
A major purpose of the Techni-
cal information Center is to provide
the broadest dissemination possi-
ble of information contained in
DOE’S Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

.
LPMJR--88-3656

I
pEFj9 003607

,,’. /
.,

TITLE DETECTION OF ANOMALOU$ COMPUTER SESSION ACTIVITY

AUTHOR(S) Henry S. Vaccarc, N-4

‘; II I! MI1l ID 10 1909 IEEE Syrnposiunl on Research in Security and Privacy
Oakland, CA
Nay 1-3, 19[19

I)IM’1.AIMER

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

DETECTION OF MJOHMA)USCOMPUTERSESSIONACTIVITY

He S. Vaccaro
Safeguards Systems Group

Los Alamos National Laboratory

DETECTION OF M(MMA)U5 COMPUTER SESSION ACTIVITY

I. IMMXXJCTION

This paper describes recent Los Alamos National Laboratory (LANL)

applications of research into automated anomaly detection, ~ In the

context of computer security; anmnaly detectio~ seeks to identify events

shown in audit records that are inconsistent with routine operation and

therefore may be indicative of an intrusion into the computer, serious

human errors, or malicious behavior by a legitimate user. Acce8S by an

intruder, execution of “Trojan horses” and “viruses, as well 7.smalicious,

destructive behavior are all assumed to produce anomalous events that are

recorded in a computer audit trail. This trail, perhaps with augmented

data collection capabilities, is processed, in real-time, to detect such

eventr, alert a knowledgeable computer security officer to the threat, and

help resolve the situation.

II. BACKGROJWD

Despite recent mjor improvements to operating system security,

available computer security features still are not good enough to detect

many anomalous behaviors by computer “users” in time to prevent or

minimize any damaging activity. The risks from stolen passwords and

privileges, for instance, are still of great concern. Current computer

security system~ do not in general protect againet:

● An impoater who gains arreun tc.n legitiu.ke nrrn~~nt nnd

environment.;

● A legitin.at.euser taking advantage of mistakes in the

(.onfjguration of sy~tem security measures;

● A highly privileged (iuerbehavtng destructively;

● An executable pro~l”am LhiittmH beI:IIt.nmpvrt?d,thrc)ilgllother

In practice, existing computer security systems are not necessarily

configured effectively, o additional weakr,esses typically exist.

Ironically, these same improper activities would gen~rally be

detected by an experienced human security officer using information cm

what was done and what resulted. In doing so, we believe that the

security officer goes well beyond the inflexible application of “rules”

describing intrusion scenarios.

● The experienced human recognizes the difference between “normal”

behavior and “abnormal” behavior.

● When abnormal behavior is spotted, the security officer searches

for “rules” of conunon sense to determine whether the

abnormalities are important.

● If no rules fit exactly, new rules are devised on the s~ot by

analogy with related situations.

8 Then, if the officer concludes that the anomalies pose a risk,

some sort of investigation begins.

9 Depending on the outcome of this investigation, the new “rules”

might be rejected or adopted. Similarly, his/her perception of

normal ~ehavior may be updated.

This is fundamentally the same approach we are trying to implehleut in

software.

111. SOLUTION APPROACH

If behavior (e.g.,

normal patterns, and if

of a user or an executable program) differs from

data indicating the difference is coilectwd, it

should be possible to compare the new “different” data with the normal

patterns and detect the anomaly. The problem can be solved by creatin~,

in effect, specialized profiles of computer users, ports, executable

software, privileges, time slots, etc., and determi~,il~gwhether the i~e~

data violates the!~eprofiles

We accomplish this pro} iling t:~skV{ii tleuri~tics. SC?l($(:ted

hist[)rical dfita i:t used to gc?Ilcr;itf* ii Lr@e--#tr\l(’t(lrf?(i,{Ilst;lntIatt?dr~ll‘

1~/\Hedescrlbll)g hititt)rtralIw?tuivlt)rlmttPIi)~ ttlatwere sigllili(’:4nt.‘i’tIt!

rules define what was rlormal for the values in particular fields of the

historical audit transactions, conditioned on combinations of the data in

other fields of the transactions. Such data values may be computed based

upon the contents of a series of related transactions (Fig. l).

