null key Ki, B ∗ Gi = Ki

θ Number of possible forwarders for a source
β Number of forwarders for a flow

attacker. A work based on monitoring [25] is able to detect
whether a node is polluting with high probability given that
nodes protect the headers of coded packets with error correct-
ing codes and that multiple honest watchdogs exist per node
in the network.The work [26] proposes a monitoring technique
that requires source encoding where the amount of overhead
is dependent on the channel qualities in the network. The
adversary has a higher probability of being detected because it
has to pollute many packets to overcome the source encoding.

III. SYSTEM MODEL

We describe the network coding system and adversarial
model. The notation we use is presented in Table I.

A. Network Coding System

We assume an intra-flow network coding system with one
source that sends data via forwarders to one or more desti-

nations. The source sends data in generations. A generation
represents a subsequence of packets from the total number of
packets and consists of n plain packets. A plain packet consists
of m symbols which are elements of the finite field Fq (each
symbol is of size log2(q) bits). The plain packets are encoded
in a data matrix X of size n by m such that each row is a plain
packet. The matrix X is augmented by the identity matrix I
to form an augmented data matrix A = [I|X]. The identity
matrix is inserted to serve as a coding header for decoding
the coded packets at a destination.

The source creates coded packets c by generating random
vectors that belong to the row space of A and sends these
coded packets to forwarders and destinations that store them
in a coding buffer. Forwarders create coded packets by gen-
erating random vectors from their coding buffer. Destinations
eventually obtain a coding buffer spanning the same space as
the row space of A, i.e., each destination has [V|V∗X] where V
is the coding header and has full rank. The destination decodes
the packets by computing V−1 ∗ [V|V ∗ X] = [V−1 ∗ V|V−1 ∗
V ∗ X] = [I|X] to obtain the original data matrix X.

Parameter selection. The selection of parameters n and
m impacts performance of a network coding system. The
parameter n must be set to ensure a sufficient number of
packets are coded together to obtain network coding gains.
However, n affects coding overhead which is the overhead
for distributing the coding header. Each generation contains a
data matrix, X, that is n∗m∗ log2(q) bits, and each generation
the source distributes a larger, augmented data matrix, A, that
is n2∗ log2(q)+n∗m∗ log2(q) bits. The extra n2∗ log2(q) bits
distributed are coding overhead. Thus, the selection of n and
m must ensure that n << m to minimize coding overhead.

B. Adversarial Model

We assume that an attacker mounts pollution attacks by
injecting polluted coded packets in the network. A polluted
packet is a coded packet that is not an element of the row
space of A. Nodes downstream from the attacker accept this
packet as valid and store it in their coding buffer. Forwarders
with polluted coded packets in their coding buffers will create
new coded packets that are also polluted. Thus, the forwarders
unknowingly act as pollution attackers themselves, and the
attack propagates epidemically throughout the network. Des-
tinations with polluted coded packets in their coding buffers
will not obtain the data sent by the source upon decoding. An
attacker can be any node in the network, a rogue node without
the credentials to be part of the network or a node with the
credentials to be in the network but was compromised and
controlled by an adversary. We assume that multiple attackers
exist and they can collude.

IV. SPLIT NULL KEYS (SNK)

We first overview the null space properties that our scheme
relies on and then describe our scheme. In the following, the
term forwarders also refers to destinations.

A. Null Space Properties

Let the null space of the row space of the matrix A (of size
n by n+m) be the column space of B, then we have:

A ∗ B = 0
and B is a basis for the null space of the row space of A.

According to the rank nullity theorem
r(A) + r(B) = n+m ⇒ r(B) = m

so the rank of the column space of B, r(B), is m. Thus, B
is a matrix of size (n+m) by m.

Definition A null key is a matrix that spans a subspace of the
column space of B. We denote a null key by K.

We now show three properties for null keys in relation to
valid coded packets and polluted coded packets.

Lemma 1: A valid coded packet multiplied by a null key
always equals a zero vector.

Proof: By definition, any vector of the row space of A
multiplied with any vector of the column space of B results
in a zero.

Lemma 2: A randomly generated coded packet c has a
probability of (1q)

ω to satisfy c ∗ K = 0 where K is a null
key with rank ω and q is the symbol size.

Proof: Let K be the column space of K. The probability
that a randomly chosen coded packet c yields c ∗ K = 0 is
equivalent to the probability that a randomly chosen coded
packet is a vector that is in the null space K. The null space
of K is the space of all vectors c� such that c� ∗ K = 0. The
rank of K is ω, so the rank of the null space of K is n+m−ω
according to the rank nullity theorem. The number of vectors
in the null space of K is qn+m−ω , and the number of possible
coded packets is qn+m. Thus, the probability that a randomly
chosen coded packet is a vector that is in the null space K is
qn+m−ω

qn+m = (1q)
ω .

