'LEGIBILITY NOTICE

A major purpose of the Technl-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained In
DOE’s Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

1



LA-UR--88-3656 S :
DEE9 003607

Loy Alamos Matonal Laporatory 13 operated by the University of Caifornia 107 ine United States Department of Energy under contracl W-7405.-ENG-3b

NTLE DETECTION OF ANOMALOUS COMPUTER SESSION ACTIVITY

AUTHOR(S) Henry S. Vaccarc, N-4

SURMITTED 1O 1989 ItEE Symposium on Research in Security and Privacy
Oak land, CA
May 1-3, 1989

DISCLAIMER

This repurt was prepared 1% an account of work sponsored by an agency of the United States
Government  Nesther the United States (GGovernmen( nor any agency thereof, nar any of thewr
cmpluvees, maken any warranty, capress or imphed, or assumes any legal habiity or reaponw-
bility for the accuracy, completeness, or usefulness of any nformution, apparatus, product, or
process disclosed, of represents that its use would not inlrninge privately owned rights Refer-
cnce herein 1o any specific commercial product, process, ur service by trade name, trudemark,
manufacturer, or otherwise dous not necessanily constitute or imply tts endorsement, recom-
mendution, or favoring by the United States Goverament or any agency thereol The views
and opinions of authors capresseed herein do no' necexasnly stite or reflect those of the
United States Government or any agency thereof

B N T I T O L P TIN [T TP IYT TRt LTS L L | I L B N T I T I IN S .

"o . . .
ey gt B L L LT FT R T T VI PR R TV O | T T SN T TR

. . »
LY teTedtan oy Labrgtory o ety Thal s (gl o et e 1
PO Departrmeed ot o,

“ ((D(\\/A\(" , < Los Alamos N MASIIR
NOWARN (Q[ﬂ K( ))\\\) 08 Alamos National Laboratory

Los Alamos. New Mexico 87545


About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


DETECTION OF ANOMALOUS COMPUTER SESSION ACTIVITY

H. S. Vaccaro
Safeguards Systems Group
Los Alamos National Laboratory



DETECTION OF ANOMALOUS COMPUTER SESSION ACTIVITY

I. INTRODUCTION

This paper describes recent Los Alamos National Laboratory (LANL)
applications of research into automated anomaly detection,a%—fhc?' In the
context of computer security, anomaly detectior seeks to identify events
shown in audit records that are inconsistent with routine operation and
therefore may be indicative of an intrusion into the computer, serious
human errors, or malicinus behavior by a legitimate user. Access by an
intruder, execution of '"Trojan horses'" and "viruses, as well 28 malicious,
destructive behavior are all assumed to produce anomalous events that are
recorded in a computer audit trail. This trail, perhaps with augmented
data collection capabilities, is processed, in real-time, to deotect such
eventr, alert a knowledgeable computer security officer to the threat, and

help resolve the situation.

II. BACKGROUND

Despite recent major improvements to operating system security,
available computer security features stLill are not good enough to detect
many anomalous behaviors by coanputer ''users' in time to prevent or
winimize any damaging activity. The risks from stolen passwords and
privileges, tor instance, are still of great concern. Current computer
security syetems do not in general protect againsi:

. An imposter who gaina accesg tc a legitimete account and

environment;

. A legitinate user taking advantage of mistakes in the

configuration of system security measures;

. A highly privileged user behaving destructively;

o An executable program that has besn tampered, through other

means, to pertorm some new, improper tunction.



In practice, existing computer security systems are not necessarily
configured effectively, .0 additional weakrnesses typically exist.

Ironically, these same improper activities would generally be

detected by an experienced human security officer using information on
what was done and what resulted. In doing so, we believe that the
security officer goes well beyond the inflexible application of '"rules”
describing intrusion scenarios.

. The experienced human recognizes the difference between "normal"
behavior and '"abnormal" behavior.

. When abnormal behavior is spotted, the security officer searches
for "rules" of common sense to determine whether the
abnormalities are important.

. If no rules fit exactly, new rules are devised on the sgot by
analogy with related situations.

. Then, if the officer concludes that the anomalies pose a risk,
some sort of investigation begins.

. Depending on the outcome of this investigation, the new ''rules"
might be rejected or adopted. Similarly, his/her perception of
normal sehavior may be updated.

