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Abstract—To compete with online shopping, retailers are con-
stantly looking for ways to improve the display of their products
and to track customers to obtain shopping patterns. We propose
a general framework that exploits simple color sensors on ceilings
to tackle the above-mentioned challenges. Our first contribution
is a tunable lighting system that estimates accurately the true
color of a product, and then, adjusts automatically the type of
lighting to increase the product’s appeal. Based on this accurate
estimation of color, our second contribution is a system to track
people anonymously. Relying solely on the reflections coming
from people’s clothes, hair and skin, we use color sensors to
generate unique optical signatures for individuals. Our evaluation
shows that, in spite of the limited information provided by color
sensors, the optical signatures are precise enough to differentiate
people with very similar appearance except for some minor
differences in their clothing.

Index Terms—Visible light, Indoor Tracking, Tunable lighting.

unacceptable. There is a demand for an automatic tunable
lighting system that preserves privacy.

Another important need for retailers is to track the where-
abouts of customers to data-mine shopping behaviour. Some
camera systems can provide accurate and anonymous tracking
indoors, but we propose an alternative that is privacy preserv-
ing from inception. Even if a color sensor is hacked it would
not be possible to identify an individual. Color sensors are less
complex and consume less energy than cameras, but they have
not been considered for tracking due to their coarse granularity.
Figure 1 shows two images that can be uniquely identified with
a camera (left), but not by a color sensor because all incoming
light is averaged into a single pixel (right).

(a) Camera’s view (b) Color sensor’s view

Fig. 1: Color information obtained by cameras vs color sensors

Implementing both applications based on color sensors
(tunable light and people tracking) would allow cost savings
for the retailers, as they would only need to install one sensor
system – simple and inexpensive color sensors in this case.

Challenges. For the purpose of our applications, the unique
properties of color sensors lead to three main challenges.

(1) Achieving long ranges. Current applications for color
sensors have a limited range: a few centimeters. In our
scenarios, the distance between the color sensor and the object
is expected to be beyond 1 m, as the sensor will be on a ceiling.
The longer the distance, the lower the intensity of the reflected
light from the object, resulting in a lower detection accuracy.

(2) Variable Lighting Conditions. The type of surrounding
light changes the object’s true color1. These inconsistencies in
lighting conditions can be intended (to promote a product) as
well as unintended. We need to analyze the effect of external
light sources on the object’s true color.

(3) Unique Object Identification. This challenge is only
related to the indoor tracking application. A single-pixel pro-
vides limited information. Thus, it is not-trivial to distinguish
two people passing under a sensor with similar external colors.

1An object’s true color is defined as the object’s color under pure white
light, i.e. light that contains all the colors of the visible spectrum equally

I. INTRODUCTION

Motivation. There is a strong correlation between the suc-
cess of retail stores and their lighting design [1]. In particular, 
the color temperature of light fixtures can positively influence 
the customer’s perception of a product, and thus, increase 
overall sales [2]. This occurs because the object’s color is 
heavily dependent on the spectrum of the light source. For 
example, warm light has a stronger yellow component, thus, 
given that an object ‘simply’ reflects b ack w hat i t receives, 
the object will look more yellowish. Stores regularly exploit 
these effects to market their products, for instance, it is well 
known that bread looks tastier under warm light and fish looks 
fresher under cold light.

Presently, however, retailers can only adjust the color tem-
perature manually. This problem could be solved trivially 
using a camera to detect the color of the product, but in some 
cases such a method would not be allowed due to privacy 
concerns. A study by Philips Lighting (now Signify) found 
that 60% of shopping decisions are made in the fitting room 
for fashion stores [3]. Retailers want their customers to see 
themselves in favorable lighting conditions, but using cameras 
in fitting r ooms t o a chieve s uch a  g oal w ould b e clearly

Part of this work is currently going through patent applications in the EU. 
The company, Tridonic GmbH & Co KG, has authorized the publication of 
the study.



How unique can optical signatures be? And how accurate can
indoor tracking be with such limited information?

Contributions. Our work addresses the above challenges
and proposes two novel applications based on color sensors:

An automatic tunable lighting system (Lux-Tune). We show
that, when color sensors are utilized directly out-of-the-box
in our envisioned scenarios, the estimation can be highly
erroneous. For example, blue colors are detected as gray or
yellow. Such glaring errors can lead to changes in lighting
conditions that would make products look worse not better.
We propose a simple calibration method to overcome issues
related to long ranges and variable lighting conditions. Our
method follows the guidelines of the CIEDE2000 standard.
Although similar correction methods have been used in other
sensor technologies (e.g., digital cameras), to the authors’ best
knowledge such methods have not been applied on simple
color sensors.