Lemma 3: Let K� be a matrix that represents a subspace
of the column space of the null key K where K� has rank ω�

and K has rank ω (ω� ≤ ω). Then, a randomly selected coded
packet c from the set of coded packets that satisfy c ∗ K� = 0
has a probability of (1q)

(ω−ω�) to satisfy c ∗ K = 0.
Proof: Let the column space of K and K� be denoted by

K and K � respectively. The ranks of the null spaces of K and
K � are n+m− ω and n+m− ω� respectively. The number
of vectors in the null spaces of K and K � are qn+m−ω and
qn+m−ω�

respectively. Given that K� is a linear combination
of the vectors of K we have that any coded packet c� that
satisfies c� ∗ K = 0 also satisfies c� ∗ K� = 0, so null space of
K is a subset of the null space of K �. A randomly selected
coded packet c from the null space of K � has a probability of
qn+m−ω

qn+m−ω� = (1q)
(ω−ω�) to satisfy c ∗ K = 0.

Using null keys to detect pollution Based on Lemma 1
and Lemma 2, polluted packets can be identified as follows.
A forwarder i having the null key Ki and receiving a coded
packet c will compute c ∗ Ki. If the result is a zero vector
then the coded packet is accepted, otherwise the coded packet
is dropped. In the case the packet is accepted, there is low
probability that the packet may still be polluted, (1q)

ω if the
packet is chosen randomly according to Lemma 2 which is
controlled by the column rank of the null key, ω. We show
in Section V that an attacker cannot do better than generating
polluted coded packets randomly when attempting to pass a
victim node’s verification test.

Impact on security when dimensions of null keys over-
lap. If the dimensions of the null keys at two forwarders
overlap, and a malicious forwarder knows the dimensions that
overlap, then the malicious forwarder can pollute the other
forwarder with a high probability given in Lemma 3. The
higher the overlap, the higher the success of crafting a polluted
packet. Thus, it is essential that an attacker does not know the
dimensions that overlap between their null key and the null
keys at other honest forwarders in the network.

B. SNK Overview

As a null key is a matrix that is a subspace of the column
space of B (which is an (n+m) by m matrix), the size of a null
key for a forwarder is (n+m) by ω, where ω is the column
rank of Ki. As stated in Lemma 3 the dimensions of null keys

should not overlap, so if the source distributes all the null keys,
this results in a very high communication overhead. Typical
settings for wireless networks are q = 256 (1 byte symbols),
n = 32, and m = 1468 (n + m = 1500 typical wireless
packet size), w = 5 to prevent random guessing (Lemma 2)
so even with few forwarders in the network, the source will
spend more time sending null keys than data.

In previous work [17] it was proposed to reduce this
communication overhead by having the source send null keys
only to the first hop nodes and rely on forwarder nodes to
generate null keys for downstream nodes by combining null
keys from upstream nodes. Such an approach scales well with
large networks, but it makes a critical assumption, that there is
enough path diversity such that a malicious forwarder cannot
know the dimensions that overlap with null keys at other
forwarders. An attacker that knows which dimensions overlap
can easily craft a polluted packet that passes a legitimate
forwarder’s verification test with high probability or even
1 according to Lemma 3. Such path diversity cannot be
guaranteed in wireless networks.

Given the lack of path diversity in wireless network, we
cannot rely on forwarders to create new null keys for down-
stream nodes. At the same time, the size of a null key is
large preventing a source from sending individual keys to each
forwarder. Our scheme, Split Null Keys (SNK), is based on the
observation that only a small portion of a null key for a gen-
eration is dependent on the data for that generation while the
remaining, larger portion of the null key is chosen randomly.
The large, random portion serves as a secret between the
source and forwarder, so keeping this portion constant across
multiple generations does not deteriorate security as long as
it remains secret. SNK splits a null key in two components:
a component that is generation independent and sent only
at system initialization, and a component that is generation
dependent and sent every generation. Specifically, for each
null key, the generation dependent component has a size of
ω ∗ n ∗ log2(q) bits, and the generation independent has a
size of ω ∗ m ∗ log2(q) bits. Thus, every generation, for a
forwarder, our scheme needs to send only ω ∗n ∗ log2(q) bits,
while if the scheme [17] is used, the entire null key of size
at least (n+m) ∗ log2(q) bits needs to be updated (null keys
for this scheme are sometimes larger based on the topology).
The source generates and distributes the null keys for each
forwarder, in a secure manner2, so SNK does not rely on path
diversity of the network topology.

