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Abstract—Spatial prediction of the radio propagation environ-
ment (henceforth ‘radio environment’ for brevity) of a transmit-
ter can assist and improve various aspects of wireless networks.
The majority of research in this domain can be categorized as ‘re-
active’ spatial prediction, where the predictions are made based
on a small set of measurements from an active transmitter whose
radio environment is to be predicted. Emerging spectrum-sharing
paradigms would benefit from ‘proactive’ spatial prediction of the
radio environment, where the spatial predictions must be done
for a transmitter for which no measurement has been collected.

This paper proposes a novel, supervised deep learning-based
framework, ProSpire, that enables spectrum sharing by leverag-
ing the idea of proactive spatial prediction. We carefully address
several challenges in ProSpire, such as designing a framework
that conveniently collects training data for learning, performing
the predictions in a fast manner, enabling operations without
an area map, and ensuring that the predictions do not lead
to undesired interference. ProSpire relies on the crowdsourcing
of transmitters and receivers during their normal operations
to address some of the aforementioned challenges. The core
component of ProSpire is a deep learning-based image-to-image
translation method, which we call RSSu-net. We generate several
diverse datasets using ray tracing software and numerically
evaluate ProSpire. Our evaluations show that RSSu-net performs
reasonably well in terms of signal strength prediction, ≈ 5 dB
mean absolute error, which is comparable to the average error of
other relevant methods. Importantly, due to the merits of RSSu-
net, ProSpire creates proactive boundaries around transmitters
such that they can be activated with ≈ 97% probability of not
causing interference. In this regard, the performance of RSSu-net
is 19% better than that of other comparable methods.

Index Terms—Spatial Prediction, Deep Learning

I. INTRODUCTION

The problem of spatial prediction of the radio environment
is to predict the received signal strength (RSS), from a
transmitter, at various locations where no receivers are present.
There are many applications of spatial prediction of the radio
environment, e.g., path planning [1], spectrum sharing [2], etc.
Most research in this domain can be categorized as ‘reactive’
spatial prediction, where the predictions are made using a
small set of RSS measurements from an active transmitter
whose radio environment is to be predicted. However, emerg-
ing spectrum-sharing paradigms, e.g., national radio dynamic
zones (NRDZ), can benefit from ‘proactive’ spatial prediction
of the radio environment, where the predictions must be made
for transmitters for which no measurement is available.

Limitations of reactive spatial prediction: In shared-
spectrum wireless networks, reactive spatial prediction has
several limitations. First, the collected RSS measurements

can have errors. Consider an example where we want to
predict the radio environment of transmitter T1. For reactive
spatial prediction, first, a set of receivers must collect a small
set of RSS measurements from T1. However, the receivers’
measurements can be erroneous as they may be interfered
by another coexisting transmitter, say T2, T2 ̸= T1, as the
spectrum is shared. Second, the need for a preliminary set
of RSS measurements can cause interference to the receivers
of a coexisting shared-spectrum network. Again using the
above example, if we want to predict the radio environment
of T1, then T1 will have to transmit, and a small set of RSS
measurements must be collected. However, any transmission
from T1 may cause interference to the receivers of T2. Third,
in certain scenarios, it may be required to use a dedicated set
of receivers just to collect the small set of RSS measurements
that are mandatory for reactive spatial prediction [3]. Fourth,
collecting a small set of RSS measurements from an active
transmitter implies utilizing resources, e.g., power, bandwidth,
and time, just to make the reactive spatial predictions.

Goal of our work: In this work, we investigate the potential
of proactive spatial prediction in shared-spectrum wireless
networks. Proactive spatial prediction does not suffer from the
limitations of reactive spatial prediction as it does not require
any RSS measurements from the transmitter whose radio en-
vironment is to be predicted. We consider a general spectrum-
sharing setup where the spectrum is primarily dedicated to
one wireless network (primary), and transmitters of another
network (secondary) opportunistically use the same spectrum
without causing harmful interference to the receivers of the
primary network (henceforth primary receivers). An example
of such a spectrum-sharing setup is NRDZ [4]. The idea of
NRDZ is to create dynamic radio zones around experimental
wireless transmitters such that they can be operated without
interfering with the existing communication system receivers
in the vicinity. Our goal is to devise an efficient framework for
proactive spatial prediction for transmitters of the secondary
network (henceforth secondary transmitters). These predictions
will guide the secondary transmitters to actively transmit such
that the interference to the primary receivers is tolerable.
Here ‘efficient’ implies not requiring additional infrastructure
deployment just to perform the proactive spatial predictions.

Challenges in proactive spatial prediction: While proac-
tive spatial prediction is advantageous over its reactive coun-
terpart, the goal of proactive spatial prediction for spectrum
sharing brings its own challenges.
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• First, if no measurements are available for a transmitter,
what should be the basis for predicting its RSS? A simple
approach is to use the radio wave propagation path loss
model (PLM) [5] that relates RSS to the distance between
a transmitter and the target location where RSS is to be
predicted. However, such an approach does not take into
account the blockages in the environment.

• Second, the proactive spatial predictions must be made
quickly; otherwise the temporal transmission opportuni-
ties in a shared spectrum network can be limited. For
example, proactive spatial prediction can be made via ray
tracing software, but that is very time-consuming.

• Third, proactive spatial prediction must be feasible even
when detailed maps are unavailable. This challenge stems
from the fact that spectrum sharing may be needed in
any geographical area, and assuming the availability of
detailed maps for all such areas is unrealistic. This is
another reason for ray tracing not being applicable.

Overview of ProSpire: In this paper, we present a general
learning-based framework, ProSpire, that enables spectrum
sharing among the primary and secondary networks by lever-
aging the idea of proactive spatial prediction of the radio
environment of transmitters. ProSpire carefully addresses all
the challenges related to proactive spatial prediction.