An anonymous tracking system (Lux-Track). Obtaining ac-
curate color measurements (contribution 1) allows us to show
that color sensors can provide distinctive optical signatures for
people walking around an area. To map these optical signatures
to the correct person we use Dynamic Time Warping (DTW)
and correlation functions. Our evaluation shows that, in spite
of the limited information conveyed by reflections, our system
can distinguish people with very similar external features.

II. LUX-TUNE

In this section, we describe the methods used to tackle the
first two challenges presented in Section I. The aim is to have
a sensor on a ceiling capable of detecting the true color of
an object underneath and adjust the temperature of the light
fixture accordingly to make the product more appealing. Our
system allows setting any light color temperature according to
some predefined rules. We adopt conclusions of studies about
customers’ favorable lighting conditions [2].

A. Selecting the right type of sensor

There are three main types of color sensors: RGB, True
Color and Multispectral. The latter provides high accuracy but
at a high cost (hundreds of dollars), thus, we discard them. The
first two are inexpensive because they use simple photodiodes
and optical filters. The key difference is that true color sensors
use interference filters to emulate the human perception of
light (human eyes do not have the same sensitivity to all colors,
some colors stand out more than others).

Due to their low-cost and ability to capture people’s percep-
tion, our system uses true color sensors. To select the best op-
tion, we benchmark the performance of three sensors (MTCS-
INT-AB4, MTCS-C3 and AS7221) in an office space with
a controlled light source. This initial benchmark considers a
sensor-object distance of 30 cm and tests different colors (red,
green, blue, white) under various light intensities and color
temperatures. We found that the AS7221 performs the worst,
measuring white as light blue. To differentiate the performance
of the other two sensors we use the framework proposed in [4],
which relies on the CIEDE2000 standard and states that a color

difference of less than 3.5 is not easily detected by people. The
MTCS-INT-AB4 provides always color differences below 3.5,
while the MTCS-C3 has differences between 5.5 and 6.5 for
the blue channel, and between 2 and 4 for the green channel.
Thus, we use the MTCS-INT-AB4 in our system.

An important parameter of the selected sensor is the inte-
gration time, which is the time needed by the sensor to gather
enough incoming light to provide an accurate measurement.
The lower the light intensity reaching the sensor, the longer
the integration time required, and thus, the lower the sam-
pling rate. The values of the integration time are application-
dependant and they are determined in Section V.

B. Long Range & White Balancing

Let us assume that the output values for each color channel
(R,G,B) are in the range [0−N ]. If a white surface is measured,
all three channels should have a value of N . But if the distance
between the sensor and the objects increases, the received
values decrease because less light reaches the sensor. As a
consequence, the estimated color will be a darker version of
the object’s true color due to lower sensor values.

White balancing is a simple solution that can be applied
for this problem [5]. Letting X(i) be the (erroneous) value
measured at each channel i and Ref(i) be the maximum value
N that a channel can take, γ(i) in Equation (1) is a scaling
factor that normalizes the erroneous measurements to provide
the correct values W (i) using Equation (2).

γ(i) = Ref(i)/X(i) (1)

W (i) = X(i) ∗ γ(i) (2)

C. Color Bias & Calibration Matrices

White balancing is not the only problem faced by color
sensors, there is also a high level of color bias. In principle,
red, green or blue objects should result in RGB values of
(255,0,0), (0,255,0) and (0,0,255), respectively. In practice,
however, the received values can be very noisy, for example,
a pure red surface can have (245,50,0) values instead of
(255,0,0). This occurs because sensors increase (or decrease)
the strength of some color channels due to cross talk (leakage
of light rays among channels) and varying spectral responses
(different sensitivities for different colors).

These effects cannot be eliminated with a linear normal-
ization, as done with white balancing, we require calibration
matrices [5]. A calibration matrix K that satisfies Equation (3)
can be used to obtain the correct values C, based on the matrix
W obtained after white balancing (all matrices are 3 × 3).
Such calibration matrix can be expressed as a function of
ground-truth matrices T and sample matrices W as shown
in Equation (4).

C = K ·W (3)

K = (T ·WT ) · (W ·WT )−1 (4)

To quickly evaluate the effectiveness of our correction
algorithm, we use surfaces with different colors as shown in
Figure 2a. The distance between the sensor and the surface of
interest is 70 cm. After applying the white balancing method,



the estimated colors are shown in Figure 2b. We can observe
that, except for yellow, no color is measured accurately, with
blue being particular off target. When we apply the calibration
matrix, on top of white balancing, the estimations capture
accurately the true object’s color, c.f. Figure 2c.

