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Abstract—Small Unmanned Aerial Vehicles (UAVs) are be-
coming potential threats to security-sensitive areas and personal
privacy. A UAV can shoot photos at height, but how to detect such
an uninvited intruder is an open problem. This paper presents
mmHawkeye, a passive approach for UAV detection with a COTS
millimeter wave (mmWave) radar. mmHawkeye doesn’t require
prior knowledge of the type, motions, and flight trajectory of
the UAV, while exploiting the signal feature induced by the
UAV’s periodic micro-motion (PMM) for long-range accurate
detection. The design is therefore effective in dealing with low-
SNR and uncertain reflected signals from the UAV. mmHawkeye
can further track the UAV’s position with dynamic programming
and particle filtering, and identify it with a Long Short-Term
Memory (LSTM) based detector. We implement mmHawkeye on
a commercial mmWave radar and evaluate its performance under
varied settings. The experimental results show that mmHawkeye
has a detection accuracy of 95.8% and can realize detection at
a range up to 80m.

Index Terms—Wireless Sensing, Millimeter Wave, UAV

I. INTRODUCTION

With the proliferation of small Unmanned Aerial Vehicles
(UAVs), threats of UAVs arise, such as intrusion into personal
space [1], illegal item delivery [2], public safety threat [3] and
human injury [4], etc. Uninvited intrusion into personal space
is most widely concerned, as it threats the privacy and safety of
individuals. Without mandatory restrictions, a UAV can easily
but illegally intrude into personal space at height to conduct
activities such as candid photography or even theft. Since such
UAVs are often very small and hard to spot with the naked
eye, how to detect them becomes an extremely important and
urgent problem.

A UAV detection system is desired to meet multiple goals:
First, the detection approach should be passive, i.e., the de-
tection process shouldn’t require the cooperation of the UAV.
Second, the system should be able to detect the presence of a
UAV at height. Third, the detection system should be low-cost
and easy to deploy, considering potentially a large population
of ordinary users. Last but not least, the system should be
generic to detect a variety of UAVs in various illumination
and noise conditions.

Unfortunately, we find limitations of the existing approaches
for UAV detection. Specifically, sound-based UAV detection
[5]–[8] is easily interfered by complex environmental noise.

The sound of UAVs attenuates fast in the air, so sound-
based approaches generally have a limited detection range.
Their performance further degrades when the UAV employs
the noise reduction technique. Vision-based UAV detection
[9] can work when the UAV is visible, but its accuracy and
reliability are susceptible to illumination conditions and visual
background. Thermal and Infrared Radiation (IR) imaging
cameras are possible options, but they are expensive and
have limited coverage. There are also proposals of UAV
detection based on RF signals [10], [11], which need to use
special instruments to capture and analyze the communication
of non-cooperative UAVs. Traditional radars [12], [13] are
too expensive and power-consuming. In short, none of the
existing approaches is suitable for UAV detection in daily
usage scenarios.

In this paper, we explore the feasibility of using a COTS
(Commercial-Off-the-shelf) mmWave (millimeter Wave) radar
for UAV detection. mmWave radar-based sensing [14]–[17]
has attracted a large body of research in the last few years.
The UAV-reflected signals received by the radar contain rich
information associated with the UAV. But it is a daunting task
to accurately detect and identify a UAV from such signals, due
to the following reasons: First, since a COTS radar has limited
transmission power and the UAV is usually small and at height
from the radar, the signals reflected from the UAV and received
by the radar are very weak. Conventional approaches based
on the signal intensity for target detection [18]–[24] become
ineffective in such contexts. Second, the motions of a non-
cooperative UAV (e.g., turning and hovering, etc.) are dynamic
and unpredictable, making it extremely difficult to extract the
UAV-reflected signals from the received signals. Third, the
UAV-reflected signals contain both the inherent features of
the UAV and the motion-related features, which are tightly
coupled with one another. The above factors collectively lead
to the very low signal-to-noise ratio (SNR) and the uncertainty
of the UAV-reflected signals.

To address the above challenges, we try to exploit a unique
signal feature that can help us to extract and identify the
reflected signals of the UAV. This feature is desired to be
motion-independent, stable over time, consistent across differ-
ent types of UAVs, and distinguishable from noise. Our finding
is that the periodic micro-motion (PMM) of the UAV (such
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as propeller rotation, etc.) can be converted into stable and
consistent features of the frequency of the reflected mmWave
signals. Specifically, the periodic micro-motion always induces
periodic frequency modulation of the reflected signal, resulting
in a series of periodic peaks in the frequency spectrum. Based
on this finding, we propose mmHawkeye, a PMM-based UAV
passive detection approach with a COTS mmWave radar.
mmHawkeye first extracts and enhances the periodic features
with spectrum folding technology to enhance the signal SNR.
A UAV tracking algorithm based on dynamic programming
and particle filtering is designed to deal with unpredictable
UAV motions. The extracted continuous features are then fed
into an LSTM-based detector for accurate UAV identification.

Our contributions can be summarized as follows:
• To the best of our knowledge, mmHawkeye is the first

mmWave-based long-range UAV detection approach. By ex-
ploiting the PMM features, mmHawkeye is able to detect and
identify an uncooperative UAV with very weak signals.

• We propose tailored algorithms based on the PMM feature
to fully utilize the UAV’s reflected signal, including feature
extraction based on feature periodicity, UAV tracking with tra-
jectory continuity and motion-independent UAV identification.