To address the first challenge, ProSpire relies on supervised
learning, specifically deep learning (DL), as the basis for
its predictions. We propose a crowdsourcing approach for
gathering the training data that will be used for learning in
ProSpire. In our crowdsourcing model, the transmitters and
receivers of the primary network report their measurements
and activities during normal operations. The crowdsourced
data is gathered by a centralized spectrum administrator. Using
the collected data, ProSpire learns a generalized model that can
accurately capture the radio environment. Our intuition is that
if the training data is diverse and the learning is generalized,
we can make RSS predictions for transmitter-receiver location
pairs for which we have no measurement in the training data.

As ProSpire uses DL-based predictions, it is inherently
fast. Thus, ProSpire can address the second challenge of
proactive spatial prediction. For deep neural network (NN)
based predictions, we develop an approach called RSSu-net
which uses an image-to-image (I2I) translation method. RSSu-
net is built upon the u-net NN architecture. For a given
transmitter location, if the RSS values are to be predicted at
multiple locations, RSSu-net has the advantage of being fast
as it can make all the predictions by a single pass of a NN.

One way to address the third challenge is not to use maps at
all. However, recent works have shown the benefits of using
maps in DL-based spatial prediction [1]. Hence, to exploit
the benefits of maps while addressing the third challenge, we
propose to use radio tomographic imaging (RTI) based maps
instead of detailed maps in our DL approach. Our RTI-based
DL is robust to obstacles not present on maps, e.g., foliage.

After proactive RSS prediction for the secondary trans-
mitters, the next task is to use the predictions for activat-
ing the secondary transmitters such that the interference to

the primary receivers is tolerable. For this, we develop a
boundary proposal algorithm that operates on the proactive
spatial predictions for a secondary transmitter. This algorithm
proposes a zone around the transmitter and a power level,
zooz , such that the RSS out of the zone will be below zooz
dBm if the transmitter becomes active at full power. Based on
this zone, we adapt the secondary transmitter’s power before
activating it such that the chances of interference to primary
receivers are reduced. Note that the performance of boundary
proposal and power adaptation depends on the accuracy of
the proactive predictions. If the predicted RSS values are
much higher than actual RSS values (i.e., overestimation),
the utilization of the shared spectrum can be poor. On the
other hand, if the predicted RSS values are much lower than
actual RSS values (i.e., underestimation), transmissions based
on the predictions can cause high interference to the primary
receivers. With this in mind, we use a loss function in RSSu-
net that penalizes underestimations more than overestimations
while maintaining a low average estimation error. I.e., we find
a balance between the two types of errors while prioritizing
interference protection to primary receivers over transmission
opportunities of the secondary transmitters.

Contributions: In summary, our main contributions are:
• We propose a novel framework called ProSpire that en-

ables spectrum sharing by leveraging the idea of proactive
spatial prediction. ProSpire relies on crowdsourcing mea-
surements from the primary transmitters and receivers.

• We develop a DL approach, RSSu-net, that uses the
crowdsourced measurements and learns to perform proac-
tive spatial prediction for the secondary transmitters.

• We incorporate RTI in ProSpire to deal with the unavail-
ability of maps and also assist our DL model.

• We develop a boundary proposal algorithm that activates
secondary transmitters in a non-interfering manner.

II. RELATED WORK

Reactive spatial prediction: Reactive spatial prediction
relies on signal processing methods like Kriging interpola-
tion [3], matrix completion [6], tensor completion [7], etc.
Recently, DL has also been applied to reactive spatial pre-
diction using u-net [8], autoencoders [9], and ResNets [10].
These works have shown that DL-based reactive spatial predic-
tion methods perform better than signal-processing methods.
Broadly, all these methods are interpolation methods that rely
on sparse measurements to construct a dense representation
of the radio environment. A detailed survey of reactive spatial
prediction methods can be found in [11].

Proactive spatial prediction: If the predictions are in the
form of RSS values, the simplest approach for proactive spatial
prediction is to use the PLM [5]. The idea of proactive spatial
prediction can be used for channel prediction. For example,
a DL model can predict the channel on device-to-device
links based on measurements from the cellular channel [12].
Another way of performing proactive spatial prediction is to
collect training data from different cities, learn a DL model,
and perform predictions on an entirely new area [8]. However,



this approach cannot be used in ProSpire as it relies heavily
on city maps. Finally, proactive spatial prediction can be per-
formed using ray tracing software, but that is time-consuming
and will not work if the map of the area is unavailable.

III. PROSPIRE FRAMEWORK

We consider an (Ll) m × (Wl) m area where L, W , and l
are integers. We define the area length and width as multiples
of l for subsequent notational convenience. This area has TPN

static primary transmitters, each serving several mobile users.
We denote T as the set of primary transmitters’ locations.
The primary transmitters can be cellular base stations or WiFi
access points, but we do not impose any such restrictions.
The primary transmitters operate on the same frequency band
of B MHz and use an omnidirectional antenna with a fixed
transmit power of PPN dBm. The primary transmitters do not
interfere with each other and coordinate their transmissions
via TDMA or CSMA. We assume all the primary transmitters
and receivers are located outdoors.

Data Collection: We consider a cloud-based spectrum ad-
ministrator (SA), as shown in Fig. 1(a), which crowdsources
measurements from the primary transmitters and receivers.
Specifically, the primary transmitters report their transmit
time and location, whereas the primary receivers report their
measurement time, location, associated transmitter, and RSS
(averaged over small-scale fading) measurements as shown in
Fig. 1(a). Using the collected data, the SA creates a dataset,
D =

{
(u, v, {(x, y, z); (x, y) ∈ R(u,v)}

)
; (u, v) ∈ T } where

(u, v) is a primary transmitter’s location, (x, y) is a primary
receiver’s location, and z (dBm) is its measured RSS from the
transmitter at (u, v). R(u,v) is a set of receivers that measured
RSS from the transmitter at (u, v). All the measurements of a
particular entry in D (i.e., for a particular primary transmitter
since |D| = TPN ) need not be collected simultaneously.
This way, the SA can collect measurements for every primary
transmitter at many locations. Finally, using D, the SA trains a
DL model for proactive spatial predictions in the online phase.