Chief among the factors that led us to this approach, as opposed to

more classical pattern matching or statistical approaches, are

● Most of the audit data are non-metric, categorical information

such as user names, privileges, action descriptions, access

points, etc.

. Computer activ~.ty data has a significant random component; that

is, the data is very noisy.

● Computer user activity exhibits transient as well as cyclical

behaviors.

● Usage patterns drift as users become more experienced or

gradwaliy change the focus of their computer efforts.

9 Farts of usage patterns abruptly change as users begin new

projects, change offices, and restructure their computing

environments.

These characteristics led us away from numerical approaches such as

n-dimensional clustering toward new heuristics that were fundamentally

categorif-al and which placed restrictions on what is considered “normal”

rJt~lywhen there was sufficient applicable history. These factors also

dictated that our approach be tolerant of conflicting historical behavior

patterns.

‘fheheuristics attempt to mimic in software part of the human

le:,rningand decision ma~ing process, and allow for expert opinion to

supplecwnt ur modify the machille-lear~ledinfurn~tiuo. We make pi-ovisiou

for display of Lhe factors contributing to a computerized decision so that

,anexpert can verify the decision. Finally, we use the learned patterns

us a predictive tool to help the e::pert,resolve anomalies by presenting

[)orl--~i:~~mai~us ~l,ternatives to Lhe uhserved activity.

bQh2255fMdwiuoor
Vck!ofulgohrmldw

—.

Fig. 1. U6S rule base struc:ure.

IV. EXPLANATION

In our solution, a leaining program exa!mines a history of discrete

system activity (individual commands, file accesses, etc.) to generate a

production-like rule base by induction. The rule base it generates may be

edited or supplemented by an expert to braaden its coverage or improve its

decisiveness. The rule base is then applied to system activity

transactions, either in batch mode or real-time, to determine which

activity, or series of activities, is abnormal when viewed against the

applicable patterns instantiated in the rule base. Naturally, the data

used to build the rule base contains some anomalies, so these are

heuristically filtered out of generated rules.

The rule base also reflects the quality of the behavior patterns it

has learned. Patterns that occurred more often or with less noise have

stronger grades,

A rule’s strength is stored along with the conditions under which it

applies (called the left-hand-side or LHS) and the implied conclusion

(right-hand-side or IiHS). A LHS in our approach is a series of field

values or value rangeJ, or computer values based upon data in a series of

related transactions (for example, mean time between some event type), or

subroutines returning a boolean value. A given transaction satisfies the

LHS and “fires” the rule if its values match those for the fields in the

LHS a.~dany subroutines in the LHS return true. Then we determine whether

the transaction satisfies the rule’s RHS conclusions.

We refer to the RfiSas Lhe rule’s restriction, because it restricts

what is considered “normal” for a transaction. Thus, our approach

generates rules about the appropriate contents of transaction fields based

on the contents of other fields in the same transaction or data derived

from a sequence of related transactions. The latter is accomplished

through a mechanism we call threads. Threads can access data for several

reiatcd transactions to compute data such as a moving average of the time

between login failures on a parti<.ular port.

For Any collection of historical audit Lrallsactions, the derived rule

h:isem~lst have at least one thread. B;isi(”ally,(?acb thread has a figure

of merit (FOM) whlrh is the sum ot time -der.~yedr’OMsfor t.ransacti)ns 0[1

t.llt!ttlr(’;i(!. one t]bvjollsthre;{d tll:ltWI:till(ivt,f-yimp(~r-tf~lltis d (Lser--l)ort

thread. Ezch time a specific user logs into a particular port, the thread

continues. Thus, slightly anomalof~s transactions for the same user arid

port across several logins can lead to a user-port thread anomaly.

Program-user threads and privilege threads also are of high interest.

The RHSS are limited to three basic forms:

0 A list of acceptable categorical, non-metric values for a

particular transaction field (e.g., the normal work days of the

week).

● A list of acceptable ranges for a continuous, metric transaction

fieid (e.g., the normal amount of disk 1/0 activity).

● A list of user-defined functions to be executed until one returns

a true value, meaning the RHS is satisfied, or the end of the

list is encountered, meaning the kHS is not satisfied.

In the absence of rules restricting, say, normal computer ports, any port

is considered normal. This may seem risky, but it is the same way that

humans wGrk.