(a) ground truth

(b) White balancing

(c) White Balancing + Matrix Calibration

Fig. 2: Color detection results for Lux-Tune

III. LUX-TRACK

Lux-Tune (Section II) requires a tunable light and color
sensors, but Lux-Track only requires color sensors. Within its
field of view (FOV), each sensor detects the light reflected
by people moving underneath with any arbitrary physical ap-
pearance (skin color, hair color, clothes, etc.). When a person
enters the system, a new optical signature is recorded. Later on,
as the person passes underneath the other sensors, the optical
signatures are mapped to the first signature, providing in this
manner tracking information. As mentioned in Section I, the
main challenge for this application is how to assign and track
optical signatures.

A. Optical Signatures

In the Lux-Tune system, sensors face vertically the object of
interest. That setup minimizes the distance between the sensor
and the object, improving the color detection accuracy. For the
tracking system, however, such a setup would only detect the
person’s top-view (hair & shoulders), as shown in Figure 3a,
limiting the ability to create unique signatures. Installing the
sensor at an angle allows a more complete coverage of physical
appearance. For example, in Figure 3b the color sensor will
record a signature that goes from black (shoes), to yellow
(skirt), to light blue (blouse) to brown (hair).

(a) Sensor aimed at ground (b) Sensor tilted at an angle α

Fig. 3: Sensor Setup

It is important to highlight the role played by the floor
because its color will ‘mix’ into the detected optical signature.
The floor can have any color pattern but we assume it to be

consistent across the area of interest. The floor’s color also
provides a baseline to determine when to start and stop the
collection of optical signatures, deviations from the baseline
trigger the start of the data collection process and this process
stops when the sensed color returns to the baseline.

B. Mapping optical signatures

Once an optical signature is gathered we use a 3-level
approach to identify if it corresponds to a person already
present in the area or if it is a new customer. To highlight
the characteristics of these three levels we use five people
with physical appearances ranging from very different to very
similar. Also, it is important to mention that our method
requires various thresholds, the values for those thresholds are
discussed in Section V.

Level 1. Color Differences. The first step to detect if a new
person has entered an area is to check the color difference
with respect to the background. Figure 4a and Figure 4b show
the color values of two different people. In these plots, the
color of each circle represents the combined color information
reaching the sensor. The x-axis depicts the sample number and
the y-axis the color difference w.r.t. the floor. For the level-
1 comparison, if the average color difference between two
optical signatures is above a predefined threshold, the person is
deemed to be a different one (Person 2 in this case, Figure 4b).
Otherwise, the method goes to the second comparison level.

Level 2. Peak Value Comparison. Two people with dif-
ferent physical appearances might be identified as the same
person in the level-1 comparison. For example, Figure 4c and
Figure 4d show two level-1 signatures that look similar even
though the color values of some points are different, such as
those at the peak (circled in red). For these situations, the
second level compares the peaks in the level-1 signature. The
peak represents the moment when the difference between the
background and the person is the highest, that is, when the
sensor has the best coverage of the person. If the difference is
above a given threshold, the person is deemed to be a different
one, else the method goes to the third comparison level.

Level 3. Individual Channel Differences. In some cases,
level-2 signatures will not be able to differentiate people. For
example, if a person wears a red sweater and a blue hat while
another person wears a blue jacket (both wear similar pants),
the system outputs the signatures shown in Figure 4e and
Figure 4f. These two persons have similar peak values because
at the moment of greatest coverage, the blue hat overpowers
the red sweater because it is closer to the sensor, providing
a similar peak value to the blue jacket. To resolve these
situations, a level-3 comparison is used to analyze each color
channel independently. The color signals are decomposed into
triplets. For example, Figure 4g and Figure 4h depict the
signature triplets for Figure 4e and Figure 4f, respectively.

Comparing the signature triplets, however, is not straight-
forward. In a real setting, there are three phenomena that can
lead to the creation of multiple signatures for the same person,
creating in effect multiple people out of single person and
making it impossible to track users.



(a) Level 1: Person 1 (b) Level 1: Person 2

(c) Level 2: Person 3 (d) Level 2: Person 4

(e) Level 2 (failed): Person 1 (f) Level 2 (failed): Person 5

(g) Level 3: Person 1 (h) Level 3: Person 5

Fig. 4: Level 1 (a, b): color difference. Level 2 (c, d): peak
color difference. Level 2 fails (e, f): two persons have the same
level-2 signature. Level-3 (g, h): individual channels.