Online Phase: In this phase, the SA provides opportunities
for the secondary transmitters to use the same spectrum on
which the primary transmitters operate. First, a secondary
transmitter located at (u′, v′) requests permission from the SA
to use the spectrum; see 1 in Fig. 1(b). Based on (u′, v′), the
SA performs proactive spatial prediction of the RSS values
for the secondary transmitter at several locations around it;
see 2 in Fig. 1(b). Next, among the locations where RSS
has been predicted, the SA selects a set of locations using
the boundary proposal algorithm, which defines the proposed
boundary for the secondary transmitter; see 3 in Fig. 1(b).
The proposed boundary is a zone beyond which the RSS due
to the secondary transmitter would be below zooz dBm, if the
transmitter becomes active with power PPN dBm. We call zooz
out-of-zone power leakage. Note that this boundary proposal
must be made before activating the secondary transmitter.

The proactive spatial prediction method assumes that the
secondary transmitter will use the same power and antenna
characteristics as the primary transmitters. This assumption
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Fig. 1: Figure shows the operations of ProSpire.

is needed for the functioning of the DL model, which ex-
pects the training and test data to be generated by the same
distribution. However, there can be a set of active primary
transmitters with an interference protection requirement. E.g.,
a primary transmitter can specify that the interference at any
of its receivers should not exceed α dB above the noise
floor (Nf dBm). Using the locations of the active primary
transmitters and their specified interference protection, the SA
can estimate an interference protection boundary around each
of them. One such interference protection boundary is shown
in Fig. 1(b) using blue dots. Note that, unlike the boundary
proposal for the secondary transmitter, the interference pro-
tection boundary estimation for active primary transmitters is
not proactive. Thus, the interference protection boundary for
the primary transmitters can be estimated using a small set
of measurements from the primary receivers and any of the
reactive spatial prediction methods discussed in Section II.
Based on the interference protection boundary of the active
primary transmitters, the SA adjusts the transmit power of
the secondary transmitter to PSN (≤ PPN ) such that there is
no interference to the primary receivers; see 4 in Fig. 1(b).
Finally, the SA responds to the secondary transmitter with the
permission to transmit at the power level of PSN dBm; see 5

in Fig. 1(b). Fig. 1(b) shows a red dotted boundary around the
secondary transmitter that represents the proactively proposed
boundary for that transmitter at granted power of PSN dBm.

IV. BUILDING BLOCKS OF PROSPIRE

In this section, we describe the building blocks of ProSpire.

A. Proactive Spatial Prediction

Our goal is to have a method for proactive spatial prediction
of the radio environment for secondary transmitters without
any active transmission from them. Specifically, using D, we
have to learn a function f that maps a secondary transmitter’s
location to the RSS values (had the secondary transmitter been
active with PPN dBm transmit power) at a set of queried
locations in the transmitter’s vicinity. An important question
here is how to define the set of query locations. To answer



𝐗𝐗1 𝑖𝑖, 𝑗𝑗 = �1 if TX ∈ (𝑖𝑖, 𝑗𝑗)
0 o. w.

𝐗𝐗3 𝑖𝑖, 𝑗𝑗 𝐗𝐗4 𝑖𝑖, 𝑗𝑗 = 𝛄𝛄[𝑖𝑖, 𝑗𝑗]

𝐗𝐗2 𝑖𝑖, 𝑗𝑗 = �1 if 𝑖𝑖, 𝑗𝑗 ∈
0 o. w. 𝐘𝐘 𝑖𝑖, 𝑗𝑗 = �RSS[𝑖𝑖, 𝑗𝑗] if 𝑖𝑖, 𝑗𝑗 ∈

0 o. w.

𝐗𝐗 = 𝐗𝐗3|( 𝐗𝐗1| 𝐗𝐗2 | 𝐗𝐗4)

𝐟𝐟
(deep neural network)

Fig. 2: Figure shows the inputs and output of the deep NN in ProSpire.

that, we first divide the whole area in a rectangular grid such
that each grid voxel is of size l m × l m. In the online phase,
for a given secondary transmitter at (u′, v′), (u′, v′) /∈ T , we
define the set of query points, K; |K| = K, as grid points
that are nearest to (u′, v′) but are not under buildings or
foliage in that area. We use the term grid point to imply the
center of a grid voxel. We choose the query points this way
because we primarily care about predicting RSS at locations
near the secondary transmitter. Locations far away from the
transmitter would have low values of RSS, which implies
a lower possibility of causing interference to the primary
receivers at those far away locations.

Now, we describe our algorithm for proactive prediction of
RSS at K nearest grid points for a given secondary transmitter
location. For this, we use a DL-based I2I approach. We use
an I2I approach because of the following reason. I2I methods
are usually built using convolutional NN (CNN) that exploit
the spatial correlation of the pixels in the input image. In our
problem, we frame the input to our NN as a set of images with
a certain spatial structure (details in the following paragraph),
and CNN-based I2I models can efficiently learn from such
structure. Additionally, it has the advantage of being fast as
it can make all the K predictions by a single pass of the
trained NN, f . In the following, we explain our training method
followed by the inference procedure.