Still, there are in general tens to hundreds of thousands of rule

instantiations on a major subject such as behavior on a computer system.

The rules vary from very general (e.g., the valid ports are PI, P2, ...

Pn) to very detailed (e.g,, On Tuesday between 6:00 am and 7:00 am, when

the user has system operator privileges and is using port P3 only commands

that cause very little direct disk activity are used) (Fig. 2). Also as

with human experts, very specific rules carry more weight in rwking a

decision, provided that they are still based on clear behavior patterns.

An expert usually takes many paths to arrive at a conclusion (e.g.,

the normal disk activity might be inferred from the user and time of day,

or frnm the account number, or from the program being executed). A rule

base is built the same way--it is highly redundant. Thus, the inferencing

process reaches its conclusion about the normality of an audit record

along many different reasoning paths, resolving conflicts through a

weighting and scaling process.

An audit record field that violates many conclusion (RHSS) as to its

normal content is considered anom~lous. [f the record contains several

anomalous fields or a highly anomalous field, the record is anomalous. If

a series of related records, say those tor a particular user’~ se~siorl,

ilr~?anomalous, the entire session is [’o~lsitlert?danomalous.

f)

Left Hand S~de Grade Right Hand Side

Username ARY Prlvl 10148001

Prlvl 1014I3OO1

Privl 10148001 Prlv2 00000008
DIR_IO 0:378

Prlv2 00000008 Prlvl 10148001
CPU_ttme G:370

Prlv2 00000008 Prlvl 10148001

Day “Wed” prlvl 10148001

Terminal TXC3 Prlvl 10148001

Username O!?EN

.7>

=6>

.7>

.7>

=7>

=6>

.7>

.6>

Image AUTHORIZE SET SHOW

Image AUTHORIZE SET SHOW

Image AUTHORIZE SET

Image AUTHORIZE SET

Image AUTHORIZE SET SHOW

Image AUTHORIZE DELETE SET SHOW SYSGEN

Image AUTHORIZE SET SHOW

Image AUTHORIZE COPY DELETE DIRECTORY
LOGINOUT MAIL QUEMAN SET SHOW
SUBMIT VMSHELP

Fig. 2. Examples of image “AUTHORIZE” rules generated by W&S.

v.

data

SOF1’WARE IKl?LIMENTATION

These concepts are now implemented in three main software sections: a

preprocessor, a rule base generator, and a transaction analyzer.

Collectively, we refer to the software as Wisdom and Sense or simply W&S.

Our implementation of these concepts has enabled the rule base to be

stored in memory as a highly compressed tree structure using 6-7 bytes per

rule, and the inferencing process to be real-time, firing roughly 20,000

rules per second on a $10,000 computer workstation.* Typical rule bases

require 0.5-1.0 Mbyte of memor] and can process about 20 transactions per

second on the same workstation.

A. Design Criteria

We designed the anomaly detection software to embody the

following capabilities:

●

9

●

●

●

●

●

-)

●

0

●

Reduce raw audit data to more usable forms;

Builci its own rule base without human guidance;

Store and use very large, instantiated rule bases efficiently;

Tolerate conflicting rules;

Deal with uncertain and erroneous knowledge;

Continue to learn from experience, and adapt to transient

cor.ditions;

Accept hunwn modifications to its rule base, but not be overly

dependent on scarce human expertise;

tike real–time~ graded decisions regarding anomalous behavior;

Provide human-readable feedback on anomalies to aid in anomaly

resolution;

Create minimal interference ~ith the real functions of its host

sy8tem;

Be portable to different applications, operating systems, and

hardware.

Most of these design criteria have been attained in our software.

HoweveI, there remain many gaps in our ability to detect anomalous

computer activity, and determine whether the anomalies are significant.

————_ —___ -._.
*A1l perf~rman~e figures are for an IBM XT Model 6151-125 with an Advance{i

Floating Point Accelerator. The uperating system is IBM’s AIX Version 2.1.

8

We need more experience in operating environments, and w~th simulated

intrusions, before we can design additional analysis tools for this

purpose and properly t~me W&S.

A difficult problem is that computer operating systems do not

gener ‘ly capture the right data for analysis. Furthermore, the amount of

data potentially available can easily overwhelm any anomaly detection

scheme, so we will have to choose data of’ the greatest value.