[P1] Different walking directions. The color pattern depends
on the movement direction. For example, a person that passes a
sensor from left to right will have a different optical signature
when she passes it from right to left.

[P2] Fluctuations in light intensity. Lighting is not even.
The intensity is higher directly below a lamp and decays as
one moves away, which means that, for the same person, the
detected color is a lighter or darker version of the true color.

[P3] Different walking speeds. The same person may move
at different speeds when walking under different sensors,
changing the length and shape of the recorded color sequences.

To solve P1, we compare the flipped counterparts of each

signature as well, allowing us to detect a person independently
of the direction of movement. To solve P2 and P3, we combine
two popular methods used to measure signal similarity: the
correlation coefficient and dynamic time warping (DTW). The
correlation coefficient ρ, Equation (5), is the most rigorous
way to measure similarity and copes well with changes in
amplitude because it normalizes the signals with respect to
the mean and standard deviation (solves P2), but the signals
must have the same length (P3 remains an issue).

ρX,Y =
E[(X − µX)(Y − µY )]

σXσY
(5)

DTW has the opposite trade-off. DTW relaxes the notion of
similarity by focusing mainly on the signals’ shape. DTW can
compare signals with different length (solves P3), but it is not
well suited to deal with different amplitudes (P2 remains an
issue). Normalization is a simple technique to homogenize the
amplitude of signals, but in our case, normalizing the signal
would prevent the possibility of distinguishing colors of the
same tint, for example, blue (0,0,255) would be the same as
dark blue (0,0,100).

To compare signals with different amplitudes (P2) and
lengths (P3), we combine the correlation coefficient with
DTW. There are various methods to combine DTW with other
similarity metrics. Given two signals S1 and S2 of different
length, the simplest way to combine correlation coefficients
and DTW is to first use DTW to align the signals, and
then, calculate the correlation coefficient between these two
aligned signals. For example, letting S1 = [1, 1, 3, 5, 5, 2, 2]
and S2 = [1, 3, 5, 2], aligning them with DTW would lead
to S2′ = [1, 1, 3, 5, 5, 2, 2], and the correlation coefficient of
S1 and S2′ would be 1. Although this method is sufficient to
solve the problem, we modify the calculation of the correlation
coefficient to integrate it within the alignment process itself.
Due to space limitations, we omit the steps used to derive our
method and present only the final result in Equation (6), where
E1 =

∑
S12(n) and E2 =

∑
S22(n).

ρ =
(
∑

[S1(n) ∗ S2(n)])2

E1 ∗ E2
(6)

We can observe from Equation (6) that the calculation of ρ
does not involve deriving the mean or standard deviation. It
only requires calculating the energy of the signals (E1&E2)
and the sum of the products of the aligned points (

∑
[S1(n)∗

S2(n)])2). These three components can be calculated during
the alignment process of DTW. If we consider again signals
S1 and S2, the adjacency matrix D according to DTW is
shown in Figure 5. Following the shortest path in D, starting
from the top left, at every alignment point (S1(i), S2(j)),
we calculate E1 = E1 + S1(i)2, E2 = E2 + S2(j)2 and
B = B + S1(i) ∗ S2(j), leading to E1 = E2 = B = 65,
which in turn leads to ρ = B2

E1∗E2 = 1 (same value as if we
would calculate the DTW alignment first and then ρ)

Multi-level comparison. Overall, our method works accord-
ing to the flowchart in Figure 6. New data first goes through the
level-1 comparison. If the correlation coefficient ρ is greater



Fig. 5: Adjacency matrix D

than a predefined threshold T , the data undergoes a level-2
peak comparison. If the color difference of the peaks is smaller
than a predefined threshold, a level-3 comparison is performed
on all three color channels (R, G, B). Level-3 signatures are
deemed to be the same only if all three channels are similar:
(ρR > TR) ∧ (ρG > TG) ∧ (ρB > TB). If no match is found,
the signature is stored as a new person (entry) in the database.

Fig. 6: Signature Triplet Comparison Flowchart

IV. IMPLEMENTATION

Hardware Platform. Our system has two main compo-
nents: illumination and sensing. The sensing component is re-
quired for both applications, while the illumination component
is required only for the Lux-Tune application. The Lux-Track
application does not require any specialized illumination unit,
it can work with any artificial lighting already installed in a
building. Each component is explained next.

