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Abstract

Intrusion detection systems rely on a wide variety of observ-
able data to distinguish between legitimate and illegitimate
activities. In this paper we study one such observable—
sequences of system calls into the kernel of an operat-
ing system. Using system-call data sets generated by sev-
eral different programs, we compare the ability of different
data modeling methods to represent normal behavior accu-
rately and to recognize intrusions. We compare the follow-
ing methods: Simple enumeration of observed sequences,
comparison of relative frequencies of different sequences,
a rule induction technique, and Hidden Markov Models
(HMMs). We discuss the factors affecting the performance
of each method, and conclude that for this particular prob-
lem, weaker methods than HMMs are likely sufficient.

1. Introduction

In 1996, Forrest and others introduced a simple intrusion
detection method based on monitoring the system calls used
by active, privileged processes [4]. Each process is repre-
sented by itstrace—the ordered list of system calls used by
that process from the beginning of its execution to the end.
This work showed that a program’s normal behavior could
be characterized by local patterns in its traces, and devia-
tions from these patterns could be used to identify security
violations of an executing process.

There are two important characteristics of the approach
introduced in [4]. First, it identifies a simple observable
(short sequences of system calls) that distinguishes between
normal and intrusive behavior. This observable is much
simpler than earlier proposals, especially those based on

standard audit packages, such as SunOS’s BSM. Second,
the method used to analyze, or model, the sequences is
also much simpler than other proposals. It records only the
presence or absence of sequences; it does not compute fre-
quencies or distributions, or identify which sequences are
most important. The advantage of such a simple approach
is computational efficiency, but the question naturally arises
of whether more accurate models of the data might be pos-
sible.

Over the past several years, many statistically-based
learning techniques have been developed. Several such
methods have the potential for generating more accurate
and/or more compact models of the system-call data, and at
least two groups have published results of their own experi-
ments on alternative models applied to system calls [13, 6].
Most of the available methods, however, were designed for
specific applications, and each has its own idiosyncrasies.
The goal of our paper is to compare these various methods
as systematically as possible across a larger and more real-
istic suite of data sets than has been used in the past.

2. Choosing Applicable Methods

There are many ways in which system call data could
be used to characterize normal behavior of programs, each
of which involves building or training a model using traces
of normal processes.1 In this section, we discuss several
alternative approaches to this task, and select four for more
careful investigation. The list of methods discussed here is
by no means exhaustive, but it does cover those we believe
to be most appropriate for our problem.

1The empirical approach taken here ignores the family of methods
based on formal specification of a program’s legal activities, such as [9].
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2.1. Enumerating Sequences

The methods described in [4, 7] depend only on enumer-
ating sequences that occur empirically in traces of normal
behavior and subsequently monitoring for unknown pat-
terns. Two different methods of enumeration were tried,
each of which defines a different model, or generalization,
of the data. There was no statistical analysis of these pat-
terns in the earlier work.

The original paper usedlookahead pairs[4]. The
database of normal patterns consisted of a list for each sys-
tem call of the system calls that follow it at a separation of
0, 1, 2, up tok system calls. This method can be imple-
mented efficiently, and it gave good results on the original
(synthetic) data sets.

The later paper reported that contiguous sequences of
some fixed length gave better discrimination than looka-
head pairs [7]. The database of normal behavior remained
compact, and computational efficiency was still reasonable.
As the earlier method was known astime-delay embedding
(tide), this method was calledsequence time-delay embed-
ding (stide). In the comparisons reported below, we use
contiguous sequences.

2.2. Frequency-based methods

Frequency-based methods model the frequency distribu-
tions of various events. For the system-call application, the
events are occurrences of each pattern of system calls in a
sequence.