B. Ikta Preprocessing

For any given application, Wisdom is configured to read a specified

fixed record format sequential file. VMS ALAP W&S is one such application

that has been heavily tested so far. The VMS ACCOUNTING.DAT file used by

VMS ALAP W&S is not in this commercial form, so VMS ALAP includes a

special filter to perform VMS file 1/0 and data conversions resulLing in a

fixed record format. The filter is run as either a batch job to convert a

large ACCOUNTING.DAT file or as a VMS AMP file 1/0 subroutine to convert

new additions to the accounting file in real-time. In either mode, the

converted records are placed into a correctly formatted WS file.

The historical transactions file, used by Wisdom in building a

dictionary, condensed file, and rule base, generally contains 10,000 to

100,000 historical transactions (Fig. 3). The current activity file is of

the same form, but it contains transactions to be processed through the

inference engifie, Sense.

The kernel is given a description of the history and activity files

via a format definition file. Users can create t’{s format file

interactively from within W&S.

VMs ALAPuses “inbage termina~ion” records from the VMS accounting log

as its transaction source. These very useful auditing records are readily

available without undue systems overhead for collecting them. (The actual

typed comnand line would be useful as well, but auditing the comnand line

poses special problems under VMS.)

We extract 16 fields from the s~andard image termination records, 12

of which are used for rule base generation, and the rest for display only

(Table 1).

Historlcd

lhmsaction ‘ t

Data

QFormat

Fila

A

50 Uogabytas

Picks
m

Tw w

MAPPING

AND

CONDENSING

SOFTWARE

/

l.-
Hltirkd

Data

Dkttiy

/

< 0.1 Megabyta

Condonsod
H!storkd

Tmlsoction

uData

1- 2 Mofpbyte

Fig. 3. Condenshg an historical transaction file (typical file sizes
on a 100,000 record VMS historical transaction file as input).

. .

TIBLE I

IMAGE TERMINATION RECORD FIELDS
USED IN VMS ALAP W&S

Field Name

Privl
Priv2
Status
Dir_IO
Buf_IO
CPU time
Username
Image
Day
Hr
Terminal
Node name
Node ID

Metric Comment

r.o
no
no
yes
yes
yes
no
no
no
no
no
no
no

first 32-bits of the privilege mask
last 32-bits of the privilege mask
32-bit program return code
Direct 1/0 - 512 byte blocks
Buffered 1/0 - 512 byte blocks
CPU milliseconds used
User’s login name
Full name of the executed program
Day of the week
Hour of the day
1/0 port name
Network node name, if any
Network user ID, if any

The fields u~zd for rule base generation are identified lJya “picks”

file, which is int~ractively created or modified from within W&S. The

usec specifies a format file, then picks up to 31 named fields in the

format definition.

For each picked field, an optimal mapping function can be

designated. Mapping covers operations such as ASCII to integer

conversions, integer to ASCII , numeric scaling, shifting character strings

to upper case, string truncation, floating point to integer, etc. Proper

mapping and data typing ia important to obtaining a good rule base. For

example, the day of the month In the tine stamp of a transaction could be

tzeated a~ a metric integer. We find it better to map it to a day of the

week and treat,it as a categorical value (Fig. 4,.

c. Rule Base Generation

We obtain high performance in rule base generation by condcn~ing the

hjatorical file, so that it can reside in random a(!cess Memory dUCirlg the

ent{re process. This condenHed historical d~ta 1s proces~ed tl~rougt~the

Wisdom rule base generator module. which buildti M forest 0[r~ll.ctrees.

‘rhe~tructure uees nodes of two nlteruntlllg types. one tyP@ d(?Ni~IIAt(!ti

Iieldll Ilnd [’fin hnv!? lip to)2 hr.’il)(’tlvti. ‘rile [)thot’ dt!lli~l)n LPN “110?”111/11’”

li(~ld vnl~lt~s, ;111(! 11;1s ;11 most 2L)j 111’JIII(’II(*N (Fig. 1 .). ‘ro~vthrrl (11($ two

II

-rDAY OF WEEK
“ 16 SEPT 1988 “ MAPPING e “ FRI “

FUNCTION

4 UPPERCASE
“ Bob “ MAPPING

FUNCTION

-t

OGICAL POR1
“ LTA921 “ MAPPING

FUNCTION

—4 “ BOB “

Fig. 4. Example mapping functions.

node types compose a rule base “level”; thus the topmost level can have up

to 8160 (32 x 255) branchea. We typically limit depth to 4 or 5 levels,

so the tree forest is very Lroad (with an upper limit of 2.6 x 10
19

leaves at level 5). Pruning algorithms ensl!re that the actual generated

rule base is of acceptable size.