This is fundamentally the same approach we are trying to implewent in

sof tware.

ITi. SOLUTION APPROACH

If behavior (e.g., of a user or an executable program) differs from
normal patterns, and if data indicating the difference is collected, it
should be possible to compare the new "different' data with the normal
patterns and detect the anomaly. The problem can be solved by creating,
in effect, specialized profiles of computer users, ports, executable
software, privileges, time slots, etc., and determining whether the new
data violates these profiles

We accomplish this profiling task via heuristics. Selected
historical data is used to generate a tree-structured, instantiated cul:

base describing historical behavior patterns that were significant. The



rules define what was normal for the values in particular fields of the
historical audit transactions, conditioned on comhinations of the datz in
other fields of the transactions. Such data values may be computed based
upon the contents of a series of related transactions (Fiz. l).

Chief among the factors that led us to this approach, as opposed to
more classical pattern matching or statistical approaches, are

. Most of the audit data are non-metric, categorical information
such as user names, privileges, action descriptions, access
points, etc.

- Computer activity data has a significant rancom component; that
is, the data is very noisy.

. Computer user activity exhibits transient as well as cyclical
behaviors.

. Usage patterns drift as users become more experiencea or
gradualiy change the focus of their computer efforts.

. Barts of usage patterns abruptly change as users begin new
projects, change offices, and restructure cheir computing
envircnments.

These characteristics led us away from numerical approaches such as
n~dimensional clustering toward new heuristics that were fundamentally
categorical and which placed restrictions on what is considered '"normal"
oaly when there was sufficient applicable history. These factors also
dictated that our approach be tolerant of conflicting historical behavior
patterns.

‘The heuristics attempt to mimic in software part of the human
learning and decision maxing process, and allow for expert opinion to
supplerient or modify the machine-learuved informatior. We make provision
for display of the factors contributing to a computerizad decision so that
an expert can verify the decigsion. Finally, we use the learned patterns
as a predictive tool to help the expert resolve anomalies by presenting

non-aitnmalous a)ternatives to the observed activity.



wp 10 31 fieid bronches
and | function branch

up o 255 fleid vaive or
value range bronches

LEVEL 1

up to 30 fleld vaiue
branches ond 1 funciion
branch

wp 1o 255 field vaiue

LEVEL 2

up ko 29 fisid vaiues
ond | funciion branch

up to 255 fleld value
range bronches

LEVEL 3




IV. FEXPLANATION

In our solution, a learning program examines a history of discrete
system activity (individual commands, file accesses, etc.) to generate a
production-like rule base by induction. The rule base it generates may be
edited or supplemented by an expert to broaden its coverage or improve its
decisiveness. The rule base is then applied to system activity
transactions, either in batch mode or real-time, to determine which
activity, or series of activities, is abnormal when viewed against the
applicable patterns instantiated in the rule base. Naturally, the data
used to build the rule base contains some anomalies, so these are
heuristically filtered out of generated rules.

The rule base also reflects the quality of the behavior patterns it
has learned. Patterns that occurred more often or with less noise have
stronger grades,

A rule's strength is stored along with the conditions under which it
applies (called the left-hand-side or LHS) and the implied conclusion
(right-hand-side or RHS). A LHS in our approach is a series of field
values or value ranges, or computer values based upon data in a series of
related transactions (for example, mean time between some event type), or
subroutines returning a boolean value. A given transaction satisfies the
LHS and "fires" the rule if its values match those for the fields in the
LHS aad any subroutines in the LHS return true. Then we determine whether
the transaction satisfies the rule's RHS conclusions.

We refer to the RHS as the rule's restriction, because it restricts
what is considered 'mnormal' for a transaction. Thus, our approach
generates rules about the appropriate contents of transaction fields based
on the contents of other fields in the same transaction or data derived
from a sequence of related transactions. The latter is accomplished
through a mechanism we call threads. Threads can access data for several
reiated transactions to compute data such as a moving average of the time
between login failures on a particular port.