One example of a frequency-based method is then-gram
vectorused to classify text documents [3]. Each document
is represented by a vector that is a histogram of sequence
frequencies. Each element corresponds to one sequence of
lengthn (called ann-gram), and the value of the element is
the normalized frequency with which then-gram occurs in
the document. Each histogram vector then identifies a point
in a multidimensional space, and similar documents are ex-
pected to have points close to each other. In [3], Damashek
used the dot product between two histogram vectors as a
measure of their similarity, but he pointed out that other
measures are possible. A set of documents can be repre-
sented by one or more centroids of the set’s individual his-
tograms, and dot products can be taken with the resulting
centroid rather than an individual histogram vector to test
for membership in the set.

Adapting this method to traces of the system calls used
by computer programs is straightforward. One or more cen-
troid vectors could be used as the model for normal, and
individual traces whose vectors were too distant from this
centroid would be considered anomalous. However, this
approach is not suitable for on-line testing because trace
vectors cannot be evaluated until the program has termi-

nated. It is also difficult to determine what size vector to
use; the space of all possible sequences is much too large,
and we cannot guarantee that the subset of sequences ob-
served in traces of normal behavior is complete. Finally,
the coarse clustering of documents in [3] does not suggest
sufficient precision to discriminate between normal and in-
trusive traces of the same program.

Other frequency-based methods examine sequences in-
dividually, making them suitable for on-line use. Deter-
mination of whether a sequence is likely to be anomalous
is based on empirically determined frequencies for that se-
quence, but the approaches taken can be quite different, as
the next two examples illustrate.

Helman and Bhangoo propose ranking each sequence by
comparing how often the sequence is known to occur in
normal traces with how often it is expected to occur in in-
trusions [5]. Sequences occurring frequently in intrusions
and/or infrequently in normal traces are considered to be
more suspicious. Unfortunately, frequencies of each se-
quence in all possible intrusions are not knowna priori.
We must, therefore, choose a frequency distribution for ab-
normal sequences by assumption. Several possibilities for
choosing this distribution are mentioned in [5], the simplest
of which is to assume that the abnormal distribution is uni-
form.

The Helman and Bhangoo method makes several as-
sumptions that are problematic for the system-call applica-
tion. First, it assumes that the data are independent and sta-
tionary. Although a series of complete program traces might
well be stationary (no ordered correlations among separate
traces) [7], the sequences within the trace are not. Programs
often have different distributions of sequences at the begin-
ning of their execution than they do at the end, and there
might be many such distinct regions within the trace [10].
Also, sequences of system calls are clearly not independent,
especially when the sequences overlap as ours do. A second
problem is that of characterizing the frequencies of abnor-
mal sequences accurately.

SRI takes a different approach in its Emerald system
[8]. Rather than using static distributions to define normal
and abnormal behavior, Emerald compares short-term fre-
quency distributions from new, unknown traces with the
longer-term historical distribution. Prior knowledge (or
estimation) of the abnormal frequencies is not required.
The long-term distribution can be continually updated, with
more weight being given to recent data, so that stationarity
is not required. This does, however, allow the possibility of
an intruder maliciously training the system to shift its defi-
nition of normal closer to the pattern produced by intrusive
behavior.

Central to both methods is the idea that rare sequences
are suspicious. We chose to implement a minimal version of
a frequency-based method that would allow us to evaluate

Authorized licensed use limited to: The Library  NUI Maynooth. Downloaded on June 2, 2009 at 07:01 from IEEE Xplore.  Restrictions apply.



this central idea.

2.3. Data mining approaches

Data mining approaches are designed to determine what
features are most important out of a large collection of data.
In the current problem, the idea is to discover a more com-
pact definition of normal than that obtained by simply list-
ing all patterns occurring in normal. Also, by identifying
just the main features of such patterns, the method should
be able to generalize to include normal patterns that were
missed in the training data.

Lee and others used this approach to study a sample of
system call data [13, 12]. They used a program called “RIP-
PER” to characterize sequences occurring in normal data
by a smaller set of rules that capture the common elements
in those sequences. During monitoring, sequences violat-
ing those rules are treated as anomalies. Because the re-
sults published in [13] on synthetic data were promising,
we chose this method for further testing.