• We implement mmHawkeye on the commercial radar (TI
IWR6843ISKODS board) and conduct extensive experiments.
The results demonstrate that mmHawkeye achieves an average
UAV detection accuracy of 95.8% and an average relative
range error of 0.9% at a detection range up to 80m.

The rest of the paper is organized as follows. Section II
presents the sensing model and the PMM feature, which are
the theoretical foundation of this work. Section III elaborates
on the design of mmHawkeye. The implementation details
and evaluation results are presented in Section IV. Section V
discusses practical issues and future work. Section VI reviews
the related work. Section VII concludes this work.

II. PRELIMINARIES

This section first introduces the sensing model and the PMM
feature. Then we present observational results to demonstrate
the feasibility of UAV detection with the PMM feature.

A. The Sensing Model and the PMM Feature

As shown in Fig. 1, the mmWave radar is deployed on the
ground and faces upward. When a UAV is flying in the radar’s
sensing area, the signals emitted by the radar are reflected by
the UAV and received by the radar. Specifically, a mmWave
radar sends frequency-modulated continuous wave (FMCW)
chirp signals for range estimation and velocity measurement. If
the impact of the UAV’s micro-motion is ignored, the received
signal includes only the reflected signal from the UAV’s body.
The distance between radar and UAV R(t) can be obtained by
calculating the beat frequency signal s(t), which is obtained
by mixing the transmitted signal and the received signal:

s(t) = S∗
Tx(t)SRx(t) ≈ αexp[j4π(fc +Kt)R(t)/c] (1)

where fc and K represent the starting frequency and the chirp
slope of the FMCW signal, respectively. α is the propagation
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Fig. 1. The sensing model

loss and c is the speed of light. By conducting a Range-
FFT operation [25] on the samples of s(t) during a chirp, the
distance between the target and radar can be obtained. Then a
Doppler-FFT operation [25] is conducted on the Range-FFT
results S(t) in the corresponding bin across consecutive chirps
to obtain the target’s Doppler spectrum S(f):

S(t) = αexp[j4πfcR(t)/c]

S(f) = FFT (S(t)) = αδ(f − 2vfc/c)
(2)

where R(t) = R0 + vt, R0 and v are the current distance and
the radial velocity, respectively. δ() is the Dirac delta function.
The peak of the Doppler spectrum indicates the target velocity.
With Range-Doppler-FFT, we can obtain the Range-Doppler
spectrum and estimate the target’s range and velocity.

When the micro-motion of the UAV is taken into account,
the received signal includes the signals reflected from both
the UAV’s body and the propellers, as shown in Fig. 1.
Considering the small size of the UAV and the long distance
between the UAV and the radar, the range difference between
the propellers relative to the radar is negligible when the UAV
is at height. Therefore we assume that all the propellers are in
the same range bin. The number of propellers is denoted by Q.
The blades of each propeller can be viewed as consisting of P
scattering points. Then the reflected signal from a UAV is the
superposition of the signal reflected from the UAV’s body and
the signal reflected from each scattering point on the blades:

S(t) =αexp[j4πfcR(t)/c]+
Q∑

q=1

P∑
p=1

βpqexp{j4πfc[Rq(t) +Rpq(t)]/c}
(3)

where Rq(t) = Rq + vt is the distance between the q-th
propeller rotor and the radar. βpq is the propagation loss. The
distance between the p-th scattering point of the q-th propeller
and the corresponding rotor projected to the radial direction
Rpq(t) can be calculated by:

Rpq(t) = rpq ∗ cos(ωt+ ϕpq) ∗ cos(θpq) (4)

where rpq , ω, ϕpq and θpq respectively denote the fixed
distance between the p-th scattering point and the rotor, the
rotational angular velocity of the propeller, the rotation initial
phase of the p-th scattering point, and the angle between the
propeller plane and the radial velocity direction.

If we perform a Doppler-FFT operation on this reflected
signal, its Doppler spectrum can be represented as:
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Fig. 2. The Range-Doppler spectrum of the UAV

S(f) =αδ(f − 2vfc/c)+
Q∑

q=1

P∑
p=1

+∞∑
m=−∞

γpqmδ(f − 2vfc/c− ωm/2π)
(5)

where γpqm denotes the m-th frequency loss of a scattering
point, which is a complex function of m, βpq , rpq , ϕpq and
θpq . For more calculation details, the reader can refer to the
related work [26]. This formula shows that there will be a
series of periodic peaks centered on the body velocity peak in
the Doppler spectrum. We call these peaks the PMM feature:{

Peak Pos : 2vfc/c+ ωm/2π m ∈ Z

Peak value :
∑Q

q=1

∑P
p=1 γpqm m ∈ Z

(6)

The interval between the peaks is the same (ω/2π) and is
determined by the propeller rotation velocity. The peak values
are more complex and related to the UAV relative position
(βpq , θpq) and the UAV structure (rpq , ϕpq , P , Q).

With the derivation of the PMM feature, we can find that
the PMM feature exists stably during the UAV’s flight. The
structure and position of a UAV only affect the peak values
rather than the peak intervals. This means that the number of
propellers, the number of blades and the blade length don’t
affect the peak intervals. Such a stable feature can be used
to detect various UAVs. Without loss of generality, we use a
six-wing UAV as an example in later sections.

B. PMM in Reality

We give the observations on PMM to demonstrate the
feasibility of UAV detection with the PMM feature.