For any collection of historical audit transactions, the derived rule
base must have at least one thread. Basically, eacbh thread has a tigure
of merit (FOM) which ig the sum ot time decayed rOMs for transactisnsg on

the thread, One obvions thread that we tind very important is a user-port



thread. Ezach time a specific user logs into a particular port, the thread
continues. Thus, slightly anomalous transactions for the same user and
port across several logins can lead to a user-port thread anomaly.
Program-user threads and privilege threads also are of high interest.

The RHSs are limited to three basic forms:

e A list of acceptable categorical, non-metric values for a
particular transaction field (e.g., the normal work days of the
week).

] A list of acceptable ranges for a continuous, metric transaction
fieid (e.g., the normal amount of disk I/0 activity).

e A list of user-defined functions to be executed until one returns
a true value, meaning the RHS is satisfied, or the end of the
list is encountered, meaning the kHS is not satisfied.

In the absence of rules restricting, say, normal computer ports, any port
is considered normal. This may seem risky, but it is the same way that
humans work.

Still, there are in general tens to hundreds of thousands of rule
instantiations on a major subject such as behavior on a computer system.
The rules vary from very general (e.g., the valid ports are Pl, P2, ...
Pn) to very detailed (e.g., On Tuesday between 6:00 am and 7:00 am, when
the user has system operator privileges and is using port P3 only commands
that cause very little direct disk activity are used) (Fig. 2). Also as
with human experts, very specific rules carry more weight in mrking a
decision, provided that they are still based on clear behavior patterns.

An expert usually takes many paths to arrive at a conclusion (e.g.,
the normal disk activity might be inferred from the user and time of day,
or from the account number, or from the program being executed). A rule
base is built the same way--it is highly redundant. Thus, the inferencing
process reacheg its conclusion about the normality of an audit record
along many different reasoning paths, resolving conflicts tbrough a
weighting and scaling process.

An audit record field that violates many conclusions (RHSs) as to its
normal content is considered anomilous. [f the record contains several
anomalous fields or a highly anomalous field, the record is anomalous. If
a serieg of related recurds, say those tor a particular user'sa session,

are anomalous, the entire session is considered anomalous.



Left Hand Side Grade Right Hand Side

Username AMY Privi 10148001 =1> Image AUTHORIZE SET SHOW

Privl 10148001

]

6> Image AUTHORIZE SET SHOW
Privl 10148001 Priv2 00000008

DIR_IO 0:378 =1> Image AUTHORIZE SET
Priv2 00000008 Privl 10148001
CPU_time G:370 =1> Image AUTHORIZE SET
Priv2 00000008 Priv) 10148001 =7> Image AUTHORIZE SET SHOW
Day "Wed" Privi 10148001 =6> Image AUTHORIZE DELETE SET SHOW SYSGEN
Terminal TXC3 Privl 10148001 =1> Image AUTHORIZE SET SHOW
Username OREN =6> Image AUTHORIZE COPY DELETE DIRECTORY

LOGINOUT MAIL QUEMAN SET SHOW
SUBMIT VMSHELP

Fig. 2. Examples of image "AUTHORIZE" rules generated by W&S.



v. SOFTWARE IMPLEMENTATION

These concepts are now implemented in three main software sections: a
data preprocessor, a rule base generator, and a transaction analyzer.
Collectively, we refer to the software as Wisdom and Sense or simply W&S.
Our implementation of these concepts has enabled the rule base to be
stored in memory as a highly compressed tree structure using 6-7 bytes per
rule, and the inferencing process to be real-time, firing roughly 20,000
rules per second on a $10,000 computer workstation.* Typical rule bases
require 0.5-1.0 Mbyte of memory and can process about 20 transactions per

second on the same workstation.

A, Design Criteria
We designed the anomaly detection software to embody the
following capabilities:
. Reduce raw audit data to more usable forms;
. Build its own rule base without human guidance;
. Store and use very large, instantiated rule bases efficiently;
. Tolerate conflicting rules;
. Deal with uncertain and erroneous knowledge;
° Continue to learn from experience, and adapt to transient
conditions;
®*  Accept humen modifications to its rule base, but not be overly
dependent on scarce human expertise;
” Make real-tine, graded decisions regarding anomalous behavior;
. Provide human-readable feedback on anomalies to aid in anomaly
resolution;
. Create minimal interference ~ith the real functions of its host
system;
. Be portable to different applications, operating systems, and
hardware.
Most of these design criteria have been attained in our software.
However, there remain many gaps in our ability to detect anomalous

computer activity, and determine whether the anomalies are significant.