Rules stored in this forest require an average of 6-8 bytes each.

This is achieved by massive sharing of rule base data by rules with

similar structure, and through the use of the data value dictionary

created when the historical data ia condensed.

The rules themselves are generated by repeatedly sorting the

historical data and examining the frequency of field values within sorted

subsets of the :ecorda. Because we represent our condensed historical

data via 1- or 2-byte fields, linear-time radix sorts can be epplied,L

and the in-memory sorts are very fast

1. Ihtric Ihta Cluaterimg. Rule-building on mtric fields uties a

simple, ad-hoc clustering algorithm. The sorted data are viewed as a

histogram, with the histogram bucket widths being variable, but with each

bucket containing roughly the same number of points. The target i~umber of

points per bucket is given by an empirically developed function of the

total number of points and an estimated anomaly fraction. The widest

buckets represent the portions of the number line with the lowes~ data

point density (i.e., the unlikely values) and arc taggad as “anomdlous”

ranges until a target for total anomelie~ is reached approximately.

Adjacent non-anomalous ranged are combined to yield ?ontiguoua “accepted”

rangea (Fig. 5). The rule, if kept, then defines these rnngen aa n~rmal

value- for the element given the LHS.

The metric elemeni algorlthmti were originally teoted on almulated

normal and multi-normal dlmtributcd dntn with good results. [mportalltly

for thin application, the nlgorl~hms wt,rkwell with multi-modal data nnd

do not roquiro normally dlHtrlbuLc:d d:IL/i. FurLl~ermora, the computntlonnl

Fflxpw y

8

6

4

2,

JI
21

Accepleo cluster
m. 1

LLII-EL’ 1 “ 1-[
2

I I 1 1 1 1

1 I
2 ‘3’4’5’6%’ 9-

~lme~(tf7s muadl~ Eutqd

Fig. 5. .Metric data clustering heuristic (100

~--d--rnm~

observations, bucket size 6).

nunber of anomalies in each field. (Choosing O% for each field wouid mean

that the expert believes there are na anomalies in the historical data for

that field.) The values not tdgged are considered acceptable, and make up

the RHS of a new rule,

3. Rule Grades.

historical accuracy of

if the rule is kept.

Each rule has a grade which is a measure of the

the rule. This grade, G, is calculated ae:

where T is the total number of obaarvationa, A ia the number tagged aa

anomaloua, and D is the current rule baae depth. The +2 in the numerator

and the +1 in the denominator result from an aaaumed uniform a priori

distribution for the grade. See Ref. 2 for computational details.

The grade can be thought of as approximately

log2[hiatorical odds that thn rule waa violated]

+ log2[depth] .

The second term biaaea the grades in favor of more specific rules, I.e.,

those with longer LHS’S.

h. PMing. Tree prunil]gen~ure~ that tha rule baaa contaln~

predominantly “worthwhile”’ rules, nnd that it avoida exponential growth.

[deally, each rule should add at latiatFJome specified minimum nmount of

IIVW information to the rule base. Here 1s wt-ntwe havr found practlral

tur small (10,OOO4O,O(.)O rerordm) VMS arcuuutlng log Fileu:

(1) llule~ with n grade bel~~wn Ltlrrnh(]ld (typlrIIlly “I)nre dlticnrdr,l,

~)r~lnln~Lhn tree [it thnt pl)in~.

(2) Rq.:leswith too many diffelent acceptable vanes are discarded.

The thresholds depend on the current tree depth. We currently

use:

(# ‘niqme values) x (depth - 1) c 13

The first, unconditional rules generated from the root of the

rule base are at depth 1, and therefore are permitted to have the

maximum number of branches (acceptable values)--255. Rules at

depth 4 could have only 4 acceptable valuea.

(3) A rule whose us is a permutation cf another rule’s LHS is

d’scarded.

(4) A rule whose RHS matches the RHS of another rule and whose LHS is

a superaet of that rule’s LHS is discarded unless it haa a higher

grade.