Training: Our training procedure for learning f , which is
represented by a NN, is based on the collected dataset, D.
Recall from Section III, that |D| = TPN . Each of the entries in
D becomes a training example in our training dataset. Hence,
each of our training examples corresponds to the transmission
of a primary transmitter and the associated RSS measurement
at different primary receiver locations. For a training example,
the input to f is a tensor or 3-D volume X = (X1|X2|X3|X4)
which consists of four images, as shown in Fig. 2. Xi,
i ∈ 1, 2, 3, 4 are matrices, and | represents channel wise
concatenation. For each image, the pixel size is the same as
the grid voxel size, defined earlier in this section. Accordingly,
each of the images in Fig. 2 is of dimension L × W . Thus,
the dimension of X is (L×W × 4). The first image, X1 has
all pixel values 0, except for the pixel containing the primary

transmitter for the corresponding entry in D, where the pixel
value is 1. X2 has pixel value 1 at locations where RSS
measurements for the primary transmitter in X1 have been
collected. However, we retain only K measurements that are
the nearest to the primary transmitter. This way, f learns to
predict the RSS values in the vicinity of a transmitter, which
is exactly what we want for the secondary transmitters during
the online phase, as explained before. The third image, X3,
is a map of the area, and the pixel values of X3 are between
0 and 1. Rather than using the actual map, we use a map
obtained using RTI. The motivation for doing so was explained
in Section I. The details of creating the RTI-based map are
described in Section IV-B. The fourth image, X4 captures the
shadow fading on the links between the primary transmitter
in X1 and the set of chosen measurement locations in X2.
X4 is obtained by leveraging RTI and the details of creating
X4 are also explained in Section IV-B. Finally, the output of
f is an image where the pixels corresponding to the non-zero
pixels in X2 represent the true RSS measured by the primary
receivers considered in X2. The remaining pixels are not used
for training; see (2). These pixels are shown as 0 in Fig. 2.

For learning f , we use the Adam optimizer [13] and mini-
mize the following loss function using the training examples.

L =
∑
B

∑
(i,j) εεεb[i, j]

λo

∑
(i,j) 1Yb[i,j]≤Ŷb[i,j]

+ λu

∑
(i,j) 1Yb[i,j]>Ŷb[i,j]

(1)
where B is a mini-batch of training examples, b denotes an
example belonging to B, 1s is indicator function. (Xb,Yb)
denotes the input-output pair of example b. (i, j) runs over all
pixels in Yb. εεεb[i, j], the prediction error for pixel (i, j) is:

εεεb[i, j] =


0, if Yb[i, j] = 0

λo ×
∣∣Yb[i, j]− Ŷb[i, j]

∣∣, if Yb[i, j] ≤ Ŷb[i, j]

λu ×
∣∣Yb[i, j]− Ŷb[i, j]

∣∣, if Yb[i, j] > Ŷb[i, j]
(2)

where Ŷb[i, j] is the predicted RSS for pixel (i, j). L rep-
resents the mean absolute error (MAE) loss function, but it
penalizes the prediction error only for the pixels where the
chosen K receivers are present for example b. Additionally,
we penalize underestimation errors more than overestimation
errors. This is controlled by setting λu > λo, where λu scales
the underestimation errors and λo scales the overestimation
errors. Recall from Section III that the secondary transmitters
will be activated based on the proactive spatial predictions
by f . Hence, as discussed in Section I, we penalize L in
the above manner so that the chances of activated secondary
transmitters causing interference to primary receivers are re-
duced. However, caring only for the underestimation errors
and ignoring the overestimation errors will reduce transmission
opportunities for the secondary transmitters. Hence, λo and λu

must be chosen carefully, and we do so via cross-validation.
For our I2I formulation, we use the u-net NN architec-

ture, shown in Fig. 3, which is well suited for pixel-wise
predictions. Alternative NN architectures are autoencoders,
variational autoencoders, or any other architecture with an
encoder-decoder structure. We experimented with some of
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Fig. 3: RSSu-net architecture. The numbers on the top of blocks are number
of channels. The numbers in a×b format show the images’ width and height.

these architectures but found that u-net performs better for
our problem. The reasoning behind that is u-net combines
(see ‘Copy’ in Fig. 3) the high-resolution features of the
encoder/contracting path (see left half of Fig. 3) and the
outputs of transposed convolutions that increase the resolution
of the output. Successive convolutions on the combined output
lead to better predictions. Since our u-net predicts RSS values,
we call it RSSu-net. We use Keras [14] for the development of
RSSu-net. Note that the input size of RSSu-net is determined
by the grid voxel length l, which in turn depends on the
density of the receivers that collect the RSS measurements.
It is also evident from Fig. 3 that the NN’s overall structure
is governed by the input size. Hence, the density of collected
measurements influences the learnability of f .

Inference: The input to f during inference is X′ =
(X

′

1|X
′

2|X
′

3|X
′

4). X
′ is similar to X with some differences.

The only non-zero pixel in X
′

1 corresponds to the secondary
transmitter’s location for the corresponding input. X

′

2 has pixel
value 1 at the K chosen grid points for the secondary transmit-
ter and 0 otherwise. For a given secondary transmitter location,
the K chosen grid points are nearest to the transmitter but not
under buildings/foliage. However, a subtle issue is knowing
which grid points are valid (i.e., not under buildings/foliage),
as a map is unavailable. In Section IV-B, we describe a method
for extracting an RTI-based map, which can be used to extract
valid grid points. X

′

3 is the same as X3 as it represents a map.
It is the same for all the training and online examples. X

′

4

captures the shadow fading on the links between the secondary
transmitter in X

′

1 and the set of grid points in X
′

2. The output
of f is an image where the pixels corresponding to the non-
zero pixels in X

′

2 represent the predicted RSS at the K chosen
grid points. The remaining pixels are ignored.