*All perfbf%ﬁnégwfigures are for an [BM RT Model 6151-125 with an Advanced
Floating Point Accelerator. The operating system is IBM's AIX Version 2.1.



We need more experience in operating environments, and with simulated
intrusions, before we can design additional analysis tools for this
purpose and properly tine W&S.

A difficult problem is that computer operating systems do not
gener ly capture the right cdata for analysis. Furthermore, the amount of
data potentially available can easily overwhelm any anomaly detection

scheme, so we will have to choose data of the greatest value.

B. Nnta Preprocessaing

For any given application, Wisdom is configured to read a specified
fixed record format sequential file. VMS ALAP W&S is one such application
that has been heavily tested so far. The VMS ACCOUNTING.DAT file used by
VMS ALAP W&S is not in this commercial form, so VMS ALAP includes a
special filter to perform VMS file I/0 and data conversions resulting in a
fixed record format. The filter is run as either a batch job to convert a
large ACCOUNTING.DAT file or as a VMS ALAP file I/O subroutine to convert
new additions to the accounting file in real-time. In either mode, the
converted records are placed into a correctly formatted W&S file.

The historical transactions file, used by Wisdom in building a
dictionary, condensed file, and rule base, generally contains 10,000 to
100,000 historical transactions (Fig. 3). The current activity file is of
the same form, but it contains transactions to be processed through the
inference engine, Sense.

The kernel is given a description of the history and activity files
via a format definition file. Users can create t is format file
interactively from within W&S.

VMS ALAP uses '"image terminacion' records from the VMS accounting log
as its transaction source. These very useful auditing records are readily
available without undue systems overhead for collecting them. (The actual
typed command line would be useful as well, but auditing the command line
poses special problems under VMS.)

We extract 16 fields from the standard image termination records, 12
nf which are used for rule base genera:ion, and the rest for display only

(Table I).



0l

Format Picks
File Flie Historical
Data
‘ Dictionary
N

O < 0.1 Megabyts
MAPPING

Historical AND
Transaction|———*
Dale CONDENSING C D

SOF TWARE Condensed
N Historlcal

S50 Megabyles Transaction
Data

N~

1 — 2 Megabyte

Fig. 3. Condensing an historicel tramsaction file (typical file sizes
on a 100,000 record VMS historical transaction file as input).



TABLE I

IMAGE TERMINATION RECORD FIELDS
USED IN VMS ALAP W&S

Field Name Metric Cormment

Privl no first 32-bits of the privilege mask
Priv2 no last 32-bits of the privilege mask
Status no 32-bit program return code

Dir_I0 yes Direct I/0 - 512 byte blocks
Buf_IO yes Buffered I/0 - 512 byte blocks

CPU time yes CPU milliseconds used

Username no User's login name

Image no Full name of the executed program
Day no Day of the week

Hr no Hour of the day

Terminal no I/0 port name

Node name no Network node uname, if any

Node ID no Netwerk user ID, if any

The fields used for rule base generation are identified Ly a "'picks"
file, which is intaractively created or modified from within W&S. The
user specifies a format file, then picks up to 31 named fieids in the
format definition.

For each picked field, an optional mapping function can ba
designated. Mapping covers vperations such as ASCII to integer
conversions, integer to ASCII, numeric scaling, shifting character strings
to upper case, string truncation, floating point to integer, etc. Proper
mapping and data typing is important to obtaining a good rule base. For
example, the day of the month !n the tine stamp of a transaction could be
treated ad & metric integer. We find it better to map it to a day of the

week and treat it as a categorical value (Fig. 4,.

C. Rule Base Geperation

We obtain high performance in rule base generation by condensing the
historical file, 80 that it can reside in random access memory during the
entire process. This condensed historical data {s processed through the
Wisdom rule base generator module, which bullds a forest of rule trees.
The gtructure uses nodes of two alteruating types. One type designates
fields and can have up to 32 branches. The other designaies "normal

field values, and has at most 295 branches (Fig. 1.). Together, the two



DAY OF WEEK
" 16 SEPT 1988 '— MAPPING +—— " FRI "
FUNCTION

UPPERCASE
“Bob " —— MAPPING |{—— " B0B"
FUNCTION

LOGICAL PORT
v L TA921 '—{ MAPPING |—— " LA "
FUNCTION

Fig. 4. Example mapping functions.



node types compose a rule base "level'"; thus the topmost level can have up
to 8160 (32 x 255) branchea. We typically limit depth to 4 or 5 levels,
80 the tree forest is very Lroad (with an upper limit of 2.6 x 1019
leaves at level 5). Pruning algorithms ensure that the actual generated
rule base is of acceptable size.