(5) The rule is kept, but further growth is pruned if there is only 1

value allowed by the rule;

(6) Any rule’s value with fwer than 30 + 50/(depth+l) observations

ia not permitted to ~row new branches;

(7) No rules below level 6 are generated.

!). Tramaactlon Analyaia

The Sense modules (Fig. 6) provide an interactive, windowed interface

to:

● the kernel’s inference engine,

● transaction analyoia tools,

● configuration aettinga, and

9 rule baae maintenance routines.

Its moat important function, the detection and display of tranaactlon

unomillaa, makea uae of the rule baoe and dictionary genertitcd by WlaJom

nnd the Lnference engine daacribed below.

s,enae, the mnomnly detection modllle, looks at a new tran~act!on.

t’lndathe rules ttmt ripply, nnd sylithe~lzea iILransa[mtl(]nNcorc.

Normnlly, datn lhiit Hre Ilewer LhAIl lhmt,!int?dfor rule Iliitic~ullernLl~)ll

would Iw prol’eHMt!d. Ill)wever,(he tIIILOI-l[’nl (Iata rnlutt f#tili tlo

rcprmnc!nLaLlvn of (ho !WW d:Iln; !f INI1, d l~nw I“lllc t)l\Al? llc?vda 1!) he

~otlernt,rdI’t”om,Il{)re rt?prrmwlllflt I v- (typl[’nlly Ilrwrr) ,1411,1.

I ()

R

\

IJm

SENSE
– Run I r]

R& m – Analyse “ W’ERATCM?
●

4

– Mairdain
coNsa.E

I – Select

Fig. 6, Inferencing, analybis, and maintenance modules.

The frequency with which rule bases need to be replaced depends on

the stability of the system being monitored. On multi-user computer

systems, processing new transactions againet rule Lases more than a few

weeks old tends to produce unacceptably high anomaly rates.

1. Scorhg Tranaactiona. Aa each transaction is processed by

Senne, it computes a scoring function result for each field, for the

transaction as a whole, and for any thread to which the transaction

belongs. The scorg for each picked field is a function of the grades of

each rule violated and each rule obeyed. A transaction score, or FOM, of

O describes a transaction that is “perfectly normal” in every field.

A transaction fires a rule if the rule’s LHS is sa:isfied by the data

in the transaction fields. Thus, a rule of the form:

User Bob and Day Tue and Terminal OPA1 implies with grade 7

either Image BACKUP or INIT or AUTHORIZE

would fire only if the transaction was for Bob using the console OPA1 on

Tuesday. If Bob exec’lted an image other than BACKUP, INIT or AUTHORIZE,

the rule would be failed.

2. Transaction FM. The transaction FO!I is the weighted sum of the

FOMS for each picked field (negative FOMS are set to O before suming).

The FOM for each element 1s approximately the sum of scores for failed

rules minus the expected sum normalized by the square root of the variance

of this sum. [n calculating these moments, we ignore the depth adjustment

to a rule’s grade, and we aesume that nll rules are independent.

More precisely, for each field i, let:

IH

G.

‘ij
= che score (2 lj) for the j,thrule fired 011

RHS elements,

‘i
= the sum of scores (Sij) for all fired rules, and

‘i
= the sum of scores for failed rules.

Then FOMi, the score for element i, :s compub% as:

Fi - E[Fi]

FO?4i = .
~variance[Fi]

The expected value and variance can be calculated from:

::(-+(%j)=%E[f$ = ~ asacmin~ independence

and

variance[Fi] = E[F~] - E2[Fi] = E[F~] - N;

and

variance[Fi] = S1 - Ni .

Tharefore

FOMi =
‘1 - ‘1

.
J’(SI - N\)

The transaction FOP! for a record with M picked fields is then given by:

where Wi is the importance factor for the field i.

The thread FOM takes into account the scoring history of each

transaction in the thread. FOMa for previous transactions in the same

thread are decayed and then added to the current transaction F(IM. The

result after T traneactiona in the thread is computed am:

F~=~ TF(Mlt x dT-t = TFOMO + TFCMll X d ,
t=o

where TF~ is the FOR! for the most recently observed tramaction in the

thread and-d i- 00M suitable constant between 0.0 and 1.0. With d near

0.0, only the c~rrent transaction carries significant weight. With d near

1.0, the thread

thread proceaeed

3. -Iy

FOM approaches the sum of all transaction FOHa for the

ao far.