At a high level, SNK works as follows (see also Al-
gorithm 1). In the initialization step which is performed
only once, the source creates and distributes the generation
independent null keys to forwarders. In the update step
which is performed every generation, the source calculates
and distributes the generation dependent null keys for a new
generation represented by the data matrix X for each forwarder
in the flow. In the verifying step which is performed every time

2Note that nodes should share symmetric keys with the source in order
to have end-to-end data integrity and confidentiality; a basic service for any
communication protocol.

Algorithm 1 SNK
Initialization (generation independent): Source initializes a network with for-

warders f1, ..., fθ
1: Randomly select null key generators G1, ...,Gθ
2: Calculate K̄i = Gi for i = 1, ..., θ
3: Distribute K̄i to forwarder i for i = 1, ..., θ

Null key update (generation dependent): Source generates update keys for

a generation consisting of data matrix X for a flow with forwarders

f1, ..., fβ
1: Calculate K̃i = −X ∗ Gi for i = f1, ..., fβ
2: Distribute K̃i to forwarder i for i = f1, ..., fβ

Verification (per packet): Forwarder f verifies a coded packet c

1: Form null key Kf from K̃f and K̄f , Kf =

�
K̃f
K̄f

�

2: Verify that c ∗ Kf = 0

a packet is received, a forwarder forms its null key from the
received null key parts and verifies a received coded packet.

C. Null Keys Splitting Procedure

We split each null key into two parts Ki =

�
K̃i

K̄i

�
, a

generation dependent null key (K̃i) and a generation inde-

pendent null key (K̄i). The first n rows of the null key are the
generation dependent portion, while the remaining m rows are
the generation independent portion. Generation independent
null keys are updated once for multiple generations while
generation dependent null keys are updated every generation.
As in a typical network coding system n << m, ensuring
that the generation dependent portion of a null key has n rows
reduces the overhead significantly.

In order to ensure that the generation independent null key
component remains constant across multiple generations we
split B as follows. Let S be an n by m matrix and T be an

m by m matrix such that B =

�
S
T

�
. The source keeps T

constant for each generation and computes a new S in order
to satisfy the null space property that A ∗ B = 0. Let T = I
for each generation:

A ∗ B = 0 ⇒ [I|X] ∗
�

S
T

�
= 0 ⇒ I ∗ S + X ∗ T = 0

⇒ S + X ∗ T = 0 ⇒ S = −X ∗ T
⇒ S = −X ∗ I ⇒ S = −X

Thus, by choosing T = I, we obtain B =

�
−X

I

�
.

A null key is a random subspace of the column space of
B. To ensure that a generation independent null key remains
constant for multiple generations, a null key generator is
selected for each null key, and the null key generator remains
constant for multiple generations. The null key generator is a
random matrix Gi of size m by ω with full column rank. A
null key is computed as Ki = B ∗ Gi.

We show that if we choose T = I, which in turn means

B =

�
−X

I

�
, then only the generation dependent null key is

dependent on X:�
K̃i

K̄i

�
= Ki = B ∗ Gi =

�
−X

I

�
∗ Gi =

�
−X ∗ Gi

Gi

�

⇒ K̃i = −X ∗ Gi K̄i = Gi

We summarize the splitting algorithm. For each forwarder i
the source generates a random matrix Gi of size m by ω with
full column rank. Then, the source computes the generation
independent null key Ki as K̄i = Gi and the generation
dependent null key Ki computed for each generation with data
X as K̃i = −(X ∗ Gi). Thus, the null key remains constant
for multiple generations and the generation dependent null key
depends on the data matrix of each generation. Each forwarder

recreates its null key as
�

K̃i

K̄i

�
= Ki.

D. Null Key Distribution and Verification

Distribution. An adversary that knows the null keys for a
legitimate node can form coded packets that pass the legitimate
node’s verification test. Thus, the source distributes null keys
to each forwarder over confidential and authenticated channels.
We justify the use of these secure channels as we will show
in Section VI that our approach incurs significantly less
overhead than previous cryptographic approaches which do
not require secure channels with forwarders. Each forwarder
shares a unique symmetric key with the source which can be
setup before distributing generation independent null keys. For
each generation the source generates a null key packet with
the contents �i||GID||Enc(K̃i)||MAC(i||GID||Enc(K̃i))�
where GID is an identifier for the generation, Enc() is a block
cipher encryption such as AES in CBC mode, and MAC() is
a message authentication code such as HMAC with SHA-1.
A null key packet is sent on a multi-hop best path from the
source to each forwarder of the flow for each generation.