2.4. Finite State Machines

A machine learning approach to this problem would con-
struct a finite state machine to recognize the “language” of
the program traces. There are many techniques for building
either deterministic or probabilistic automata for this sort
of task, for example, [1, 16, 10]. These methods generally
determine the frequencies with which individual symbols
(system calls in our case) occur, conditioned on some num-
ber of previous symbols. Individual states in the automa-
ton represent the recent history of observed symbols, while
transitions out of the states indicate both which symbols are
likely to be produced next and what the resulting state of the
automaton will be. Many, but not all, of the algorithms for
building these automata are based on the assumption that
the data are stationary.

A particularly powerful finite state machine is the hid-
den Markov model, used widely in speech recognition and
also in DNA sequence modeling [15, 14]. A hidden Markov
model (HMM) describes a doubly stochastic process. An
HMM’s states represent some unobservable condition of the
system being modeled. In each state, there is a certain prob-
ability of producing any of the observable system outputs
and a separate probability indicating the likely next states.
By having different output probability distributions in each
of the states, and allowing the system to change states over
time, the model is capable of representing nonstationary se-
quences.

HMMs are computationally expensive, but very power-
ful. There is a great deal of information available on them,
and their usefulness has been demonstrated in many areas.

For these reasons, we decided to use HMMs as the finite
state machine representative for our experiments.

3. Data Sets

The original studies of the system-call approach were
conducted primarily on synthetic data sets2 [4, 13, 7, 6].
Although the earlier studies on synthetic data sets were sug-
gestive, they are not necessarily good predictors of how the
methods will perform in fielded systems. Consequently, we
have used a wider variety of data sets for our current study.
These include “live” normal data (traces of programs col-
lected during normal usage of a production computer sys-
tem), different kinds of programs (e.g., programs that run as
daemons and those that do not), programs that vary widely
in their size and complexity, and different kinds of intru-
sions (buffer overflows, symbolic link attacks, Trojan pro-
grams, and denial-of-service). We use programs that run
with privilege (with one exception, described below), be-
cause misuse of these programs has the greatest potential
for harm to the system. Table 1 summarizes the different
data sets and the programs from which they were collected.
All of these data sets are publicly available and carefully de-
scribed at http://www.cs.unm.edu/˜immsec/data-sets.html.
Intrusions were taken from public advisories posted on the
Internet.

Each trace is the list of system calls issued by a single
process from the beginning of its execution to the end. This
is a simple definition, but the meaning of a process, or trace,
varies from program to program. For some programs, a
process corresponds to a single task; for example, inlpr
each print job generates a separate trace. In other programs,
multiple processes are required to complete a task. In some,
such asnamed, a single daemon process runs continuously,
monitoring events or awaiting requests, and occasionally
spawning subprocesses to handle certain tasks. Even in pro-
cesses that are not daemons, the number of system calls per
trace varies widely, as can be seen by comparing the data
for lpr and that forxlock .

Data for lpr were collected at two universities under
identical conditions (OS, version oflpr , etc.), but with dif-
ferent users and network configurations. The UNM normal
data set includes fifteen months of activity, while the MIT
data set includes two weeks. Each set includes a large num-
ber of normal print jobs and a singlelprcp symbolic link
intrusion that consists of 1001 print jobs. Detection of an
anomaly in any of these 1001 traces is considered success-
ful detection of the intrusion.