The sensing component consists of a color sensor, a mi-
crocontroller (MCU), and a wireless communication module.
The MCU collects the data from the sensor and calibrates it
as explained in Section II. The wireless module sends data
to a remote user interface. The illumination component uses
an ARCOS 3 tunable white LED from Zumtobel [6] and the
color temperature is controlled by a proprietary LITECOM
controller. Table I lists the hardware used in Lux-Tune and
Lux-Track, and the respective deployments are shown in
Figure 7: a standard office space for Lux-Tune and an aisle in
our building for Lux-Track.

Software Platform. The Lux-Tune system has two phases:
calibration and operation. Both phases are controlled and
monitored with the GUI shown in Figure 8a. The calibration
phase requires placing four different colored surfaces under the

TABLE I: Hardware List
Color sensor (both) MTCS-INT-AB4 (true color)

Microcontroller (both) ESP32 (contains WIFI module)
Luminaire (Lux-Tune) ARCOS 3 tunable white

Light controller (Lux-Tune) LITECOM device
Luminaire (Lux-Track) Standard lamps in the aisle

(a) Lux-Tune (b) Lux-Track

Fig. 7: Hardware deployment

sensor (red, green, blue, white) at nine different temperatures2

between 3000K and 6000K. Each <surface, temperature>
tuple can be selected in the top left quadrant of the GUI.
The system then obtains the corresponding calibration matrix
(bottom-right quadrant). After the calibration is complete for
all 36 tuples, the user can switch the system to the operational
phase (top-right quadrant). In this phase, the system first pulls
the calibration matrix for the current light temperature, then
uses that matrix to detect the object’s true color, and finally,
adjusts automatically the temperature of the tunable light to
make the product more appealing (bottom-left quadrant).

In the Lux-Track system, the sensors are deployed on the
ceiling and they send the detected color values to a central
server to perform the 3-level comparison presented in Figure 6.
The GUI in Figure 8b shows a person that has being identified
while passing one of the sensors.

Videos of evaluation. We have posted two anonymous
videos showing brief demos with their respective GUIs.
• Lux-Tune: https://youtu.be/-02796wmqmE
• Lux-Track: https://youtu.be/2SHfcyk0cnM

V. EVALUATION

The Lux-Tune system is evaluated in an office space that
already has four light bulbs. These bulbs are used to analyze
the effect of interference. The color temperature of those light
bulbs is 3500K, and the temperature of the tunable luminaire
ranges from 2700 to 6500K. The distance between the sensor
and objects is adjustable, but the maximum distance we test
is 1.7 m. For that distance, the sensors’ integration time is set
to 128 ms to obtain accurate measurements.

The Lux-Track system is evaluated on a corridor with
two sensors placed at 2.2 m. The color temperature of the
lights is 4000K, thus, we use the calibration matrices of that

2Nine temperature modes are sufficient to cover most product colors [7].



(a) Lux-Tune

(b) Lux-Track

Fig. 8: The GUI of our applications

temperature to obtain the optical signatures. As explained
in Section III, the sensor must be tilted at an angle to provide
a better coverage. But the tilted angle increases the distance to
the floor and people, which in turn reduces the received light
intensity. To optimize the coverage-intensity trade-off, we set
the tilted angle α to 30◦. Considering the lights present in
the corridor, the sensors’ height and the tilted angle, the light
intensity arriving to the sensor (via reflections) is lower than
26 Lux, which requires an integration time of 512 ms to obtain
accurate results. Compared to Lux-Tune, this integration time
reduces Lux-Track’s sampling rate from 8 Hz to 2 Hz.

A. Lux-Tune performance

Considering the scenarios seen in stores, we identify three
key factors that need to be evaluated: the object’s material,
the distance between the sensor and the object, and the
interference caused by ambient light. Our metric for accuracy
is the difference between the object’s true color and the
detected color as dictated by the CIEDE2000 standard [8] and
its corresponding formula [9]. The experiments are performed
after the mandatory calibration step explained in Section II.

Effect of material. Lux-Tune could be used for clothing
(fitting rooms), fruit (supermarkets) or other products, and the
reflective properties of objects can vary significantly. To cover
different ends of the reflective spectrum, we evaluate paper
and cotton, since the former has a higher reflectivity than the
latter. Both objects are placed 71 cm from the sensor. The color
detection accuracy of red, green, and blue objects for both
materials, with varying light intensity and color temperatures,
is shown in Figure 9. The dotted line at y = 3.5 represents
the value above which the difference is large enough to be

noticed by people. For the varying light intensity (top plots),
the temperature was fixed at 6500K, and for the varying
temperature (bottom plots), the intensity was fixed at 100%.