Rules stored in this forest require an average of 6-8 bytes each.
This is achieved by massive sharing of rule base data by rules with
similar structure, and through the use of the data value dictionary
created when the historical data is condenased.

The rules themselves are generated bty repeatedly sorting the
higtorical data and examining the frequency of field values within sorted
subgets of the recorda. Because we represent our condensed historical
data via 1- or 2-byte fields, linear-time radix sorts can be applied.1

and the in-memory sorts are very fast

1. Metric Data Clustering. Rule-building on metric fields uies a
simple, ad-hoc clustering algorithm. The sorted data are viewed as a
histogram, with the histogram bucket widtha being variable, but wlth each
bucket containing roughly the same number of points. The target aumber of
points per bucket is given by an empirically developed function of the
total number of pointa and an estimated anomaly fraction. The widest
buckets represent the portions of the number line with the lowest data
point density (i.e., the unlikely values) and are tagged as "anomdalous"
ranges until a target for total anomalies is reached approximately.
Adjacent non-anomalous rangcs are combined to yleld -~ontiguous "accepted"
ranges (Fig. 5). The rule, if kept, then defines these ranges as normal
vialues for the element given the LHS.

The metric elemer. algorithms were originally tested on simulated
normal and multi-normal dletributed data with good results. Importantly
for this application, tha algorithms work well with multi-modal data and
do not require normally distributed data. Furthermore, the computatlional

time 4 mumall,.

2. Non-Metric Data Cluaster'ng. For non metric tiolds, the least
frequent values are tagged an “anomal fea” up to approximately a targ-t

percentage,  This target In based on expert judgment as 1o the Hikely

11



9N

+

Frequency Accepled Cluster Accepted Cluster
No. |

No. 2
| e l— -
|
" M
= —
r— o
= N —
W p—

2

=T

(%)

:}TJ [1] [;Lﬂ [ “,‘E’j H [lelelseslz] 2l |

1_1 .
| 2 '34567'8 9 ‘oNE LB W B ™ 7

Tk 1 10, e

1 |

Eimwote the widest bucests (| 17 .9 ond 2 untl approwimaotely the torgst (20X number of cbservotions ore discaorded

Fig. 5. Metric data clustering heuristic {100 observations, bucket size 6).



number of anomalies in each field. (Choosing 0% for each field would mean
that the expert believes there are no anomalies in the historical data for
that field.) The values not tagged are considered acceptable, and make up

the RHS of a new rule, if the rule is kept.

3. Rule Grades. Each rule has a grade which is a measure of the

historical accuracy of the rule. This grade, G, is calculated as:

G = (int)losz [11___2) X D]

where T is the total number of observations, A is the number tagged as
anomalous, and D is the current rule base depth. The +2 in the numerator
and the +1 in the denominator result from an assumed unifnrm a priori
distribution for the grade. See Ref. 2 for computational details.

The grade can be thought of as approximately

logzlhistorical odds that the rule was violated]

+ logzldepthl

The second term biases the grades in favor of more specific rules, l.e.,

those with longer LHS's.

A. Pruning. Tree prunlug ensures that the rule base contalna
predominantly "worthwhile" rules, and that it avoids exponential growth,
[deally, each rule should add at lcast some specified minimum amount of
new information to the rule base. Here Is wktat we have found practical
tor small (10,000-40,000 records) VMS accountlng log flles:

(1) Rules with a grade below a threshold (typlcally ) are dlacarded,

pruning tha tree at that polint.



to:

(2) Rules with too many diffe.ent acceptable val ies are diucarded.
The thresholds depend on the current tree depth. We currently
uge:

(# unique values) x (depth - 1) ¢ 13
The firat, unconditional rules generated from the root of the
rule base are at depth 1, and therefore are permitted to have the
maximum number of branches (acceptable values)--255. Rules at
depth 4 could have only 4 acceptable values.