In our experiments, a commercial mmWave radar (TI
IWR6843ISKODS board) [27] is deployed on the ground
and faces upward. A six-wing UAV with three blades per
propeller is steered above the mmWave radar. The UAV is first
controlled to ascend at a constant speed of about 1.5m/s and
then hover at a range of 48m. We respectively select a segment
of the reflected signal from these two stages and perform

Range-Doppler-FFT on them. Fig. 2(a) and Fig. 2(b) show the
Range-Doppler spectrum of the ascending UAV and that of the
hovering UAV, respectively. The results show that: (1) Whether
the UAV is moving or hovering, the PMM feature always
stably appears in the range bin where the UAV is located.
In contrast, the reflection intensity and the radial velocity
features are less stable as they are more easily affected by the
relative distance and the UAV’s motions. (2) When the distance
between UAV and radar is far, the PMM feature shrinks and
distorts, due to the degraded quality of the reflected signal.
Nevertheless, its periodicity still exists stably. Note that the
highest peak of the PMM feature in Fig. 2(b) corresponds to
the Direct Current (DC) components. In this case, we try to
exploit the periodicity of the UAV’s PMM feature to extract
and identify the reflected signal of the UAV.

III. MMHAWKEYE DESIGN

This section starts with an overview of mmHawkeye, and
then introduces three key modules of the design respectively.

A. Overview

mmHawkeye solves the UAV detection problem in three
steps, which correspond to the three key modules in its
design, namely feature extraction, UAV tracking and UAV
identification. Fig. 3 shows the overview of mmHawkeye.

• Feature extraction. mmHawkeye continuously extracts
the Range-Doppler spectrums with Range-Doppler-FFT. To
distinguish the PMM feature from the environment noise in
each Range-Doppler spectrum, We perform spectrum folding
on each Doppler spectrum. If the PMM feature exists, it will
be significantly enhanced by spectrum folding and the folding
result can be used for further tracking and detection.

• UAV tracking. With feature extraction, mmHawkeye con-
tinuously extracts the folding results in Range-Doppler spec-
trums, which collectively form the Range-Time-PMM dia-
gram. To cope with the impact of unpredictable UAV motions,
we design a tracking algorithm based on dynamic program-
ming and particle filtering to obtain the tracking result from
the Range-Time-PMM diagram.

• UAV identification. After obtaining the target’s tracking
result, mmHawkeye continuously extracts the Doppler spec-
trums from the target’s location, forming the Doppler-Time
diagram. After preprocessing the diagram via DC removal and
feature alignment, the Doppler-Time segments are fed into an
LSTM-based detector for UAV identification.

B. Feature Extraction

The feature extraction module employs the spectrum folding
technique to amplify the difference between the PMM feature
and the environment noise. Below is the detail of this module.

As we mentioned before, we can obtain the Range-Doppler
spectrum by performing Range-Doppler-FFT on the reflected
mmWave signals. Specifically, we use {D1, D2, ..., DR} to
represent the Doppler spectrums in a Range-Doppler spectrum.
Di and R represent the Doppler spectrum in the i-th range
bin and the number of range bins, respectively. The number
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Fig. 3. The overflow of mmHawkeye
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Fig. 4. The folding process of the PMM feature

of Doppler bins in a Doppler spectrum is L. When the UAV
appears in the i-th range bin, the PMM feature will appear in
the corresponding Doppler spectrum Di. However, considering
the unpredictable propeller rotation velocity, the period of the
peaks in the PMM feature is uncertain and variable. Those
periodic peaks may even be buried in environment noise due
to the low SNR of the reflected signal.

We employ the folding technique [28], [29] to extract and
enhance the PMM feature, which is used to find signal period-
icity under noise. An example of the folding process is shown
in Fig. 4, where the values of Doppler bins are represented
by boxes. The black boxes represent the periodic peaks in the
PMM feature and the other boxes represent the noise. The
interval λ between adjacent peaks in the Doppler spectrum
is 5 and the number of Doppler bins L is 20. If we exactly
fold the Doppler spectrum into a matrix with j = λ columns,
the periodic peaks will align in a column and there will be
a significantly enhanced peak in the column-wise averaged
result. For clarity, the maximum value in the column-wise
averaged result and the number of folding columns are referred
to as the folding value and the folding size, respectively. When
the folding size j is not equal to λ, the folding value will
decrease rapidly as the peaks are not aligned.

Note that the interval between adjacent peaks in the PMM
feature is determined by the propeller rotation velocity, it is
unpredictable and may change at any time. To find the right
folding size, we traverse all integers in an empirical range
[jmin, jmax] and calculate the corresponding folding values,
where jmin and jmax represent the minimum and maximum
folding size, respectively. They are set to 2 and 20 according to
the propeller rotation velocity range and the Doppler spectrum
resolution. With the fixed traversing range, the computation
time can be controlled. The folding value of Doppler spectrum

Di with folding size j can be calculated by:

Fi(j) = max
1≤k≤j

∑
1≤m≤M Di[k + (m− 1) ∗ j]

M
(7)

where k and m denote the folding column index and the
row index in the folding matrix, respectively. The number of
rows in the folding matrix is represented by M , which can be
calculated by M = ⌊L

j ⌋.
The largest folding value is selected to be the folding

result, which increases significantly when the PMM feature
exists. The folding result of the Doppler spectrum Di can be
calculated by:

Pi = max
jmin≤j≤jmax

Fi(j) (8)

In this way, mmHawkeye can calculate the folding result of
each Doppler spectrum. Since the PMM feature of the UAV
has a stable periodicity, its folding result is much larger than
that of the random environment noise. These folding results
can be further used for UAV tracking and detection.