Motivation for encrypting K̃i. When distributing the gen-
eration dependent null key K̃i from the source to a forwarder
it is necessary to encrypt it such that no other forwarder can
decrypt the value. If the generation dependent null key were
not encrypted, then a subtle attack exists where an attacker can
exploit the knowledge of K̃i over many generations. Given that
K̃i is sent in the clear, the attacker obtains n unique equations
in a system of m unknowns, K̃i ∗ K̄i = −X, each generation.
After �m

n � generations, the attacker obtains enough equations
to compute the value K̄i. With the entire contents of a victim
node’s null key, the attacker can craft polluted coded packets
that pass a victim node’s verification test. However, it is easy
to prevent this subtle attack by encrypting each K̃i, and we
do this as part of our protocol.

Verification. Given that a forwarder i has null key Ki,
the forwarder verifies packet c by checking if c ∗ Ki = 0.
According to Lemma 1, a valid packet will pass verification.
Without the knowledge of Ki or any dimensions of Ki, an
attacker can conduct an attack only by randomly generating
polluted coded packets. The probability that such a random
polluted packet does pass the verification test is negligible
for typical wireless network coding settings and is given
in Lemma 2. In our scheme, because the source (which is
trusted by all nodes) is the only one generating null keys
and because these null key components are disseminated in
a secure manner, the attacker cannot gain any knowledge of
Ki or any dimensions of Ki and thus cannot improve their
probability of polluting node i.

V. SECURITY ANALYSIS

We show security in the extreme case where an adversary
overhears all communication in the network for any number
of previous generations and compromises all forwarders in the
network except a node that is the target of the attack. 3 We
formalize the information available to the attack along with the
attacker’s goal of crafting a polluted coded packet that passes
a victim node’s verification test in Game 1. We are able to
show that the attacker can only wins this game with negligible
probability. According to our attack game, the scheme in [17]
is insecure since the adversary will win Game 1 because the
knowledge of null keys upstream of the target node allows
those nodes to pollute the target node.

Theorem 1 states that if both the cipher used to encrypt the
null keys and the PRG (Pseudo Random Generator) used to
generate the null keys cannot be broken then the probability
that an attacker will win the game is the probability that an
attacker guesses and passes verification which is negligible
for typical wireless network coding systems. Note that both
the generation independent and dependent portions of the null
key are encrypted such that an attacker must break the cipher
to obtain any knoweldge of null keys sent to the victim. The
proof of this theorem uses Lemma 4 (proof omitted due to
space) along with an algebraic argument to show that the best
strategy available to an adversary in Game 1 is to randomly
guess coded packets.

Game 1 Pollution attack game for SNK
Game between a challenger C and an adversary A . Parameters are
(E,R, q, n,m, ω) E is a cipher, R is a PRG, and the other parameters are
the same as in SNK. Setup:
1: C generates a random key k and a random seed s.
2: C computes Gl for each forwarder l using R(s).
3: C computes K̄l = Gl for each forwarder l.
4: C computes K̃l(j) = −X(j) ∗ Gl for each forwarder l and each

generation j.
5: C chooses some target forwarder i.

Queries:
1: A can request the target forwarder i. C responds with i.
2: A can request the encrypted generation dependent key for a given

generation j. C responds with Ek(K̃i(j)).
3: A can request the encrypted generation independent key. C responds

with Ek(K̄i).
4: A can request the null key Kl(j) of any node l s.t. l �= i and any

generation j. C responds with Kl(j).
5: A can request the data for generation j. C responds with X(j).

Output:
1: A must output a generation identifier j and coded packet c = [v|x]. A

wins the game if v ∗ X(j) �= x and c ∗ Ki(j) = 0.

Lemma 4: Consider a Probabilistic Polynomial-Time (PPT)
adversary A1 that knows the data for a generation X and must
produce a polluted coded packet c such that Ki ∗c = 0. Given
that Gi are chosen truly randomly for each forwarder, A1

gains no advantage if it has knowledge of z null keys Kj

where j �= i and z is bounded by a polynomial.

3We do not consider an adversary that attempts to modify null key packets
sent to the target node from the source. We assume that the MAC that
is attached to each null key packet is sufficient to protect against such
modification. This can be formally shown with additional attack games and
theorems, but we omit this for space considerations.