B. Assisting RSSu-net with RTI

To deal with the challenge of the unavailability of area maps
(buildings’ locations and heights), we propose to use an RTI-
based map. Specifically, using D we find the pixelated spatial
loss field (SLF) vector, p, of the area, scale its values between
0 and 1, reshape it to the shape of X1 and use it as X3. p is a
vector that captures the SLF for each pixel in our considered
area. We use the pixel size of SLF to be the same as our grid
voxels defined in Section IV-A. Thus, p is a vector of length
LW . The interpretation of p is that the SLF value for a pixel
captures its contribution to the shadow fading for any link that
intersects this pixel [15]. The value of p for a particular pixel

can be thought of as the amount of blockage that the pixel
creates in RF sense. Hence, p can be used as a proxy for a
map. The details of generating p and X3 are described below.

Using D, we first form a shadow fading vector, v.
v = zI − zM (3)

The elements of v correspond to the links used in the training
of f . Thus, the length of v is KTPN . zI is the ideal RSS
vector based on the PLM, and zM is the vector of measured
RSS values on the links. The elements of zI , zM are in dBm,
and that of v in dB. For computing zI for the ith link, we use

zI [i] = z0 − 10η log(di/d0) (4)
where η is radio wave propagation path loss exponent, di is
the distance of link i, d0 is the smallest link distance among all
links used in (3), z0 is the measured RSS on the smallest link.
η is estimated by fitting the collected data to (4) using linear
regression. Essentially, (3) models the difference between
PLM-based RSS and measured RSS as shadow fading.

In RTI, the elements of v are modeled as a linear combi-
nation of the elements of the SLF vector p:

v = Wp+ n (5)
where n is the measurement noise vector. W is a weight
matrix that specifies the contributions of the elements of p to
the links. A common way of constructing W is the following.

W[k, q] =
1√
dk

{
1, if ||kt − qc||+ ||kr − qc|| ≤ dk + λ

0, otherwise
where k and q are integers representing the row and column
indices of W, respectively. Different rows of W correspond
to different links, and different columns of W correspond to
different elements of p. Although p is a vector, recall that the
elements of p have a one-to-one association with the pixels
in the rectangular grid of the area. qc is the coordinate of the
center of the pixel that is associated with the qth element of p.
dk is the distance of link k. kt and kr are the coordinates of the
transmitter and receiver of link k, respectively. Essentially the
above equation says if we consider kt and kr as the foci of a
narrow ellipse, then the elements of p whose associated pixels
are inside the ellipse contribute towards v[k]. The parameter
λ controls the ellipse width. Following the approach in [16],
using a regularized least square approach, we estimate p as:

p̂ =
(
WTW + σ2

nC
−1

)−1
WTv (6)

where σ2
n is the noise variance and C is the covariance matrix

of the SLF. C[i, j], the covariance of the SLF between pixel
i and j is modeled as, C[i, j] = (σ2/δ)e−dij/δ where i and
j are integers corresponding to row and column indices of
C, respectively. σ2 is the variance of shadow fading between
pixel i and j, dij is the distance between the centers of pixel
i and j, δ is a space constant. Once we obtain p̂, we scale
it as p̂ = (p̂ − min(p̂))/(max(p̂) − min(p̂)), reshape it to
the shape of X1, and form a matrix. Then, we subtract all the
matrix elements from 1 so that pixels with a higher SLF get
a lower numerical value. The resulting matrix is used as X3.

In RSSu-net, we also assist our NN using the estimated
SLF vector, p̂, as described below. For an input to our NN,
say X, we compute the shadow fading for each of the links



in that example as v̂ = Wp̂. Then we scale v̂ as v̂ = (v̂ −
min(v))/(max(v) − min(v)). Note that the minimum and
maximum values of shadow fading are computed over v (refer
to (3)) so that the scaling of v̂ is consistent across training
and testing examples. Next, we subtract the values of scaled
v̂ from 1. Using the values after subtraction, we form a matrix
γγγ that has the same shape as X1 and non-zeros values for the
pixels that are non-zero in X2. v̂ represents the shadow fading
of the links between the transmitter in X1 and the receivers
in X2. Hence, the values of v̂ (after scaling and subtracting
from 1) are inserted in the pixels of γγγ that correspond to the
receivers’ locations whose shadow fading is captured by v̂.
Finally, we use γγγ as X4, as shown in Fig. 2. In Section V, we
show the benefits of appending X4 to the input of RSSu-net. In
ProSpire, we adapt the version of RTI proposed in [17]. There
are several variations of RTI. We use the vanilla version of RTI
to show that RTI-based maps can be leveraged (account for
unknown obstacles not on the map, deal with the unavailability
of the map, and assist DL model) in our problem. Integration
of advanced RTI in ProSpire will be investigated in the future.

C. Data Augmentation

Recall from Section III, the number of examples in our train-
ing dataset is the same as the number of primary transmitters
with unique locations in the crowdsourced data. However, the
number of primary transmitters, TPN , can be limited. In that
case, the size of our training dataset will be small, leading to
underfitting of our NN. We propose a simple but effective data
augmentation approach described below to avoid this problem.