C. UAV Tracking

The UAV tracking module first preprocesses the folding
results with spectral subtraction, so that the impact of the
static background noise is mitigated. Then the UAV tracking is
realized through dynamic programming and particle filtering,
where the unpredictable UAV motions and the local dynamic
noise are taken into account and appropriately dealt with.

To estimate the UAV trajectory, mmHawkeye continuously
extracts the folding results with feature extraction. These
folding results form a Range-Time-PMM diagram, denoted
by the R-PMM. Suppose that there are T Range-Doppler
spectrums and each Range-Doppler spectrum has R range
bins, the value of R-PMM(r, t) represents the folding result
of the r-th range bin in the t-th Range-Doppler spectrum. As
the Doppler spectrum of the UAV has a larger folding result
at each moment, the UAV trajectory corresponds to a series
of range bins that contain larger values in the R-PMM. These
range bins can form a maximum path in the R-PMM whose
cumulative folding result over time is the maximum among
all paths. Therefore, we can track the UAV by searching for
the maximum path in the R-PMM.

Considering that the intensity of the Doppler spectrum is
proportional to the reflected signal intensity, there are different
static background noise intensities in different range bins in



the R-PMM. To mitigate the impact of such noise, we employ
the spectral subtraction algorithm [30] to preprocess the R-
PMM. The main idea is to subtract the estimation of the
average background noise spectrum from the noisy R-PMM.
Specifically, the average background noise spectrum can be
estimated by:

N(r) =
1

T

T∑
t=1

N(r, t) (9)

where N(r, t) is the R-PMM measured in the background
noise. The gain of the background noise is calculated as a nor-
malized projection of the noisy R-PMM onto the background
noise spectrum:

G(t) =

R∑
r=1

N(r)S(r, t)

||N ||2
(10)

where S(r, t) is the measured R-PMM in the tracking phase
and ||N || =

√
N(1)2 +N(2)2 + ...+N(R)2 is the Eu-

clidean norm of the noise spectrum. Finally, the background
noise can be removed from the measured R-PMM as follows:

S
′
(r, t) = S(r, t)−G(t)N(r) (11)

In this way, the range-related static background noise can
be removed and the preprocessed R-PMM can be used to find
the maximum path, which corresponds to the UAV tracking
result. The maximum path g∗ can be obtained by solving:

g∗ = argmax
g

(

T∑
t=1

S
′
(g(t), t)) (12)

where g = (t, g(t))Tt=1 is denoted as a path.
However, since the folding result characterizes the PMM

feature of the UAV, it may change rapidly due to unpredictable
UAV motions. On the other hand, impacted by the complex
environment and imperfect hardware, there may still be local
dynamic noise in the vicinity of the UAV trajectory in the R-
PMM. Both of them lead to degradation in tracking accuracy.

Considering that the UAV trajectory always changes contin-
uously, mmHawkeye utilizes the trajectory continuity to reduce
the tracking errors. Specifically, assume that the maximum
flight speed of the UAV is Vmax and the duration of the Range-
Doppler spectrum is Td, the maximum range bin variation
of the UAV in the adjacent columns of the R-PMM can be
calculated by:

K = ⌈Vmax ∗ Td

Rres
⌉ (13)

where Rres represents the range resolution of the mmWave
radar. The path in the R-PMM corresponding to the UAV
trajectory always satisfies this constraint. Therefore, the UAV
tracking problem can be further transformed into the problem
of finding a constrained maximum path in the R-PMM, where
the variation of adjacent columns in the path does not exceed
K. This constrained maximum path can be found by solving:

g∗ = argmax
g

(

T∑
t=1

S
′
(g(t), t))

s.t. |g(t)− g(t− 1)| ≤ K

(14)

This problem can be solved by dynamic programming.
Specifically, we first define the score at bin (r, t) as the
constrained maximum cumulative folding result, which can
be calculated as:

θ(r, t) = max
k∈[−K,K]

θ(r + k, t− 1) + S
′
(r, t) (15)

Since θ(r, t) considers both the trajectory continuity and the
previous cumulative folding results, its calculation process
obtains the constrained optimal track through the bin (r, t).
To obtain the entire constrained maximum path, we first find
the bin (T, g∗(T )) in the last column that contributes to the
maximum score. Then the rest of the path can be obtained by:

g∗(t) = argmax
k∈[−K,K]

θ(g∗(t+ 1) + k, t) + g∗(t+ 1)

∀ t = T − 1, T − 2, ..., 1
(16)

This backtracking procedure provides the constrained maxi-
mum path g∗, which is the optimal solution for Eq. 14. In this
way, we can obtain the UAV tracking result.

mmHawkeye further applies the particle filter [31] to the
tracking result to reduce the tracking error. The particle filter
can estimate the target state by combining the observation
and the prediction. Specifically, the state in our particle filter
includes the range and the velocity of the UAV, and the
observation is the tracking result. We initialize 5000 particles
with uniform distribution and use the multinomial resampling
algorithm as the particle resampling method.

D. UAV Identification

Now we show how to utilize the PMM features to identify
a UAV. We first extract the target’s Doppler spectrums from a
series of Range-Doppler spectrums according to the tracking
result. Then the Doppler spectrums are fed into an LSTM-
based) detector for UAV identification. The process of UAV
identification is shown in Fig. 5.

With the tracking result and the Range-Doppler spectrums,
we can extract a series of Doppler spectrums from where
the target is located, forming a Doppler-Time diagram. When
the target is a UAV, this diagram will contain unique and
continuous PMM features which can be used to distinguish
the UAV from other objects.