(3) A rule whose LHS is a permutation cf another rule's LHS is
d ' scarded.

(4) A rule whose RHS matches the RHS of another rule and whose LHS is
a superset of that rule's LHS is discarded unless it has a higher
grade.

(5) The rule is kept, but further growth is pruned if there is only 1
value allowed by the rule;

(6) Any rule's value with fawer than 30 + 50/(depth+l) observations
is not permitted to grow new branches;

(7) No rules below level 6 are generated.

Transaction Analysias

The Sense modules (Fig. 6) provide an interactive, windowed interface

. the kernel's inference engine,
. transaction analysis tools,
o conflguration settings, and

. rule bagse maintenance routines.

Its moat important function, the datection and display of transaction

anomalles, makes use of the rule base and dictlonary generated by Wiadom

and the Inference englne described below.

Sense, the anomaly detectlion module, Looks at a new transactlon,

finds the rules that apply, and syntheslizes a transaction score.

Normally, data that are newer than that used for rule hase generation

would be processed. However, the hiitorical data must atill be

repragentativa of the new data; {t not, a naw rule bare needs to be

generated from aore ropresceatative (typleally newer) dala,



{1

— Run

— Analyse
— Maintain
— Select

— Suggest ...

-

| Format Pickes
File

3
-
C D SENSE
N
O

OPERATOR
CONSOLE

~

(
&

Fig. 6. Inferencing, analysis, and maintenarce modules.




The frequency with which rule bases need to be replaced depends on
the stability of the system being monitored. On multi-user computer
systema, processing new transactions against rule bases mnore than a few

weeks old tends to produce unacceptably high anomaly rates.

l. Scoring Transactiona. As each transaction is processed by
Senae, it computes a scoring function result for each field, for the
transaction as a whole, and for any thread to which the trangaction
belongs. The score for each picked field is a function of the grades of
each rule violated and each rule obeyed. & transaction score, or FOM, of
0 describes a trangaction that is "perfectly normal" in every field.

A transaction fires a rule if the rule's LHS is sa:isfied by the data

in the transaction fields. Thus, a rule of the form:

User Bob and Day Tue and Terminal OPAl implies with grade 7
either Image BACKUP or INIT or AUTHORIZE

would fire only if the transaction was for Bob using the console OPAl on
Tuesday. If Bob executed an image other than BACKUP, INIT or AUTHORIZE,
the rule would be failed.

2. Transacticn FOM. The transaction FOM is the weighted sum of the
FOMe for each picked fleld (negative FOMa are set to 0 before summing).
The FOM for each element ig approximately the sum of scores for falled
rules minus the expected sum normalized by the ayuare root of the variance
of this sum. In calculating these moment:, we ignore the depth adjustment
to a rule's grade, and we assume that 211 rules are independent.

More precisely, for each field i, let:

Nl = number of flred rules,

Ki = number of talled rules, and

. 1 .
G = Lhe grade of the ]ll rule tired on RUS tleld |,



S th
S.. = the score (2 "7) for the }  rule fired on
ij

RHS elements,
S1 = the sum of scores (sij) for all fired rules, and

Fi = the sum of scores for failed rules.

Then FOHi. the score for element i, :s computeu as:

F. - E[F,]
FOM, = 1 i
/variance[Fil

The expected value and variance can be calculated from:

N
i
E(F,] = ] Loys = N, assuming independence
{ s 1] 1
j=1 ij
and
2 2 2 2
variance[Fil a E[Fil - E [Fi] a E[Fi] - Ni
2 Nl 1 2 Ni
E[F{] =E |} - xS§ = 3 S, + (N, -1) xN
1 S 13 . i i i
j=1 ") R
and

Tharefore



The transaction FOM for a record with M picked fields ia then given by:

M
TFOM = } max(FOM,, 0) x W

1 ]
120 i

where H1 is the importance factor for the field i.