As mentioned in Section IV-A, for each primary transmitter,
we use K unique RSS measurements (captured at K unique
receiver locations) near the transmitter. To increase the size
of our training dataset, first, for each primary transmitter, we
randomly sample the set of K RSS measurements to extract
M ;M > 1 smaller subsets of RSS measurements of size
K/S;S > 1; ⌊K/S⌋ > 1. The M smaller subsets can have
some common RSS measurements. Then, for each primary
transmitter, we construct M different training examples using
the M different subsets of RSS measurements. For these M
training examples, the matrix X1 (refer to Fig. 2) will be the
same as the primary transmitter location is the same for all of
them. However, the matrices X2 and X4 will differ for these
M training examples due to the subset sampling of the RSS
measurements. Accordingly, the output images for these M
training examples will also differ. Using the above procedure,
we can increase the size of our training dataset by M fold. The
parameters M and S (K/S is the size of each subset) must
be chosen carefully. If S is small, then the different subsets of
RSS measurements will overlap significantly, and we should
use a smaller value of M to avoid redundancy in the training
examples. However, the benefit of the data augmentation will
be minimal. In contrast, if S is large, such that K/S is
small, the different subsets will have a low number of RSS
measurements. In this case, we can have a large M , but each
of the training examples will be too sparse for the NN to learn

effectively. As shown in Section V, this data augmentation can
significantly improve performance in RSSu-net.

D. Boundary Proposal

After proactive RSS prediction for secondary transmitters,
we draw boundaries around them and predict the out-of-zone
power leakage. This must be done using predicted RSS values,
i.e., before activating the secondary transmitters. Our boundary
proposal method, an iterative search, is explained next.

For a secondary transmitter located at (u′, v′), after the RSS
prediction at the K queried locations, we search for a set
of grid points, N (|N | = N , N < K, N ∈ K), where
the predicted RSS values are below zth = Nf dBm. If the
number of such grid points is less than N , we begin the second
iteration in our search procedure where we look for N grid
points where the predicted RSS is below zth = Nf + g dBm,
where g > 0 is a fixed parameter chosen by the SA. g is a step
size in our iterative search procedure that governs the increases
in zth with every new iteration. We continue the search process
until we find N grid points. When the search procedure stops,
the selected N points become the proposed boundary for the
secondary transmitter at (u′, v′). If our search procedure stops
after m iterations for a particular secondary transmitter, then
the out-of-zone power leakage of the proposed boundary is
zooz = Nf + (m − 1) × g dBm. To ensure that the search
procedure does not loop infinitely, we stop when zth ≥ z0
(see (4) for the definition of z0). In such cases, the secondary
transmitters is not allowed to transmit.

The boundary proposal algorithm only provides the bound-
ary points. It does not pay attention to the points’ connectivity
and spread. Starting with the K nearest grid points around
a secondary transmitter as the query points addresses this
problem to some extent by limiting the search region. This
limitation of boundary proposal algorithm will be addressed in
future. In our evaluations, we choose N such that the boundary
points for secondary transmitters form polygons around them.

Transmit Power Adaptation: The final step in ProSpire is to
adjust the transmit power of a secondary transmitter (refer to
Fig. 1(b)). For a given set of interference protection boundaries
for the primary transmitters and the proposed boundary for a
secondary transmitter, the power adaptation is equivalent to
the scaling PPN to PSN such that the secondary transmitter’s
proposed boundary and the primary transmitters’ interference
protection boundaries do not overlap. This scaling is dependent
on estimating the interference protection boundaries for the
primary transmitters, which is not the focus of our work.
Hence, we do not explicitly evaluate the transmit power
adaptation. Instead, we focus on the attributes of proposed
boundaries for the secondary transmitters in our evaluations.

V. EVALUATIONS

Data Collection: We use the Wireless Insite [18] ray tracing
software for generating our dataset. We consider a 500 m ×
500 m area with 15 square buildings of height 30 m and length
of 20 m. Refer to X3 in Fig. 2, which is the map obtained from
RTI, to get an idea of how the buildings are placed. In that
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Fig. 4: Comparison of RSSu-net with other methods in terms of |̄ϵ| and pd. Note the difference in the range of the Y-axis for different figures.

image, the darker regions represent the buildings. We collect
the dataset with 123 transmitters that transmit tone signals
with a power of 30 dBm at a carrier frequency of 1 GHz and
effective bandwidth of B = 1 MHz. For each transmitter, the
receivers are placed over the whole area on a grid with a grid
voxel length of 10 m, but we consider only the outdoor ones.

Training and Test Data: Among the 123 transmitters in
the generated dataset, we use at most 70 (sometimes less
than 70 to evaluate the impact of TPN on various aspects
of ProSpire) as primary transmitters that become our training
transmitters. Among the remaining ones, we randomly select
30 as secondary transmitters for testing. The receivers for
the training transmitters and the query points for the test
transmitters are selected as described in Section IV-A. Each
of the data points in our results is based on 5 iterations.
Each iteration consists of training and testing with randomly
selected transmitters and receivers. We use multiple iterations
so that our observations are not biased on a particular layout
of transmitters and receivers.

ProSpire Parameters: In our evaluation of ProSpire, we use
grid voxel length, l = 10 m and K = 200. For the data
augmentation, we use S = 5 and M = 200. For the boundary
proposal, we use N = 20 and g = 10 dB. Finally, in our RTI
approach, we use λ = 5 m, σ2

n = 1, σ2 = 0.5, and δ = 1.
Methods for Comparison: We compare the performance of

the following proactive spatial prediction methods with RSSu-
net. While evaluating these methods, we still rely on our
ProSpire framework. Thus, we compare these methods with
RSSu-net within the framework of ProSpire. We consider these
methods for comparison as we believe these represent the
different learning and non-learning proactive spatial prediction
methods that are applicable in the framework of ProSpire.

• PLM: This method uses (4) to predict RSS at the K near-
est locations for each secondary transmitter considered in
the testing phase. PLM relies on the training data only to
find the η and z0 in (4) using linear regression.

• PLM+RTI: This method is similar to PLM, but we add
the shadow fading for each of the links for which RSS is
to be predicted. The shadow fading is obtained using the
RTI method described in Section IV-B. PLM+RTI relies
on training data to estimate the SLF, p̂ (see Section IV-B).