Theorem 1: SNK with parameters (E,R, q, n,m, ω) is se-
cure as long as the cipher and PRG are secure. More specifi-
cally, for an adversary A that cannot break the cipher or PRG,
the adversary has a probability of (1q)

ω to win Game 1.
Proof: With a secure cipher, the adversary learns nothing

by querying the challenger for encrypted versions of i’s
generation dependent or independent null keys, so queries 2
and 3 are not advantageous to the adversary. With a secure
PRG and the result of Lemma 4, the adversary cannot infer
the value of Gi from the values of Gl for i �= l, so query 4
is not advantageous to the adversary. The remaining queries,
1 and 5, allow the adversary to learn i and X(j) to help the
adversary choose a c and j such that:

c ∗ Ki(j) = 0 ⇒ [v|x] ∗
�

K̃i(j)
K̄i

�
= 0

⇒ v ∗ K̃i(j) + x ∗ K̄i = 0
⇒ v ∗ (−X(j) ∗ Gi) + x ∗ Gi = 0
⇒ x ∗ Gi − v ∗ X(j) ∗ Gi = 0
⇒ (x − v ∗ X(j)) ∗ Gi = 0

Let a = x−v∗X(j). The adversary can freely choose any a by
choosing an arbitrary v, and then setting x to a+v∗X(j). With
this substitution, the adversaries goal is reduced to choosing
an a such that a ∗ Gi = 0.

The trivial solution for choosing a is to let a = 0, but this
violates the v ∗ X �= x condition of winning the game. Thus,
the adversary must choose an a such that a �= 0 and a∗Gi = 0.
Given that Gi is unknown to the adversary and is completely
random in Game 1, any choice of a by the adversary will
result in a ∗ Gi being a random vector of ω elements. Each
element of this vector takes a random element from a field of
q elements. Thus, the probability that a ∗ Gi = 0 is (1q)

ω .

VI. EVALUATION

In this section, we compare the performance and overhead
of SNK with other pollution defenses and a secure, store-and-
forward routing protocol.

A. Simulation Methodology

Our experiments are conducted using the Glomosim [27]
simulator with an implementation of the MORE [1] wireless
network coding system. We use 802.11 [28] with a raw link
bandwidth of 5.5 Mbps. For our topology, we use the link
quality measurements from Roofnet [18] which is a 38-node
802.11b/g mesh network. For each simulation, we setup a
random flow in the network by selecting two random nodes
as the source and the destination; the source transmits for
400 seconds. We select 200 random flows and conduct the
simulation once for each flow and protocol.

Metrics. We measure throughput as the rate (in kbps) of
data being decoded at the destination. We measure latency as
the time between the start of the source transferring the first
generation to decoding of the generation at the destination.
We measure communication overhead as the total summed
rate (in kbps) of overhead data broadcasted by all nodes. Data

that does not belong to a standard network coding system is
overhead data which are checksums, MACs, and null keys.

To demonstrate the efficacy of our scheme, we compare
it with previous defenses against pollution attacks, all im-
plemented in the MORE system. We compare SNK with
the insecure MORE system, two representative cryptographic
schemes KFM [9] and HOMOMAC [13], and two algebraic
schemes DART [16] and EDART [16]. To show that SNK is
practical, we also compare it with a secure traditional routing
protocol, ARAN [29]. We do not compare with the scheme in
[17] since as described in Section IV such a scheme will not
be secure in wireless networks.

We consider communication and computation overhead
of each scheme. SNK sends generation dependent null key
packets each generation, DART and EDART send checksum
packets during generations, HOMOMAC appends MACs to
coded packets, and KFM requires heavy computations.

Parameter selection. We select the network coding param-
eters to match the default settings for MORE in [1]. The size
of a generation is n = 32, a symbol size of 1 byte q = 28, and
the size of a coded packet is 1500 bytes. These parameters are
the same for each scheme with the exception of KFM which
requires a larger symbol size to ensure the intractability of the
discrete logarithm problem. DART and EDART are configured
to ensure their best performance, as in [16].

Attack settings. We select defense parameters for each
defense scheme to ensure the same strength of (12)

40 where
the strength corresponds to the probability that the verification
mechanism accepts a polluted coded packet. The rank of null
keys, size of checksums, and number of MACs are selected
appropriately for SNK, DART/EDART, and HOMOMAC re-
spectively. We cannot ensure such strength for the adaptive
defense scheme EDART as it purposely forwards some coded
packets without verifying to reduce the delay imposed by
DART. A pollution attacker broadcasts a polluted coded packet
for every 5 coded packets it receives. The polluted coded
packets are generated randomly as there is no better strategy
for selecting polluted coded packets for these schemes given
that the underlying security assumptions hold.

B. Performance Evaluation

We compare with two other proactive defenses KFM and
DART. The proactive schemes verify every coded packet
independent of the number of forwarders, so their overhead
is the same in adversarial and benign networks. We include
the insecure system MORE as a baseline for comparison.