The thread FOM takes into account the scoring history of each
transaction in the thread. FOMs for previous transactiong in the same
thread are decayed and then added to the current transaction FOM. The
result after T transactions in the thread i1s computed as:

T

T-t
FOHT-tEoTFOHtxd -TFOHo-o-TFOHlxd .

vhere TFOM,, is the FOM for the most recently observed transaction in the
thread and_d is some guitable constant between 0.0 and 1.0. With d near
0.0, only the ci1srent transaction carries siguificant weight. With d near
1.0, the thread FOM approaches the sum of all transaction FOMs for the

thread processed so far.

3. Anomsly Detection. Sense finds an anomaly whenever either the
transaction or thread FOM exceeds an operator-set limit. Transaction
evaluation times are roughly proupy..tional to the log of the number of
rules. Thus a very large rule base nuid not be slow. W&S handles rule
bases of up to 500,000 rules, averaging ..0-9.0 bytes per rule and
20,000-40,000 rule firings per second. Typical transactions on thess
large rule bases have fired approximately 1% of the rules, resulting in
measured performance ranging from 20-40 transactions per second for more

typical (for W&S) rule bases of 100,000 Instantiated rules.

4. Real-Time Issues. A scrlous Impediment to real time detection,
discussed by I)ennlng.j Is the difficulty of assembling sesaion and

michine activity data {oto usable trandgactlon records. Exlsgting operating

20



system accounting software simply cdoes not make the jnb straightforward.
As a minimum, the anomaly detection software will probably have to wait
until the accounting software has written its data to disk. Highly

buf fered data may be written too late for real-time analysis. (For
example, we experience buffering delays up to 9 minutes on our VAX running
VMS 4.5.) Or, if data ‘rom separate accounting files (e.g., disk
activity, user image evecutions, and keyboard input) must be matched and
assembled, real-time msy not be possible, or may be feasible only with a
lower detection sensi:ivity (by treating each accounting data stream

independently).

5. Anomaly Resciution. Anomaly resolution is the task of
explaining the meaning and likely cause of an anomalous transaction. W&S
attempts to provide information useful in this task; nonetheless, it is
primarily one tha’ must be accomplished by a human.

W&S currently offers four significant aids to anomaly resolution:

. Identification of the data in a transaction that appear to have

triggered the anomaly;

e Listing of the violated rules that triggered the anomaly

determiration;

» Providiiug a chread history;

e Suggesting what data specific fields would have avoided the

anomaly deteri.ination.

Each of thece aids builds upon the inferencing process juat described.

VI. CONTINUIl: EFFORTS

W&S i8 row undergoing operational tests in two computer security
environments and one process monitoring enviconment. Preliminary results
have shown that the software does periodically detect anomalies of high
interest even in data thought to be free of such events. Thus far, we
have tested ouly trivial intrusion scenarios (with successful detection).

We hope to test the effectiveness of W&S on a wide variety of planted



anomalous events during the current year. Futhermore, several
enhancements, such as hy.rid rule bases consisting of user-defined rules
inserted into the generated rule base, will require extensive evaluation.
Nonetheless, it is already clear that the anomaly detection approach
in W&S is effective for a wide range of applications where large volumes
of repetitive data are generated by some chemical, mechanical, electrical,
or biological system and where anomalous events are of intereat. The
heuristics employed in W&S make a reasonable comprimise between
computational accuracy and full use of available information, especially

categorical and threaded data.

ACKNOWLEDGMENTS

I wvould like to thank the intrusion detection team at SRI
International, especially Teresa Lunt and Hal Javits, for their
encouragement and constructive comments on W&S. Gunar Liepins at Oak
Ridge National Laboratory has generated the ideas for several important
enhancements now in the W&S software. At Los Alamos National Laboratory,
I am especially indebted to James Tape and Jack Markin for urging me to

pursue this work and for their continuing support of our R&D efforts.

REFERENCES

l. Donald E. Knuth, The Art of Computer Programming, Volume 2:
Seminumerical Algorithms (Addison-Wesley Publighing Company, Reading,
Massachusetts, 1969).

2. Ronald A. Howard, '"Decislon Analysis: Perspectives on [nference,
Decision, and Experimentation,”™ Proceedings of the IEEE, Vol. 58, No.
5, 632-643 (May 1970).

3. D. E. Denning, “"An Intrusion Detection Model', [EEE Transactions on
Software Engineering, Vol. SE-13, No. 2 (February 1987).



