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Vehicle In-Cabin Contactless WiF1 Human Sensing

Mohammed Ibrahim, Kenneth N. Brown
{m.ibrahim, k.brown} @cs.ucc.ie
School of Computer Science and Information Technology
University College Cork, Ireland

Abstract—We demonstrate in-cabin WiFi-based sensing in a
real vehicle, tracking a passengers breathing rate in real-time.

Index Terms—In-Vehicle Monitoring, In-Cabin, Wireless Sens-
ing, Channel State Information, Contactless, Respiration Sensing.

I. INTRODUCTION

In-cabin sensing has been proposed to support safety in
vehicles and in operator-occupied heavy machinery. The aim is
to detect and monitor presence, activity, gestures and attention.
The most powerful sensing is video-based, but this generates
privacy concerns. RF sensing has been proposed as an alter-
native. It is contactless, it can operate out of line-of-sight, and
is less intrusive. Several companies now offer commercial in-
cabin RF sensing solutions for smart vehicles [1] [2]. WiFi
devices are cheaper and easier to install than other wireless
sensing technologies. Additionally, WiFi is expected to replace
Bluetooth for in-car interaction, and a wide range of WiFi-
based applications is now available in smart cars. WiFi-based
in-vehicle sensing was first proposed in 2014 for gesture
recognition [3], and has since been applied to many other
applications. CSI-based sensing techniques have become in-
creasingly popular in recent years, allowing more applications
that were not possible with traditional RSSI-based ones. In
WiFi CSI experiments, modified laptops, routers, desktops,
and USRPs are typically utilized. The use of the same
hardware and recording techniques in-vehicle had restricted
research implementation and design, and potentially impaired
validity and performance during recording. The majority of
previous studies of in-vehicle sensing have relied heavily on
external infrastructure outside the vehicle or were conducted
in simulation environments or closed labs/garages. Previous
work focused on artificial scenarios, and was limited to single
occurrences of the activity. For applications such as driver
distraction and fatigue detection, this method is not reliable, as
time and frequency are critical to the decision-making process.

We propose a new set up, providing continuous data col-
lection and activity recognition. We designed a data collection
method that is easy to deploy, can be controlled remotely,
requires no interaction from the passengers in vehicle once
installed, and is based on COTS devices. The demo will show
a passenger’s breathing rate being detected in real-time in a
real stationary vehicle while the engine is running.

Fig. 1: (a) Demo equipment; (b) Experimental setup.

II. SYSTEM OVERVIEW

Our demonstration uses four Raspberry Pi with Raspberry
Pi OS Lite installed, a Power-over-Ethernet (PoE) switch,
PoE splitters, and a DC-AC power inverter. Fig. 1 shows an
overview of the system. We assume an Internet connection
exists inside the vehicle. One transmitting and three receiving
nodes were used for communication on channel 36 at SGHz
with 80MHz bandwidth. The communication was configured
in injection mode, in which the transmitter controls the number
of packets sent. Nexmon CSI Extractor Tool [4] is installed
on the receiver nodes to collect CSI from the transmission
link. PoE was chosen to provide data and power to each node
using a single Ethernet cable. Raspberry Pi nodes through
PoE splitters are connected to the PoE switch with CAT5e
cables. Power is supplied by an AC-DC inverter connected
to the cigarette lighter of the vehicle. In our experiment,
a smartphone connected to the switch acts as a source for
internet access via Ethernet Tethering.

The placement of transmitters and receivers has been left
as an open research question on all previous studies. We use
Raspberry Pi cases that are designed with a tripod hole, so
it can be mounted just about anywhere using a suction cup
on the windshield, rear window, or side windows. Using the
embedded antenna on the Raspberry Pi chip for transmission



and receiving, we were able to avoid using RF cables, which
had been found to significantly affect in-vehicle channel
measurements [5].

As soon as the vehicle starts, each Raspberry Pi automati-
cally boots up and sends out an NTP query to set the correct
time before start listen. Upon receiving a packet, receivers
perform the following operations: 1) decrypt the packet; 2)
extract the CSI amplitude measurements; 3) timestamp the
CSI data; 4) log the time-stamped amplitude values.

IIT. EXPERIMENT AND EVALUATION

In smart vehicles, many different respiration sensing tech-
nologies are proposed, each with its own advantages and lim-
itations [6]. Breath-monitoring via WiFi is a promising option
for daily home use and has been implemented in vehicles.
Previous work on In-Vehicle WiFi-based respiration tracking
[7] have explored several applications including Driver Fatigue
Detection [8], Driver Authentication, Passengers Counting,
and Child Detection [9].
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Fig. 2: Overview of the WiFi Signal processing flow

Human breath tracking. Fig. 2. shows the WiFi CSI signal
processing flow for Human breath tracking as implemented in
our system. From each pair of transmitter-receiver, the CSI is
extracted from 256 sub-carriers. Before the data preparation
and filtration, the sub-carrier variances are analyzed to identify
those sensitive to the breathing activity. A Savitzky-Golay
filter is used to smooth CSI data at each sub-carrier by
replacing each point with the least-squares polynomial fit of
its neighbours, set to a kernel window of one second and
a polynomial of 3™ order. In order to filter out the signal
component that is caused by human breathing, a 5% order
Butterworth band-pass filter was then applied to filter the
data between 0.2 and 0.35 Hz corresponding to a normal
adult breathing rate. Using Z-score normalization, we suppress
changes in the gain offset of each sub-carrier and make
them comparable. For dimensionality reduction, we perform
Principal Component Analysis (PCA) on the band-pass filtered
CSI stream. To accurately identify breathing rate, a peak
detection algorithm finds all local maxima and filters fake
peaks with interval thresholds based on the maximum possible
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Fig. 3: (a) Raw CSI from Rx; (256 sub-carriers); (b) Selected
CSI; (c¢) Savitzky-Golay filterd CSI; (d) Band-pass filtered
CSI; (e) Normalized CSI; (f) PCA-filtered CSI (Rx;, Rx;, Rx3)
and Peaks Detected.

breathing rate. In Fig. 3, an example of CSI processing is
shown, following the same process flow as in Fig. 2.
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