From the results shown in Figure 1(a), SNK outperforms
DART by over 100 kbps in the lowest (according to through-
put) 50% of flows due to the lowest flows having larger number
of hops from the source to destination. This pattern shows that
DART’s performance diminishes more than SNK as more hops
exist between the source and destination due to the delaying
of each coded packet for verification. Despite the similar
throughput of SNK and DART, Figure 1(b) shows that DART
imposes 5 times the latency compared to SNK. The increased
latency of DART is due to the pipelining of 5 generations that

is necessary to mitigate the delayed verification of packets
and achieve high throughput. KFM, only maintains roughly
50 kbps for all flows since it suffers from large computational
overhead like many homomorphic signature schemes.

C. Scalability with Multiple Adversaries

We compare SNK with EDART and HOMOMAC whose
performance depends on the number of adversaries.

Comparison with EDART. DART delays every packet to
wait for the checksum that verifies that packet, and EDART
differs by forwarding packets before they are verified. As
a result, some polluted packets travel multiple hops causing
more damage, and EDART responds by forcing affected nodes
to delay packets for verification. Unlike EDART, our scheme,
SNK, verifies all packets without delaying them. So, the
performance of SNK relative to the performance of EDART
improves when attackers are present.

The performance of SNK and EDART with varying num-
bers of attackers are shown in Figures 3(a), 3(b), and 3(c).
EDART outperforms SNK slightly in the benign scenario
because packets are forwarded without being delayed for
verification (verification is done later when a valid checksum
is received), while SNK always verifies every packet. When
attackers are present, SNK outperforms EDART which is most
visible in the top 15% of flows where the difference ranges
from 100 kbps to 300 kbps. These two schemes perform
similarly for the rest of the 85% of flows with SNK gaining
relative throughput to EDART as the number of attackers
increases. Averaged over all flows, the increase in throughput
of SNK relative to EDART are 4.8% and 6.2% for cases for
cases of 5 and 10 attackers respectively. As the number of
attackers increases, the EDART scheme will have a lower
performance because it may either delay coded packets to
verify them or allow polluted coded packets to be forwarded.

Comparison with HOMOMAC. We use HOMOMAC-
x to denote the HOMOMAC scheme configured to defend
against x adversaries. HOMOMAC utilizes redundant MACs
and a special key distribution to ensure that an adversary
cannot forge a coded packet. To remain resilient, the number
of MACs per coded packet must increase as the number of
colluding adversaries increases. We configure HOMOMAC
to be resilient to varying numbers of colluding adversaries.
In Figure 2, we compare the different HOMOMAC variants
with SNK which is resilient to any number of adversaries.
The severe degradation in performance is due to the increased
communication cost of appending MACs to each packet, and
the number of MACs increases quadratically with respect to
the number of colluding adversaries.

D. SNK vs. Traditional Secure Routing

We showed that SNK outperforms other pollution defenses
in a network coding system. However, for a secure scheme to
be practical it must preserve network coding benefits. In other
words, the secure network coding scheme should still have
better performance than a secure traditional store-and-forward
routing protocol. To demonstrate that SNK is a practical

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

C
u

m
u

la
ti

v
e

fr
ac

ti
o

n
 o

f
fl

o
w

s

Throughput (kbps)

SNK
DART

KFM
MORE

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

C
u
m

u
la

ti
v
e

fr
ac

ti
o
n
 o

f
fl

o
w

s

Latency (s)

SNK
DART

KFM
MORE

(b)

Fig. 1. Throughput and latency of SNK, KFM and DART.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
u

m
u

la
ti

v
e

fr
ac

ti
o

n
 o

f
fl

o
w

s

Throughput (kbps)

SNK
HOMOMAC-2
HOMOMAC-4
HOMOMAC-6
HOMOMAC-8

HOMOMAC-10
HOMOMAC-11

Fig. 2. Throughput of SNK which provides defense
against any number of adversaries and HOMOMAC-
x that is configured to provide defense against x
adversaries.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

C
u

m
u

la
ti

v
e

fr
ac

ti
o

n
 o

f
fl

o
w

s

Throughput (kbps)

SNK
EDART

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
u

m
u

la
ti

v
e

fr
ac

ti
o

n
 o

f
fl

o
w

s

Throughput (kbps)

SNK
EDART

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
u

m
u

la
ti

v
e

fr
ac

ti
o

n
 o

f
fl

o
w

s

Throughput (kbps)

SNK
EDART

(a) 0 attackers (b) 5 attackers (c) 10 attackers
Fig. 3. Throughput of SNK and EDART for different numbers of attackers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

C
u

m
u

la
ti

v
e

fr
ac

ti
o

n
 o

f
fl

o
w

s

Throughput (kbps)

SNK
MORE
ARAN

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
u
m

u
la

ti
v
e

fr
ac

ti
o
n
 o

f
fl

o
w

s

Latency (s)

SNK
MORE
ARAN

(b)

Fig. 4. Throughput and latency for SNK, MORE, and ARAN.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

C
u

m
u

la
ti

v
e

fr
ac

ti
o

n
 o

f
fl

o
w

s

Communication overhead (kbps)

SNK
HOMOMAC-2

DART
EDART

Fig. 5. Communication overhead of SNK,
HOMOMAC-2, DART, and EDART.

defense, we compare it with ARAN, a secure version of
the well-known AODV wireless routing protocol which signs
packets to ensure packets modified by routers are dropped.