• 1D-CNN+RTI: We develop this method as another base-
line where we use a 1D CNN for link-wise RSS predic-
tion. The 1D CNN takes the coordinates of the transmitter
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Fig. 5: NN architecture for 1D-CNN+RTI.

and receiver of a link and predicts the RSS at the receiver.
It also uses the shadow fading loss of the link as input. For
example, if the transmitter is at (xt, yt) and the receiver at
(xr, yr), and the shadow fading on the link (as computed
in Section IV-B) is v, then the input to the NN is
[xt, yt, xr, yr, v]

T . Each of the values in this input vector
is scaled to lie between 0 and 1 based on its maximum
and minimum values, as was done for p̂ in Section IV-B.
As the number of links in our training dataset is large,
this method does not require data augmentation. The NN
architecture used for this method is shown in Fig. 5.

• 1D-CNN: This method is similar to 1D-CNN+RTI, but
RTI is not used. Hence, the link shadow fading, v, is not
used as input to the NN.

• RSSu-net+Map: This method is similar to RSSu-net, but
RTI is not used. Hence, X4 (refer to Fig. 2) is not used,
and for X3 the actual map of the area is used. For using
the actual map as X3, we scale the height of every pixel
to lie between 0 and 1, and subtract these values from 1
as done for p̂ in Section IV-B.

Metrics: We use the following metrics for our evaluation.
• |̄ϵ| (dB): Mean absolute error of RSS predictions for the

secondary transmitters. The mean is computed over the
K chosen grid points for each test secondary transmitter.

• pd: Mean accuracy of our boundary proposal algorithm,
where accuracy is defined as follows. For a secondary, if
the RSS prediction for a boundary point is overestimated,
then we call it an accurate prediction. A higher value
of pd implies a lower probability of interference to the
coexisting primary receivers. The mean is computed over
the N boundary points for each test secondary transmitter.

• z̄ooz (dBm): Mean of out-of-zone power leakage, zooz , of
proposed boundaries for the secondary transmitters. The
mean is computed over different secondary transmitters.

A. Results

Impact of RTI: We show the impact of RTI in ProSpire using
Fig. 4(a) and 4(b). Fig. 4(a) shows |̄ϵ| of different methods



Fig. 6: |̄ϵ| of different methods for different ranges of true RSS (in dBm).

for different values of TPN . In Fig. 4(a), RTI is not used;
hence, RTI-based methods are not shown. We observe that
with a higher value of TPN , |̄ϵ| for RSSu-net+Map reduces.
With TPN = 70, RSSu-net+Map is better than PLM by
2 dB. We also see that 1D-CNN performs comparably to
RSSu-net+Map. These observations show that learning-based
proactive spatial predictions are more accurate than model-
based predictions. Fig. 4(b) is similar to 4(a), but in this
case, we use RTI. We see that using RTI improves RSSu-
net’s performance by 2 dB further. This shows the merit of
assisting our DL model via RTI.

Average RSS prediction error: Fig. 4(b) shows that both
1D-CNN+RTI and PLM+RTI perform slightly better than our
proposed method. This performance gap can be attributed to
the fact that unlike RSSu-net, 1D-CNN+RTI and PLM+RTI
do not penalize overestimation and underestimation errors
differently. To justify this argument, we also plot a curve
labeled ‘RSSu-net+RTI, λu = λo = 1’, which is the same
as RSSu-net but uses λu = λo = 1 in (2) during its training,
i.e., it does not penalize overestimation and underestimation
errors differently and aims to minimize the MAE. Fig. 4(b)
shows that ‘RSSu-net+RTI, λu = λo = 1’ is better than both
1D-CNN+RTI and PLM+RTI, for higher values of TPN . In
summary, in terms of mean error, our proposed method is
comparable to other methods that rely on RTI. RSSu-net does
not achieve the lowest |̄ϵ| as it has not been trained to do so.

Variation of |̄ϵ| with target RSS: Fig. 6 shows |̄ϵ| for different
methods for different ranges of target/true RSS values. The
numbers on the top of the bars show the percentage of test
data that falls in the target RSS range corresponding to that bar.
The figure shows that all the methods perform poorly when
the target RSS, which must be estimated, is very low. The
low target RSS values represent scenarios that cannot be well
captured by radio wave propagation models. Hence, the model-

TABLE I: Out-of-zone power leakage of proposed boundary
TPN RSSu-net 1D-CNN+RTI PLM+RTI

z̄ooz (dBm) z̄ooz (dBm) z̄ooz (dBm)
70 −45 −53 −53

Actual map of 15 
buildings (pixelized)

RTI-based map using 
𝑇𝑇𝑃𝑃𝑃𝑃 = 10 and K = 200

RTI-based map using 
𝑇𝑇𝑃𝑃𝑃𝑃 = 50 and K = 200

Fig. 7: Figure shows the impact of TPN on the quality of RTI-based map.

based approaches, PLM and PLM+RTI, suffer in the low target
RSS regime. The DL approaches have poor performance in
this regime because the low RSS measurements are infrequent
in the training data. The DL models do not get enough training
data in the low RSS regime to learn well about such scenarios.
Although the percentages in Fig. 6 are for test data, the
percentages in training data follow a similar trend.

To eliminate the impact of the low target RSS values in |̄ϵ|,
in Fig. 4(c), we compare |̄ϵ| for the different methods, but the
errors are considered only if the true RSS is above -50 dBm.
We observe that |̄ϵ| for all methods have reduced compared
to Fig 4(b). This is expected as the high errors for the low
RSS values are not considered in Fig. 4(c). Interestingly, in
Fig. 4(c), RSSu-net is the best-performing method. This can
be explained using Fig. 6, where we see that for higher values
of true RSS, RSSu-net is better than other methods.