We first remove the DC noise from the Doppler-Time
diagram. Considering that the body velocity of the UAV is
close to zero when it hovers, the corresponding DC compo-
nent contains the body velocity peak. To preserve the body
velocity peak, we average the DC components of the Doppler
spectrums where the body velocity peak is not close to the
DC component. Then the average value is subtracted across all
the DC components. Besides, the unpredictable body velocity
determines the center of the PMM feature and prevents us
from exploiting the periodicity of the PMM feature. Therefore
We devise a feature alignment algorithm on the Doppler-Time
diagram to align each PMM feature center to the Doppler
spectrum center. When the body velocity peak of the Doppler
spectrum is not in the DC bin, we shift the entire Doppler
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Fig. 5. The process of UAV identification

spectrum along the direction from the body velocity peak to
the DC bin and complement it by linear interpolation.

The preprocessed Doppler-Time diagram contains the PMM
features. However, since the tracking result may have errors,
especially when the UAV is at height. It is not always reliable
to directly use the obtained Doppler-Time diagram. To reduce
the impact of tracking errors, we first split the Doppler-Time
diagram into fixed-length segments. Then we compare the
maximum folding result of each segment with an empirical
threshold. When the maximum folding result is less than the
threshold, we consider that the segment does not contain PMM
features and discard it. The threshold is set to 30000 according
to our extensive empirical experiments.

Finally, the preprocessed Doppler-Time segments are used
to identify the UAV from other objects. Considering that when
there are objects such as birds or balloons in the vicinity of
the radar, their Doppler-Time segments may have high folding
results and uncertain folding sizes due to the environmental
noise, the simple classification methods based on statistical
features of PMM, such as peak interval, mean value, etc., may
be easily disturbed by such segments and severely degrade.
Therefore, we design an LSTM-based detector to solve such
a binary classification problem. The LSTM network [32] is a
classic recurrent neural network that is suitable to process the
sequences of data and has excellent performance on recog-
nition tasks. Considering that each time slot in the Doppler-
Time diagram contains L Doppler bins, the input dimension
of our LSTM network is set to L. Our network contains two
stacked LSTM layers and the hidden state size is set to 128.
A fully connected layer is used to map the hidden state to the
identification results, i.e., UAVs or other objects. We select the
cross entropy loss function to train our network. Considering
that the peak intervals in PMM features are not affected by
UAV types, our network can detect various UAVs with small
training data.

IV. IMPLEMENTATION AND EVALUATION

In this section, we introduce the implementation of
mmHawkeye and evaluate the performance of our prototype
under different settings.

A. Implementation

We implement mmHawkeye on a commercial mmWave
radar Texas Instruments IWR6843ISKODS [27]. There are 3
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Fig. 6. The experiment scenario

Tx antennas and 2*2 Rx antennas on the radar board. In our
implementation, we let three TX antennas take turns trans-
mitting FMCW signals starting at 60.25GHz with 1.92GHz
bandwidth, and all Rx antennas receive the reflected sig-
nals. The duration of a single chirp is 900us and each
frame includes 100 chirps. The frequency slope of the
FMCW signal is 9.994MHz/us and the ADC sample rate is
6250kHz. So the radar’s maximum sensing range can reach
3×108m/s×6250kHz

9.994MHz/us×2 = 93.8m. The angle of the radar’s field
of view (FoV) is about 120◦, which is large enough to cover
the experimental scene. The ADC samples from the radar are
captured by a Ti DCA1000EVM data acquisition board [33]
and then transmitted to a computer with an Intel Core i9-
11900H 2.5GHz CPU for processing.

The experiment scenario is shown in Fig. 6. The radar is
fixed horizontally on a tripod mount and is calibrated with
a corner reflector in advance. A six-wing UAV with three
blades per propeller is used as the detection target. The UAV
weights about 8kg and each blade is about 25cm long. It has
a maximum velocity of 4m/s. The UAV is equipped with
a Real-time Kinematic Positioning (RTK) module [34] to
provide the ground truth of the UAV’s location, which has
a cm-level precision. We collect the reflected signals of the
UAV from different flight trajectories, at different altitudes and
different velocities. These reflected signals are first processed
to obtain the tracking results and the corresponding Doppler-
Time diagrams. The tracking results are aligned with the
ground truth by their timestamps and trajectory features. Then
the Doppler-Time diagrams are split into segments of 3.6s
duration. We collect more than 4000 seconds of signals under
different settings and generate over 1000 segments. We further
generate the same amount of the other objects’ segments by
recording the Doppler-Time diagrams of kites, birds, balloons
and shaking trees. We place the radar under balloons, kites,
and shaking trees for data collection, and near a nest for bird
data collection. These two types of segments together form
our dataset. In our implementation, we use the random 70%
of the segments as the training set and the rest 30% as the
test set. The model is trained using the Adam optimizer with
a learning rate of 0.00005 and a batch size of 10.