Figure 4(a) shows that SNK retains most of the throughput
of MORE. The throughput of SNK is roughly 50 kbps lower
than MORE in all flows, and the degradation is consistent
among all flows due to consistent overhead in distributing null
keys. SNK outperforms ARAN in nearly the same fraction
of flows that MORE outperforms ARAN, 65%, and this is
due to the advantages of network coding. The 35% of flows
where ARAN outperforms MORE and SNK are flows that
have few hops, and few network coding advantages exist. The
latency of network coding systems is generally higher than
traditional routing because an entire generation is transferred
before the first byte of data is decoded at the destination. SNK
only imposes up to 10 ms of additional latency over MORE as
seen in Figure 4(b). For 90% of flows, network coding imposes
higher latency on the network. However, at the highest 10%

of flows, the latency of ARAN is significantly higher due to
the fact that shortest path routing suffers in flows with long
paths in wireless mesh networks.

E. Overhead Results

We further evaluate the overhead of the protocols with
better performance. We compare the overhead of SNK, with
DART, EDART, and HOMOMAC. We did not include KFM
in the overhead comparison because of its low performance
(Figure 1) does not make it a good candidate for a pollution
defense in wireless networks.

Communication overhead. Figure 5 presents the commu-
nication overhead for SNK, DART, EDART, and HOMOMAC.
The median communication overhead of SNK is 25 kbps
which is an insignificant amount given the median throughput
rate of 900 kbps for SNK. The other pollution defenses
have larger communication overheads. HOMOMAC has a
consistent communication overhead between 130-170 kbps

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

SN
K

D
A

RT/ED
A

RT

H
O

M
O

M
A

C

T
im

e
(m

s)

Security scheme

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

SN
K

D
A

RT/ED
A

RT

H
O

M
O

M
A

C

T
im

e
(m

s)

Security scheme

(a) Forwarder computation (b) Source computation
Fig. 6. Time for computational overhead of schemes SNK, DART/EDART,
and HOMOMAC-2. Forwarder computation (a) is for verifying a coded
packet. Source computation (b) is to generate null keys, checksums, and ho-
momorphic MACs for SNK, DART/EDART, and HOMOMAC-2 respectively
for a generation.

for all flows. DART and EDART have lower communication
overhead than HOMOMAC in the lowest 40% of flows, but
DART and EDART have communication overhead as high as
600 kbps in the highest flows. The large variations in overhead
for DART and EDART are a result of the variations in the
number of forwarders in each flow, and DART and EDART
periodically disseminate checksums to all forwarders.

Computation overhead. We measure the computation over-
head that takes place at the source to generate null keys,
checksums, or MACs and at the forwarders to verify incoming
coded packets. On average in our topology, a flow has 4.57
forwarders, so SNK’s time is 4.57 multiplied by the time
to create a null key packet. A null key packet requires the
creation of one generation dependent null key, encrypting
it with AES, and computing an HMAC of the packet with
SHA-1. For DART/EDART at least one checksum packet
is required per generation due to the checksum interval of
32 and n = 32, so we give DART/EDART an advantage
by only benchmarking for one checksum per generation. A
checksum packet requires the creation of 5 checksums for the
5 pipelined generations and 1 RSA signature. HOMOMAC’s
time is for creating the required homomorphic MACs for
each generation. Benchmarking results are average times of
1000 runs of a computation on a 2.4 Ghz processor with
cryptographic computations from the OpenSSL library [30].

Figure 6(a) and 6(b) present computational overhead at a
forwarder and source respectively for each scheme. Note that
the computational overhead at the destination is comparable
to that at a forwarder. In both cases, SNK imposes the least
computational overhead while DART/EDART imposes slightly
more computational overhead. Due to the generation and
verification of multiple MACs, HOMOMAC requires 4 times
the overhead of both SNK and DART/EDART.

VII. CONCLUSION

We present the Split Null Keys (SNK) protocol, a pollution
defense for wireless network coding that relies on null space
properties. We show that our scheme is secure against a strong
adversary that overhears all communication and compromises
multiple forwarders. We evaluate our defense through sim-
ulations in a typical network coding system scenario. Our
evaluation shows that SNK maintains the network coding gains
of MORE and outperforms previous pollution defenses.