Quality of RTI-based map: Fig. 7 shows the impact of TPN

on RTI-based maps. It shows, with TPN = 50, the RTI-based
map resembles the actual map closely. However, a low value
of TPN = 10 leads to an inferior quality of the RTI-based
map. This happens because the RTI-based map is estimated
using the linear model of (5). The estimation improves with
the number of equations in (5), which is dictated by TPN .

Accuracy of boundary proposal: Our goal in ProSpire is to
achieve a higher boundary proposal accuracy, pd, while having
reasonable performance in terms of |̄ϵ|. Fig. 4(d) shows the
performance of different methods in terms of pd for different
values of TPN . For this plot, we use the boundary proposal
algorithm described in Section IV-D, but vary the methods for
proactive RSS prediction. We observe that RSSu-net performs
better than all other methods, and pd improves, in general,
with a higher number of TPN . For TPN = 70, RSSu-net
achieves pd = 0.97, which is at least 19% better than the pd
with any other method. RSSu-net achieves this performance
improvement due to our loss function in (1) and carefully
chosen hyperparameters in (2).

Out-of-zone power leakage: Next, we show the out-of-
zone power leakage of the boundary proposal method in
Table I for different proactive RSS prediction methods with
TPN = 70. We see that the z̄ooz for the different methods
is comparable, but RSSu-net has 8 dB higher z̄ooz than that

TABLE II: Miscellaneous evaluations for TPN = 70

Setup RSSu-net 1D-CNN+RTI PLM+RTI
|̄ϵ| pd |̄ϵ| pd |̄ϵ| pd

8 buildings 5.4 0.98 3.1 0.88 3.5 0.86
15 buildings+foliage 6.9 0.87 6.8 0.77 6.0 0.73
RSS, location errors 5.7 0.85 4.6 0.7 5.3 0.7

No augmentation 7.8 0.97 NA NA NA NA



of others. This happens because RSSu-net has been trained
to reduce the underestimation errors at the cost of relatively
higher overestimation errors. Hence, it overestimates the out-
of-zone power leakage of the proposed boundaries.

In our setup, Nf = −100 dBm, but the value of z̄ooz for
all methods is much higher than that. This observation can
be explained using Fig. 6, which shows that the percentage
of target RSS measurements in the low RSS regime is very
low. Additionally, the estimation errors in the low target RSS
ranges are primarily overestimation errors (not shown in Fig. 6
due to space constraints). These two factors collectively make
the possibility of capturing N = 20 points with a very
small RSS low. A relatively higher estimated zooz than actual
zooz can lead to unnecessary transmit power reduction for
the secondary transmitters, i.e., subpar usage of the shared
spectrum. However, this issue will not negatively impact the
primary receivers in terms of interference.

Miscellaneous evaluations: In Table II, we show several
important aspects of ProSpire that demonstrate its generality
and robustness. All the results in Table II are for TPN = 70.

In the first row of Table II, we show the impact of having a
less complex RF environment. We consider a dataset similar to
the one described before, but with 8 buildings instead of 15. By
comparing this row with Fig. 4(b) and 4(d), we observe that a
lesser complex RF environment leads to a lower value of |̄ϵ| for
all the methods. Importantly, RSSu-net retains its superiority
over other methods in pd. In contrast to the first row, we make
the RF environment more complex than our original dataset in
the second row of Table II. Specifically, we consider another
dataset similar to our original dataset (15 buildings) but with
foliage in the area. By comparing this row with Fig. 4(b)
and 4(d), we see that a complex RF environment increases
|̄ϵ| for all methods, but RSSu-net maintains the highest pd.
The summary of the first two rows of Table II is that data-
driven models better capture simpler RF environments than
complex ones when the amount of available data is the same.

Next, we show the impact of measurement errors in the third
row of Table II. For that, we consider our original dataset (15
buildings) but assume that the crowdsourced measurements
from the primary receivers can have random location errors (5
m on average) and RSS measurement errors (5 dB on average).
Comparing this row with Fig. 4(b) and 4(d), we see that while
the |̄ϵ| for different methods remains similar, the pd drops for
all methods due to measurement errors. Again, RSSu-net has
better pd than the other methods.

Using our original 15 buildings dataset, the last row of
Table II shows that when data augmentation is not used, RSSu-
net can have inferior performance, |̄ϵ| = 7.8, compared to the
case when data augmentation is used, |̄ϵ| = 5.5 in Fig. 4(b).
This happens because, without data augmentation, the amount
of training data is insufficient for RSSu-net to learn effectively.

Prediction time: Finally, in Table III, we show the time
needed for RSSu-net and ray tracing to predict the RSS at K =

TABLE III: Average prediction time of RSSu-net versus ray tracing
Ray tracing RSSu-net
20× 103 ms 10 ms

200 query points for a secondary transmitter. As discussed in
Section I, the prediction time for ray tracing is significantly
higher than that of RSSu-net. Moreover, ray tracing requires
the area map for making predictions.

VI. CONCLUSIONS AND FUTURE WORK

We developed a novel framework called ProSpire that can
dynamically create boundaries around secondary transmitters
without any active transmission from them. We proposed
an I2I DL method called RSSu-net that can perform the
proactive spatial predictions for the secondary transmitters.
We developed a boundary proposal algorithm that operates
on proactive predictions and creates the boundaries around
the secondary transmitters. We thoroughly evaluated ProSpire
under different settings and showed that RSSu-net performs
reasonably well in terms of the average prediction error of
RSS values, ≈ 5 dB mean absolute error. Importantly, ProSpire
creates proactive boundaries around the secondary transmitters
such that these transmitters can be activated with ≈ 97%
probability of not interfering with the primary receivers.

In our current framework, we assumed all the transmitters
to have omnidirectional antennas. In the future, we will inves-
tigate how ProSpire can be used for directional transmitters.
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