Fig. 9: Detection Accuracy of Paper and Cotton

We can observe that the difference is not noticeable for any
<color, intensity, temperature> tuple, except for blue cotton
(due its lower reflectivity). However, as long as the detected
color is a tint of the true color, the correct temperature will be
picked to illuminate the object, which will increase its appeal.

Effect of distance. In some cases the object may be close to
the sensor (meat section in supermarkets), and in others it may
be further away (fitting rooms). We vary the distance between
the sensor and object from 0.71 to 1.5 m, which decreases the
light intensity arriving at the sensor from 171 to 42 Lux.

Fig. 10: Detection Accuracy at 71 cm and 150 cm



(a) 5 ≤ error ≤ 12 (b) error <3.5

Fig. 11: Color errors greater (a) and lower (b) than 3.5.

Figure 10 shows the system’s accuracy at both distances.
We can observe that the color difference is not noticeable
with a light intensity greater than 60% (at 6500K), or a
color temperature greater than 4000K (at 100% intensity). To
visualize the error in the detected colors, Figure 11 shows
estimations with color differences of 5 for white, 7 for red,
and 12 for blue; and estimations where the color difference is
less than 3.5. As we can see, the difference is not significant,
and thus, Lux-Tune will still be able to select the correct color
temperature among the nine standard options [7].

Maximum detection distance. We increase the distance be-
yond 1.5 m to identify the maximum operational distance. At
75% intensity, the system is still functional at 3 m. That is, the
system can detect the right tint but not the exact color, so the
temperature still matches the needs to increase the appeal of
the product. If the luminaire’s intensity decreases further or the
distance increases, the system fails: the provided temperatures
do not match the desired values anymore.

Effect of ambient light. In addition to a tunable luminaire,
other lamps can be present in an environment, and although
not common in indoor retailing, sunlight may be present too. It
is central to analyze the effect of these sources of interference.

To analyze the effect of artificial lights, we use the four
lamps present in the office. The objects used for this experi-
ment are the same as in Figure 2 (nine different colors). First,
with all four lamps off, we calibrate the system. Under this
setup, the colors are detected correctly, as expected. Then,
without recalibrating the system, (i) we turn on the two more
distant lamps (the light intensity changes from 40 to 62 Lux),
and the system is still able to provide correct temperatures for
all objects; after that, (ii) we turn on the closest two lamps
(the light intensity changes from 40 to 113 Lux). Now the
system cannot detect the turquoise color well and provides a
wrong temperature (4800K instead of 5000K), but it still works
well for the other colors. We repeated this process at different
dimming levels and found that Lux-Tune can provide the
correct temperature as long as the intensity of the interfering
signal is less than 50% of the luminaire’s intensity.

To analyze the impact of sunlight, we set up system next to
a big window. The experiment is conducted at three different
times: morning, afternoon and evening. Without re-calibration,
Lux-Tune does not work well. For example, if we calibrate
the system in the morning and test it in the afternoon and
evening; the red, green, and blue objects look (i) all white in
the afternoon, but (ii) too dark in the evening. This occurs

due to two reasons. First, the scaling factors γ(i) estimated in
the morning are too high for the afternoon (when sunlight is
the strongest), but too low for the evening. Second, the color
temperature of sunlight changes from bluish in the morning
to yellowish in the evening. This change in color temperature
leads to an incorrect selection of the calibration matrices.

Summary. Lux-Tune can provide accurate color estimations
for different types of objects for distances up to 1.7 m. For
longer distances, the system is functionally correct up to 3 m,
that is, while the color detection is not accurate, the tint is, and
thus, the correct temperature can still be selected to increase
the appeal of the product. The main challenge faced by Lux-
Tune is external interference. Adding other light bulbs, after
the calibration phase, can change the received intensity and
color temperature. If the interference is greater than 50% of the
tunable light’s intensity, Lux-Tune starts providing incorrect
color temperatures. Sunlight poses an even greater challenge
because its interference is one or two orders of magnitude
higher than indoor lighting. To operate under sunlight, a store
would require an external sensor that measures intensity and
color temperature in real time to broadcast the right scaling
factors and calibration matrices to all sensors. In addition, the
system should be tested for a wider range of materials with
different reflectivities.

B. Lux-Track performance

For Lux-Track, the most important parameter is the accuracy
of identifying a person correctly. If the system can do that,
tracking is trivial because we know the sensors’ locations.

Thresholds. Lux-Track requires a set of predefined thresh-
olds (c.f. Section III), the selected thresholds are shown below.