REFERENCES

[1] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure
for randomness in wireless opportunistic routing,” in Proc. of SIG-

COMM, 2007.
[2] X. Zhang and B. Li, “Optimized multipath network coding in lossy

wireless networks,” in Proc. of ICDCS, 2008.
[3] ——, “DICE: a game theoretic framework for wireless multipath net-

work coding,” in Proc. of Mobihoc, 2008.
[4] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft,

“Xors in the air: practical wireless network coding,” in Proc. of SIG-

COMM, 2006.
[5] J. Le, J. C. S. Lui, and D. M. Chiu, “DCAR: Distributed coding-aware

routing in wireless networks,” in Proc. of ICDCS, 2008.
[6] S. Das, Y. Wu, R. Chandra, and Y. C. Hu, “Context-based routing:

Technique, applications, and experience,” in Proc. of NSDI, 2008.
[7] J. Dong, R. Curtmola, and C. Nita-Rotaru, “Secure network coding for

wireless mesh networks: Threats, challenges, and directions,” Computer

Communications (Elsevier), vol. 32, November 2009.
[8] D. Boneh, D. Freeman, J. Katz, and B. Waters, “Signing a linear

subspace: Signature schemes for network coding,” in Proc. of PKC,
2009.

[9] M. Krohn, M. Freedman, and D. Mazíeres, “On-the-fly verification of
rateless erasure codes for efficient content distribution,” in Proc. of S&P,
2004.

[10] D. Charles, K. Jain, and K. Lauter, “Signatures for network coding,”
Proc. of CISS, 2006.

[11] F. Zhao, T. Kalker, M. Médard, and K. Han, “Signatures of content
distribution with network coding,” in Proc. of ISIT, 2007.

[12] Q. Li, D. Chiu, and J. Lui, “On the practical and security issues of batch
content distribution via network coding,” in Proc. of ICNP, 2006.

[13] S. Agrawal and D. Boneh, “Homomorphic macs: Mac-based integrity
for network coding,” in Proc. of ACNS, 2009.

[14] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. Medard,
“Resilient network coding in the presence of byzantine adversaries,” in
Proc. of INFOCOM, 2007.

[15] D. Wang, D. Silva, and F. R. Kschischang, “Constricting the adversary:
A broadcast transformation for network coding,” in Proc. of Allerton,
2007.

[16] J. Dong, R. Curtmola, and C. Nita-Rotaru, “Practical defenses against
pollution attacks in intra-flow network coding for wireless mesh net-
works,” in Proc. of WiSec, 2009.

[17] E. Kehdi and B. Li, “Null keys: Limiting malicious attacks via null
space properties of network coding,” in Proc. of INFOCOM, 2009.

[18] “MIT roofnet.” http://pdos.csail.mit.edu/roofnet/doku.php.
[19] K. Zhao, X. Chu, M. Wang, and Y. Jiang, “Speeding up homomorphic

hashing using gpus,” in Proc. of ICC, 2009.
[20] C. Gkantsidis and P. Rodriguez Rodriguez, “Cooperative security for

network coding file distribution,” 2006.
[21] R. Gennaro, J. Katz, H. Krawczyk, and T. Rabin, “Secure network

coding over the integers,” Proc. of PKC, 2010.
[22] Linearly homomorphic signatures over binary fields and new tools for

lattice-based signatures. Springer, 2011.
[23] P. Zhang, Y. Jiang, C. Lin, H. Yao, A. Wasef, and X. Shenz, “Padding

for orthogonality: efficient subspace authentication for network coding,”
in Proc. of INFOCOM, 2011.

[24] A. Le and A. Markopoulou, “Locating byzantine attackers in intra-
session network coding using spacemac,” in NetCod, IEEE International

Symposium on, 2010.
[25] M. Kim, M. Médard, and J. Barros, “A multi-hop multi-source algebraic

watchdog,” Proc. of CoRR, 2010.
[26] G. Liang, R. Agarwal, and N. Vaidya, “When watchdog meets coding,”

in INFOCOM, Proceedings IEEE, 2010.
[27] “Glomosim,” http://pcl.cs.ucla.edu/projects/glomosim/.
[28] IEEE, IEEE Std 802.11, 1999 Edition, 1999,

http://standards.ieee.org/catalog/olis/lanman.html.
[29] K. Sanzgiri, B. Dahill, B. N. Levine, C. Shields, and E. M. Beld-

ing Royer, “A Secure Routing Protocol for Ad Hoc Networks,” Network

Protocols, IEEE International Conference on, 2002.
[30] “Openssl,” http://www.openssl.org/.

