
Log Management in NFV Service Orchestration
Engin Zeydan, Jorge Baranda, Josep Mangues-Bafalluy, Ricardo Martínez, Luca Vettori

Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Castelldefels, Spain, 08860

Emails: {engin.zeydan, jbaranda, josep.mangues, rmartinez, lvettori}@cttc.cat

Abstract—Measuring several relevant metrics related to Net-
work Function Virtualization (NFV) service lifecycle manage-
ment in real time brings an enhanced monitoring of the
operation of the network service orchestrator (SO) and the NFV
infrastructure. In this demonstration, we integrate a complete
data engineering pipeline in an operational management and
orchestration stack (that of EU 5Growth project) to analyze
lifecycle management metrics in real-time, in this case the
network service instantiation time related metrics. In our
demonstration, a data connection module instance continuously
monitors the NFV SO log files and sends the log changes to
the data ingestion layer, where log files are temporarily stored
to be fetched by Apache Spark jobs. After utilizing Spark jobs
to cleanse the log files and to obtain the service instantiation
times, the metrics are sent back to the data ingestion layer
to be transferred to the Elasticsearch (ELK) stack for data
indexing and visualization purposes. Furthermore, the statistical
information of network service instantiation (in total and its
components) of studied metrics inside the network can also be
profiled via a separate data analysis layer connected to the ELK
stack.

Index Terms—log parsing, service orchestrator, data pipeline,
monitoring.

I. INTRODUCTION

End-to-end network lifecycle management (LCM) is of
vital importance for service providers. Robust network LCM
requires monitoring several network service related metrics
simultaneously. For this reason, a scalable, reliable and
fault-tolerant data engineering infrastructure needs to be
built to monitor several service instantiation-related metrics
during the end-to-end service orchestration process.

During the network service instantiation process, there
are many internal steps occurring between the building
blocks of the database module, service orchestration engine,
resource orchestration engine and core management and
orchestration (MANO). These steps are just some examples
of the components that can be profiled. The paper in [1]
details the Service Orchestrator (SO) functionality, imple-
mentation and operation. The EU 5Growth (5Gr) project
[2] features three main architectural building blocks in its
MANO stack, namely the Vertical Slicer (5Gr-VS), the SO
(5Gr-SO) and the Resource Layer (5Gr-RL) for service and
resource level management. The 5Gr-SO block oversees the
end-to-end orchestration and the lifecycle management of
NFV network services.

This work was partially funded by EU Commission H2020 5Growth
project (Grant No. 856709), Spanish MINECO grant TEC2017-88373-R (5G-
REFINE), Generalitat de Catalunya grant 2017 SGR 1195 and Frontier R&D
Laboratories Support Program with project no: 5169902.

In this demo, we provide a tool for log parsing in ETSI
NFVOs that allows monitoring real-time or in batch lifecycle
management process components. More specifically, the
demo shows this capability for service instantiation using
the 5Gr-SO logs of various service instantiation-related
metrics such as total instantiation time, the time to recollect
the information from the RL, time spent in the Core MANO
wrapper module during the instantiation process, etc [1].
For the demo, we monitor 21 of such network service
instantiation metrics.

II. SYSTEM ARCHITECTURE

The proposed architecture is given in Fig. 1 which is a
data pipeline that manages the monitoring of instantiation
time of services initiated by SO in both batch and real-time
mode by monitoring log changes inside the SO. We use
open source tools and platforms such as Apache Flume [3]
for data connection, Apache Kafka [4] (for data ingestion),
Apache Spark [5] (for cleansing real-time data) and Elastic-
search (ELK) stack [6] (for data visualization) to build the
data engineering pipeline. The architecture is composed of
five main modules: (a) Data Connection, (b) Data Ingestion
(c) Data Pre-processing (d) Data Visualization and (e) Data
Analysis.

In the Data Connection module, the Apache Flume
application periodically monitors the changes in logs of
5Gr-SO and sends data to the data ingestion layer. In
the Data Ingestion module, the Kafka application ingests
log messages transmitted from Apache Flume and the log
messages fetched by Kafka are temporarily stored in the
Kafka broker under a given topic name. In Data Pre-
processing module, the main task is to parse and cleanse
the incoming log messages from the Kafka topic and to
extract the relevant metric values by using Spark libraries
[5] in real-time. Finally, in the Data Visualization module,
the values of the calculated metrics are present in the
dashboard screen of Kibana. ElasticSearch is using Logstash
subscribed to the Kafka topic to gather the metrics. For
Data Analysis, we use Python libraries, sklearn, pandas and
seaborn to statistically analyze the data that is indexed by
Elasticsearch via a connection to the search engine using
the Python Elasticsearch Client1.

1https://elasticsearch-py.readthedocs.io/en/v7.12.1/, Accessed: April-
2021



Fig. 1: General architecture for integration of log-parser in an end-to-end mobile network management architecture of
5Growth including demonstration setup and workflow structure.

Fig. 2: Kibana dashboard for 5Gr-SO log monitoring.

III. DEMONSTRATION WORKFLOW

We demonstrate the working principle of the system in
steps (1)–(8), as given in Fig. 1. The general workflow is as
follows: First, the 5Gr-SO starts logging the whole service
instantiation process in step-(1). In step-(2), the Apache
Flume application performs periodic log message readings
of the 5Gr-SO and submits the log changes into the Kafka
broker illustrated in step-(3). Later, every predefined dura-
tion of time, e.g., 1 second, a Spark job in the data analysis
and processing manager of the data pipeline, collects data
from the Kafka broker and cleanses the log data in step-
(4). After obtaining the enriched and cleansed results of
the Spark job, they are sent back to the Kafka broker so
that the results can be picked up by the data visualization
manager in step-(4). In step-(5), (6) and (7) we have the
ELK stack, where data in Kafka is collected by the Logstash

module in step-(5) and is pushed to Elasticsearch in step-
(6) so that the output of log time differences of the system
can be visualized by Kibana in step-(7). Finally, the log data
present in ELK stack is statistically analyzed in step-(8). The
dashboard in Fig. 2 displays the number of processed Kafka
topics in the data engineering pipeline by Apache Spark and
the results of the service instantiation time values of each
metrics.

REFERENCES

[1] J. Mangues et al., “5g-transformer service orchestrator:
design, implementation, and evaluation,” in 2019 Eu-
ropean Conference on Networks and Communications
(EuCNC), pp. 31–36, IEEE, 2019.

[2] X. Li et al., “5growth: An end-to-end service platform
for automated deployment and management of verti-
cal services over 5g networks,” IEEE Communications
Magazine, vol. 59, no. 3, pp. 84–90, 2021.

[3] Apache Flume, “A distributed, reliable, and available ser-
vice for efficiently collecting, aggregating, and moving
large amounts of log data.” https://flume.apache.org/,
2021. [Online; accessed May-2021].

[4] Apache Kafka, “An open-source distributed event
streaming platform.” https://kafka.apache.org/, 2020.
[Online; accessed Nov.-2020].

[5] Apache Spark, “Unified analytics engine for big data.”
https://spark.apache.org/, 2020. [Online; accessed Nov.-
2020].

[6] Elasticsearch, “Open source search.” https://www.
elastic.co/, 2020. [Online; accessed Nov.-2020].