TABLE II: Predefined threshold values.
Level Level-1 Level-2 Level-3

Parameter T1 T2 TR TG TB

Threshold 0.8 80 0.9 0.9 0.7

The threshold used in levels 1 and 3 have the relationship:
TR = TG > T1 > TB . The reason is that the sensor does not
capture blue light as strong as red and green. Thus, at level-3,
we should be more tolerant when comparing the blue channel,
and set TB lower than TR and TG. At level-1, we use the sum
of the RGB channels, so the threshold T1 must also take into
account the lower sensitivity in blue colors. Regarding level-
2, we use a large value for T2 because light is not evenly
distributed in indoor spaces (it is stronger when a person is
directly underneath a light bulb). This means that the same
person will have slightly lighter or darker estimations of the
true color at different locations. Based on these five thresholds,
we evaluate Lux-Track in three main ways.

Same person, same signature: A person should always
be assigned the same signature, else multiple users could be
created out of a single person. To quantify this requirement,
we perform experiments at two different times of the day,
16:30 and 21:30, with two people with similar skin and hair
colors. Both wear jeans and the main difference is that one
wears a blue-green jacket and the other a blue jacket. Both



persons walk through the 2-sensor system 24 times, effectively
generating 48 signatures. Table III summarizes the results.

TABLE III: Identification Accuracy
Blue-green Jacket Blue jacket

16:30 83.3% 94.4%
21:30 100% 96.3%

These results show two main trends. First, the identification
accuracy is higher during the night. This occurs because at
the end of the aisle there are windows that allow sunlight to
interfere with the system during the afternoon. Second, in the
afternoon, the identification accuracy of the person wearing
the blue jacket is higher than the person wearing the blue-
green jacket, but the outcome is the opposite at night. This
occurs because the jackets’ materials are different. The blue-
green jacket reflects more light than the blue jacket, which
causes sunlight to have a greater impact (more noise). Without
sunlight (at night), the detection accuracy of the blue-green
jacket is higher because it still reflects more light, but in this
case it is only indoor light (higher signal to noise ratio).

Different persons, different signatures: This experiment
assess how good the system is in differentiating people based
on their clothing, from somewhat similar to very similar. The
evaluation is performed late at night to avoid interference
from sunlight. Three people wear different clothes: blue-green
jacket, blue jacket, and white T-shirt (all wear jeans). They
walk through the 2-sensor system 17 times, 12 times, and 6
times respectively (on both directions each time), effectively
generating 70 signatures. The system is able to distinguish
these three people with 100% accuracy. Then, we consider two
people differing only slightly in the color of their jacket: one
person wears a blue jacket and the other a dark blue sweater.
They walk through the system 35 times in turns (both ways),
resulting in an accuracy of 91.4%.

Different movement speeds: The speed of a person de-
termines how many samples can be obtained, and therefore,
the identification accuracy. By applying DTW, Lux-Track can
match signatures with different lengths (speeds). For example,
our system is able to match the signatures shown in Figure 12,
where a person passes the first sensor without stopping, but
stops in the middle of the coverage area of the second sensor.

(a) Passes by the sensor directly (b) Stays in the middle for a while

Fig. 12: The same person passes a sensor with different speeds

However, due to the limited sampling speed of the color
sensor (512 ms for the integration time), there is an upper
bound for the walking speed. By conducting a series of
experiments, we find out that the fastest speed that our current
system can handle is 0.67 m/s. Beyond this value, the optical

signatures contain only four points, too few to be unique. This
maximum speed can be increased by setting up the system in a
more illuminated location. Usually non-working environments,
such as the corridor, are illuminated with 200 Lux and working
office spaces with 500 Lux. We tested the system in an office
and observed that Lux-Track can detect a person well because
the integration time can be reduced to 128 ms. With this
integration time, the system can assign a unique signature to
people with movement speeds up to 1.4 m/s.

Summary. Lux-Track is able to map optical signatures even
when people have very similar clothing. A limitation of the
system is the low sampling rate, which can create few samples
if a person walks fast. Also, similarly to Lux-Tune, the system
is affected by sunlight. Besides those two points, Lux-Tune has
another important limitation: if a person takes off her jacket,
or the color of the floor changes in the area of interest, the
system could identify a single person as different ones. Further
research is required to tackle these shortcomings.

VI. RELATED WORK

Color Detection. The state of the art of color detection can
be divided based on the type of sensor used (photodiode, color
sensor, or cameras). Table IV summarizes the key differences
between the most relevant SoA and our work.