Detectiom. Sense flnda an anomaly whenever either the

transaction or tb.read FOR! exceeds an operator-aet limit. Transaction

evaluation times are roughly prup~.tional to the log of the number of

rules. ?%ua a very large rule base n~ed not be slow. W6S handlea rule

baaea of up to 500,000 rules, averagind ..0-9.0 bytea p~r rule and

20,000-40,000 rule firings per second. Typical tranaactiona on these

large rule baaea have fired approximately 1% of the rules, reault{ng in

meiuwred performance ranging from 20-M tranaactiona per second for more

typical (for W&S) rule baaea of 100,000 instantiated rules.

4. Real-T1rn [msues. A scr[ous impediment to real time detection,

discua~ed by llennlng,~ Is the dltt{.rulty of aasembllng aeaaion and

mhclllne;Lc:lvl.tydata lI)ln~mat]le LrnuH;llsLlnnrecords. Iixltitl.ngoperating

2[)

.

.

system accounting software simply daes not make the job straightforward.

AS a minimum, the anomaly detection software will probably have to wait

until the accounting software haa written its data to disk. Highly

buffered data my be written too late for real-time analyaia. (For

example, we experience buffering delays up to 9 minutes on our VAX running

VMS 4.5.) Or, if data t-remseparate accounting files (e.g., disk

activity, user image e~’ecutions, and keyboard input) must be matched and

aseembled, real-time W.Y not be posaible~ or MSY be feaaible only with a

lower detection sensit~”zity (by treating each accounting da~a stream

independently).

5. hcmaly lhwlution. homely resolution is the task of

explaining the meaning and likely cause of an anomslous transaction. I&5

attempts to provide information useful in this task; nonetheless~ it is

primarily one t-ha’-must be accomplished by a h-n.

W&S currently offers four significant aida to anomaly resolution:

● Identification of the data in a transaction that appear to have

triggered the anomaly;

● Listing of the violated rules that triggered the anomaly

determir.ation;

e Providi:ig a thread history;

● Suggesting what data specific fields would have avoided the

anomaly deterl..ination.

Each of thl?~eaids builds upon the inferencing process just described.

VI. CONTINUIHfJEF’F(WM

W&S is cou undergoing operational tests in two computer security

environments and one process monitoring environment. Preliminary results

have shown that the software does periodically detect anomalies of high

interest even in data thought to be free of such events. Thus far, we

have tested only trivial intrusion scenarioa (with successful detection).

We hope to test the effectiveness OE W&S on a wide variety of planted

anomalous events during the current year. Furthermore, several

enhancements~ such as hy:rid rule bases consisting of user-defined rules

inserted into the generated rule base, will require extensive evaluation.

Nonetheless, it is already clear that the anomaly detection approach

in U&S ia effective for a wide range of applications where large volumes

of repetitive data are generated by some chemical, mechanical, electrical,

or biological system and where anomalous events are of interest. The

heuriatica employed in W&S make a reasonable compromise between

computational accuracy and full use of available information, especially

categorical and threaded data.

ACKN3WLEIYXENTS

I ‘#ould like to thank the intrusion detection team at SRI

International, especially Teresa Lunt and Hal Javita, for their

encouragement and constructive cormnents on W&S. Gunar Liepins at Oak

Ridge National Laboratory has generated the ideas for several important

enhance=nts now in the W&S software. At Los Alamos National Laboratory,

I am especially indebted to James Tape and Jack Markin for urging me to

pursue this work and for their continuing support of our RhD efforts.

REFERENCES

1. Donald E. Knuth, The Art of Computer Programing, volume 2:
Seminumerical Algorithm (AddSson-Wesley Publishing Company, Reading,
~asac!maetts, 1969).

2. ilonaldA. Howard, “Decision Analysis: Perspectives on Inference,
Decision, and Experimentation,” Proceedings of the IEEE, Vol. 58, No.
5, 632-64j (May 1970).

3. D. E. Denning, “An Intrusion Detection Model”, IEEE Transactions on
Software Engineering, Vol. SE-13, No. 2 (February 1987).