B. Methodology



Fig. 7. The overall performance of
UAV detection

Fig. 8. The overall performance of
UAV tracking

Fig. 9. The impact of UAV trajec-
tory on detection results

Fig. 10. The impact of UAV tra-
jectory on tracking results

We use accuracy, precision, recall and F1-score as the per-
formance metrics to evaluate the performance of mmHawkeye.
The accuracy, precision, recall and F1-score are calculated
from True Positive (TP), True Negative (TN), False Positive
(FP) and False Negative (FN). They are calculated as fol-
lows: accuracy = TP+TN

TP+FP+FN+TN , precision = TP
TP+FP ,

recall = TP
TP+FN and F1-score = 2∗precision∗recall

precision+recall .
To clearly show the whole detection process, we also eval-

uate the UAV tracking performance. We measure the tracking
accuracy with the average relative range error. It calculates as
follows:

1

N

N∑
n=1

|G(n)− T (n)|
G(n)

(17)

where G(n) and T (n) represent the actual range and the
tracking range at the n-th sampling timestamp, respectively.
N is the number of the sampling timestamps in a trace.

C. Overall Performance

1) Detection accuracy: We first evaluate the overall detec-
tion performance of mmHawkeye. The UAV is controlled to
perform different flight trajectories. The flight altitude varies
from 10m to 80m. The flight trajectories at each altitude
include hovering, horizontal flight, vertical flight and flying
with a horizontal square. The radar is placed on the ground and
vertically aligned with the horizontal center of the trajectories.
The detection results at different altitudes are shown in Fig.
7. The overall detection accuracy of mmHawkeye is 95.8%
(corresponding with 92.6% of precision, 97.2% of recall and
94.8% of F1-score). With the UAV altitude increasing, the
detection accuracy decreases from 98.3% to 91.3%. When the
UAV altitude is 10m, mmHawkeye achieves an accuracy up to
98.3%, a precision of 99.8%, a recall of 96.8% and an F1-score
of 98.3%. When the altitude increases to 80m, the detection
performance falls to an accuracy of 91.3%, a precision of
84.8%, a recall of 94.8% and an F1-score of 89.5%. As the
UAV altitude increases, the PMM feature extracted from the
received signal becomes weaker and sometimes incomplete,
which leads to degradation in the detection performance.
mmHawkeye keeps a high recall, which means that it can
effectively detect most of the UAVs even when the UAVs are
at height.

2) Tracking accuracy: We further evaluate the tracking
performance. We compare mmHawkeye with the intensity-
based tracking approach commonly used in previous works
such as WaveEar [35] and mmTrack [36], which select the
largest value of the Range-FFT result as the tracking result.

For consistency and fairness, we also perform preprocessing,
dynamic programming, and particle filtering on the result of
the compared approach. The tracking results of mmHawkeye
at different altitudes are shown in Fig. 8. The results show that
mmHawkeye can achieve a detection range of 80m, which
is much higher than the detection range of 30m with the
intensity-based approach. When the UAV altitude is below
30m, our tracking algorithm can achieve a more accurate
range estimation compared with the intensity-based approach.
The average relative range error of mmHawkeye decreases as
the altitude increases. The reason is that the average range
error of mmHawkeye remains less than 10cm within 30m,
resulting in a reduction in average relative tracing error. When
the UAV altitude is above 30m, the intensity-based approach
fails completely due to the low SNR of the reflected signal. In
comparison, mmHawkeye keeps accurate and has less than 2%
relative range error within 80m. This is mainly attributed to the
utilization the UAV’s PMM feature, which helps to efficiently
distinguish UAVs from the environment noise.

D. The Impact of Different Factors
1) The impact of the UAV’s trajectory: In this experiment,

We evaluate the detection performance under different tra-
jectories of the UAV. The results are shown in Fig. 9. The
detection accuracy varies slightly from 95.3% to 96.6% across
different types of trajectories. Since the micro-motion of the
UAV’s propellers always exists in different trajectories, the
PMM feature remains consistent and can be used to resist the
impact of the unpredictable UAV’s motion and in turn keeps
the good detection performance.

We also evaluate the tracking performance under different
trajectories of the UAV. The average relative range errors under
different trajectories at three altitudes (20m, 40m, 60m) are
shown in Fig. 10. The range errors vary slightly with the
types of UAV trajectory at each altitude and the range errors
with the vertical flight are the lowest. The reason is that when
the UAV is flying vertically, its radial velocity is the largest
and the calculated folding result is more distinguishable. Since
mmHawkeye utilizes the PMM feature of the UAV to track it,
we can resist the impact of the UAV’s motion and keeps a
reliable tracking result.

2) The impact of the UAV’s velocity: In this experiment, We
evaluate the impact of the UAV’s velocity on the detection per-
formance. Due to the page limit, we only show the detection
results of different UAV velocities at the altitude of 40m in
Fig. 11. The detection accuracy varies slightly from 94.1% to
94.8% with the different UAV velocities. Since mmHawkeye



Fig. 11. The impact of UAV ve-
locity on detection results

Fig. 12. The impact of UAV ve-
locity on tracking results

Fig. 13. Ablation study on UAV
tracking

Fig. 14. Ablation study on UAV
identification

removes velocity-related features from the obtained Doppler-
Time diagram, the velocity of the UAV has little impact on
the detection performance.

We further evaluate the impact of the UAV’s velocity on
the tracking performance. The average relative range errors at
different velocities are shown in Fig. 12. The relative range
errors vary from 0.26% to 0.35% at different UAV velocities.
This result demonstrates that our UAV tracking algorithm
remains effective applied under different UAV velocities. The
reason is that our algorithm focuses on the frequency peaks
caused by the UAV’s PMM rather than the body velocity,
which makes the tracking result stable even when the UAV’s
velocity is varied.

E. Ablation Study

As the feature extraction module in mmHawkeye serves the
other two modules and cannot be evaluated separately, we con-
duct ablation study on UAV tracking and UAV identification
modules separately. The impact of feature extraction module
can be verified by comparing with the experimental results of
intensity-based approach.