TABLE IV: SoA: Color detection
Lighting Detector Range

[10] constant photodiode within 10cm
[11] constant color sensor within 29cm
[12] constant color sensor 2.54cm
[13] constant color sensor 2cm
[14] variable camera 2m

Lux-Tune variable color sensor 1.5m

Photodiodes alone are, in principle, not designed to detect
colors (only light intensity), but Moghavvemi et al. uses a
controllable RGB light source to detect colors with photo-
diodes [10]. The system is only able to differentiate eight
colors at a range of 5 to 10 cm. Cameras sit at the opposite
side of the spectrum, they have ranges of meters and do
not require constant lighting conditions. Al-Bahadly et al.,
for instance, present a color-based system to detect cars
[14]. Cameras, however, are resource-hungry and pose privacy
concerns. Color sensors hit a middle-of-the-road spot, they
are almost as simple as photodiodes, but they provide color
information. Several studies have used color sensors for a wide
range of applications, such, detecting the color of walls [11],
to monitoring chemical processes based [12], and analyzing
healthy plant growth by measuring the plant’s leaf color [13].
Our work, builds upon the well known calibration frameworks
used for color sensors in the SoA (white balancing and
calibration matrices), but we perform a more careful analysis
considering longer ranges (more than 1.5 m vs less than 30 cm)
and variable lighting conditions – most SoA studies assume
constant lighting conditions throughout the testing phase.

Tunable White LED. Tunable white lighting technology
allows users to adjust the color temperature of luminaries [15],
which can be used to improve the productivity of people in
offices or the well-being of patients in healthcare facilities



TABLE V: SoA: Light-Based Indoor Positioning
Passive Passive Identification Positioning
Light Object Accuracy Accuracy

[18] No No High decimeter
[19] No No None meter
[20] No Yes None zone (several mtrs)
[21] Yes No High zone
[22] Yes Yes None zone
[23] Yes Yes None zone

Lux-Track Yes Yes Medium zone

[16]. We are not aware of any study that provides automatic
tunable white lighting. In fact, our work is motivated by an
internal project at a lighting company which requires a camera
and the manual selection of the area in which the object is
located in order to adjust the color temperature [17].

Light-based Indoor Tracking. Most light-based position-
ing systems require either modifications of the light source
(active source) or people carrying a receiver (active object).
Lux-Track is privacy-preserving and fully passive, we exploit
default lights and people do not need to carry any receiver.
Table V provides an overview of various methods in the SoA.

Active Source, Active Object. In these systems, light bulbs
act as anchors transmitting beacons, and cameras [18] or
photodiodes [19] decode these beacons to obtain decimeter-
level and meter-level positioning, respectively. While accurate,
these systems require light bulbs to be modified and the users
to carry a receiver with line-of-sight to the light bulbs.

Active Source, Passive Object. Other systems modify light
bulbs to detect occupancy without requiring users to carry any
electronic device [23], [20], [24]. Those systems place simple
photosensors in the environment to measure perturbations in
light reflections caused by people. Motivated by these studies,
Lux-Track also exploits reflection but for a more complex task
(identification not just presence), and without requiring any
modifications to the light sources.

Passive Source, Active Object. More recent efforts provide
indoor positioning systems without the need to modify lights
sources. The key idea is to exploit the signal strength or inher-
ent features radiated by standard LEDs [25]. These systems
have great potential because the overhead is low (no need to
modify the lighting infrastructure), but the users need to carry
a photosensor with line of sight to the luminaries.

Passive Source, Passive Object. To avoid the need of
modifying lights or requiring users to carry receivers, some
studies are deploying photosensors, coupled with battery-less
radio transmitters, to detect light fluctuations in order to
provide occupancy and location information [22]. Lux-Track
also focuses on low overhead scenarios (unmodified light and
users without receivers) but provides a more advanced and
challenging feature: identification.

VII. CONCLUSIONS

We propose using color sensors for two novel applications.
First, Lux-Tune, a system that can accurately detect an object’s
true color and adjust the illumination temperature to make
it more appealing. Lux-Tune works at significantly longer

ranges compared to the SoA and at variable lighting condi-
tions. Second, Lux-Track, a system that relies on single-pixel
information to provide anonymous tracking. Lux-Track can
identify persons even when their clothing are rather similar.

This is a preliminary study on a rather small number of
people and with limited scenarios. The robustness of the
system needs to be tested on a larger scale, taking into account
the real environments the system is aimed to be used at
— retail stores. For those scenarios, more complex signal
processing algorithms and methods may be required. We hope
that this work will motivate the research community to look
deeper into color sensors for various IoT applications. These
sensors offer a promising means to capture visual information
related to human perception, and are a cheaper and more
privacy-protective alternative to cameras.
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