1) UAV tracking: This section evaluates the performance
of the UAV tracking algorithm. We select the reflected signals
when the UAV altitude is 40m as the target of processing. Then
we respectively adopt the tracking method (1) based on the
maximum value of the folding results (PMM-based), (2) based
on the maximum value of the preprocessed folding results
(+Prepro), (3) with dynamic programming of the preprocessed
folding results (+DP), (4) with dynamic programming and
particle filtering of the preprocessed folding results (+PF). The
method +PF is the algorithm used in mmHawkeye.

The experiment result is shown in Fig. 13. The results
demonstrate that both the preprocessing and the dynamic
programming significantly reduce the range error by 16.4%
and 35.12%, respectively. The reason is that the preprocess-
ing removes the static background noise from the folding
results, and the dynamic programming considers the trajectory
continuity and can resist the impact of unpredictable UAV
motions. The results also demonstrate that the particle filtering
can effectively reduce the variation of the range error by
13.83%, since it can effectively resist the impact of the unpre-
dictable motions and the local dynamic noise. Furthermore, the
intensity-based approach fails when the UAV altitude is 40m,
and our simple PMM-based method can achieve a relative
range error of 0.49%. This means that spectrum folding can
significantly improve UAV tracking accuracy.

2) UAV identification: This subsection evaluates the perfor-
mance of the UAV identification algorithm. For the obtained
Doppler-Time diagrams, we respectively perform (1) no pro-
cessing (DTD-based), (2) DC removal (+DR), (3) DC removal
and feature alignment (+FA) to obtain the corresponding
results. The results of each method are used to train the
corresponding detection network and test the detection perfor-
mance. The method +FA is the algorithm used in mmHawkeye.

The detection results of these methods are shown in Fig. 14.
The results demonstrate that the DC removal can significantly
improve the detection accuracy by 14.62%, since it can remove
a large portion of the DC noise and make the PMM features
easier to be learned. The results also show that the feature
alignment can effectively improve the detection accuracy by
4.68%, since it can remove the velocity-related features from
the Doppler-Time diagrams and make the periodicity of the
PMM feature easier to be identified.

V. DISCUSSION

A. Short-range Detection

When the distance between the UAV and the radar is close
(e.g. below 10m), the UAV can no longer be regarded as a
whole and each part may occupy a different range bin. In
this case, there will be multiple PMM features in different
range bins in the Range-Doppler spectrum. We can utilize
these features to further track and sense the UAV. Note that
probably the UAV has already been detected by mmHawkeye
before it arrives in such a close range.

B. Practical Deployment

In practical scenarios, UAVs can intrude into personal space
at height or from around. However, considering that low-
altitude UAVs are easy to be detected manually or by other
approaches, and these UAVs have limited viewing angles, there
are very few cases of actual intrusion into personal space
from low altitude. In this case, we usually deploy the radar
horizontally to detect the presence of UAVs at height rather
than the presence of UAVs from around.

VI. RELATED WORK

A. UAV Detection with mmWave Radar

With the development of COTS mmWave radar and the
growing concern about UAVs, there have been some works
utilizing mmWave radar to track and identify small UAVs.
[18] captures the UAV 3-D motion with a novel deep neural
network and achieves decimeter-level tracking accuracy within
5m. [22] utilizes the reflected mmWave signal intensity to



calculate the distance and the elevation angle between UAV
and radar, realizing the UAV tracking within 10m. It further
extracts the micro-Doppler signatures from the captured UAV
and achieves activity classification accuracy of 95%. [20]
employs the constant false alarm rate (CFAR) detector on the
Range-Doppler spectrum and achieves a maximum detection
range of about 40m. However, its performance decreases
significantly when the UAV is hovering as the Doppler feature
is less significant. In conclusion, none of them can achieve
long-range UAV detection with the COTS mmWave radar due
to the limited reflected signal intensity. To solve this problem,
we directly utilize the PMM feature of the flying UAV rather
than the signal intensity to achieve long-range UAV detection.

B. UAV Detection with Other Devices

There have been proposals to utilize sound [5], visual
information [9], and RF signals [10] to achieve passive non-
cooperative UAV detection. For example, DronePrint [5] pro-
poses to detect a drone according to its acoustic signatures.
Such approaches are susceptible to the environment noise and
have a limited sensing range. [9] uses cascades of boosted clas-
sifiers on the collected videos to detect the UAV and achieve
distance estimation. Such video-based approaches are easily
affected by illumination conditions and complex backgrounds.
Matthan [10] detects the presence of UAVs by monitoring the
unique characteristics of the received WiFi signal. It achieves
over 80% detection accuracy within 600m range. However, it
requires non-cooperative UAVs to actively send WiFi signals,
which renders silent UAVs undetectable.

VII. CONCLUSION

Defending against uninvited UAVs is an increasingly im-
portant problem nowadays. This paper presents our study on
passive UAV detection. Our proposal named mmHawkeye is a
mmWave-sensing based approach that has broad applicability
and satisfactory accuracy. mmHawkeye particularly tackles the
problem induced by low SNR signals and achieves long-range
detection. Extensive experiments with the implemented pro-
totype demonstrate that mmHawkeye is accurate and reliable
under various settings.
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[9] F. Gökçe et al., “Vision-based detection and distance estimation of micro
unmanned aerial vehicles,” Sensors, 2015.

[10] P. Nguyen et al., “Matthan: Drone presence detection by identifying
physical signatures in the drone’s rf communication,” in ACM MobiSys,
2017.

[11] C. Jiang et al., “3d-omnitrack: 3d tracking with cots rfid systems,” in
ACM/IEEE IPSN, 2019.

[12] M. A. A. H. Khan et al., “Ram: Radar-based activity monitor,” in IEEE
INFOCOM, 2016.

[13] M. Jahangir and C. Baker, “Persistence surveillance of difficult to detect
micro-drones with l-band 3-d holographic radar,” in IEEE RADAR, 2016.

[14] A. Khamis et al., “Rfwash: a weakly supervised tracking of hand hygiene
technique,” in ACM SenSys, 2020.

[15] W. Xu et al., “Mask does not matter: Anti-spoofing face authentication
using mmwave without on-site registration,” in ACM MobiCom, 2022.

[16] J. Zhang et al., “Ambiear: mmwave based voice recognition in nlos
scenarios,” ACM UbiComp, 2022.

[17] U. Ha et al., “Contactless seismocardiography via deep learning radars,”
in ACM MobiCom, 2020.

[18] P. Zhao et al., “3d motion capture of an unmodified drone with single-
chip millimeter wave radar,” in IEEE ICRA, 2021.

[19] M. Jin et al., “A passive eye-in-hand” camera” for miniature robots,” in
ACM SenSys, 2022.

[20] P. J. B. Morris and K. Hari, “Detection and localization of unmanned
aircraft systems using millimeter-wave automotive radar sensors,” IEEE
Sensors Letters, 2021.

[21] M. Jin et al., “Fast, fine-grained, and robust grouping of rfids,” in ACM
MobiCom, 2023.

[22] N. R. Beeram et al., “Activity classification of an unmanned aerial
vehicle using tsetlin machine,” in IEEE ISTM, 2022.

[23] Y. He et al., “Red: Rfid-based eccentricity detection for high-speed
rotating machinery,” IEEE TMC, 2019.

[24] K. Yang et al., “Wiimg: Pushing the limit of wifi sensing with low
transmission rates,” in IEEE SECON, 2022.

[25] C. Jiang et al., “mmvib: micrometer-level vibration measurement with
mmwave radar,” in ACM MobiCom, 2020.

[26] K.-B. Kang et al., “Analysis of micro-doppler signatures of small uavs
based on doppler spectrum,” IEEE TAES, 2021.

[27] T. I. Incorporated, “Hardware setup for mmwaveicboost and
iwr6843iskods,” https://training.ti.com/hardware-setup-mmwaveicboost
-and-antenna-module?keyMatch=IWR6843ISKODS, 2022.

[28] S. M. Kim and T. He, “Freebee: Cross-technology communication via
free side-channel,” in ACM MobiCom, 2015.

[29] X. Guo et al., “Wizig: Cross-technology energy communication over a
noisy channel,” IEEE/ACM TON, 2020.

[30] S. V. Vaseghi, Advanced digital signal processing and noise reduction.
John Wiley & Sons, 2008.

[31] G. Bielsa et al., “Indoor localization using commercial off-the-shelf 60
ghz access points,” in IEEE INFOCOM, 2018.

[32] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, 1997.

[33] T. I. Incorporated, “Real-time data-capture adapter for radar sensing
evaluation module,” http://www.ti.com/tool/DCA1000EVM, 2020.

[34] Wikipedia, “Real-time kinematic positioning,” https://en.wikipedia.org
/wiki/Real-time kinematic positioning, 2022.

[35] C. Xu et al., “Waveear: Exploring a mmwave-based noise-resistant
speech sensing for voice-user interface,” in ACM MobiSys, 2019.

[36] C. Wu et al., “mmtrack: Passive multi-person localization using com-
modity millimeter wave radio,” in IEEE INFOCOM, 2020.

https://pagesix.com/2020/05/28/prince-harry-and-meghan-markle-call-cops-after-drones-fly-over-home/
https://pagesix.com/2020/05/28/prince-harry-and-meghan-markle-call-cops-after-drones-fly-over-home/
https://www.channelnewsasia.com/singapore/drone-drug-trafficking-arrest-kranji-reservoir-park-655706
https://www.channelnewsasia.com/singapore/drone-drug-trafficking-arrest-kranji-reservoir-park-655706
https://www.bbc.com/news/technology-26921504
https://www.bbc.com/news/technology-26921504
https://training.ti.com/hardware-setup-mmwaveicboost-and-antenna-module?keyMatch=IWR6843ISKODS
https://training.ti.com/hardware-setup-mmwaveicboost-and-antenna-module?keyMatch=IWR6843ISKODS
http://www.ti.com/tool/DCA1000EVM
https://en.wikipedia.org/wiki/Real-time_kinematic_positioning
https://en.wikipedia.org/wiki/Real-time_kinematic_positioning

	Introduction
	Preliminaries
	The Sensing Model and the PMM Feature
	PMM in Reality

	mmHawkeye Design
	Overview
	Feature Extraction
	UAV Tracking
	UAV Identification

	Implementation and Evaluation
	Implementation
	Methodology
	Overall Performance
	Detection accuracy
	Tracking accuracy

	The Impact of Different Factors
	The impact of the UAV's trajectory
	The impact of the UAV's velocity

	Ablation Study
	UAV tracking
	UAV identification


	Discussion
	Short-range Detection
	Practical Deployment

	Related Work
	UAV Detection with mmWave Radar
	UAV Detection with Other Devices

	Conclusion
	References