Thenamed normal data consist of a single daemon trace
and traces of its subprocesses, collected for one month. The

2Synthetic traces are collected in production environments by running
a prepared script; the program options are chosen solely for the purpose of
exercising the program, and not to meet any real user’s requests.
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Program Intrusions
Normal data

available
Normal data

used for training
Normal data

used for testing
Number of

traces
Number of

traces
Number of
system calls

Number of
traces

Number of
system calls

Number of
traces

Number of
system calls

MIT lpr 1001 2,703 2,926,304 415 568,733 1,645 1,553,768
UNM lpr 1001 4,298 2,027,468 390 329,154 2,823 1,325,670
named 2 27 9,230,572 8 677,340 12 7,690,572
xlock 2 72 16,937,816 72 778,661 1 16,000,000
login 9 12 8,894 12 8,894 – –
ps 26 24 6,144 24 6,144 – –
inetd 31 3 541 3 541 – –
stide 105 13,726 15,618,237 150 246,750 13,526 15,185,927
sendmail – 71,760 44,500,219 4,190 2,309,419 57,775 35,578,249

Table 1. Amount of data available for each program. “Normal data used for training” refers to models
built with sequence length six; sequence length ten models used more training data. The same test
data were used for both sequence lengths; this includes all normal data not used for training either
set of models.

intrusion againstnamed is a buffer overflow; we used two
sample traces of this intrusion.

Data forxlock include 71 synthetic traces, and a single
live trace. The live trace, however, is very long;xlock
generates a huge number of system calls as it continually
updates the user’s screen and it was left running for two
days to collect these data. The intrusion used here is also
a buffer overflow. As withnamed, we used two sample
traces of the same intrusion.

Thelogin andps normal data sets are relatively small.
These are simpler programs, and little variation in normal
behavior is expected from additional traces. The small data
set, however, means that there is insufficient data for thor-
ough analysis of false positives.

For both login and ps , we used Trojan intrusions,
which allow unauthorized access to the system through a
built in “back-door.” A number of traces have been col-
lected from each Trojan program. Some of the Trojan pro-
gram traces were collected from actual Trojan programs
installed during a live intrusion. These traces are easy to
detect because the Trojan program was a different version
from the program it replaced. Other traces are for Trojan
programs we created directly from the installed (normal)
version of the program. Some of the traces correspond to
use of the back door to break into the system, while others
are from ordinary users logging in to the Trojaned program
normally (without using the back door). Ideally, we would
like to detect the presence of Trojan code whether or not
it is currently being used for unauthorized access, so each
trace is treated as a separate example of an intrusion. How-
ever, this is a stringent test, as the foreign code is not being
executed.

The inetd program is typically started as a foreground

process, which initiates a daemon process to run in back-
ground and then exits. The daemon process in turn, initi-
ates child processes which perform a fixed set of initializa-
tion steps and then execute some other program. Child pro-
cesses are, therefore, very nearly identical. The normal data
for inetd include a trace of the startup process, a daemon
process, and a representative child process. The intrusion
used againstinetd is a denial-of-service attack that ties
up network connection resources. As the attack progresses,
more of the system calls requesting resources return abnor-
mally and are re-issued. The intrusion data collected in-
clude a startup process, a daemon process, and several child
processes, but only the daemon process is expected to show
any deviation from normal behavior.

A second denial-of-service attack we tested ties up all
the memory available on a system. This affects any run-
ning program that requests memory during the denial-of-
service attack. In this one case, we departed from our pol-
icy of monitoring only privileged processes, and instead
traced the analysis programstide (which was processing
thesendmail data). The normal and intrusion data were
collected whilestide was processing the same data, but
the latter was interrupted by the denial-of-service attack.

The final data set,sendmail , consists only of nor-
mal data because this version ofsendmail running on
a production mail server was not vulnerable to any known
sendmail intrusions. However, we were able to collect a
very large set of live normal data, and use this for false pos-
itive analysis. Note that these data were collected from a
different version ofsendmail than that used in our earlier
papers.
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4. Experimental Design

Our objective is to compare several different data-
modeling methods using data from several different pro-
grams, thereby getting a better overall picture of their rela-
tive merits. For accurate intrusion detection, we must cor-
rectly classify both intrusions and normal data. Errors in the
first category, where intrusions are not identified, are called
false negatives. Errors in the second category, where nor-
mal data are identified as anomalous, are calledfalse posi-
tives. We wish to minimize both kinds of errors, or equiva-
lently, maximize true positives and minimize false positives.
We do not attempt to measure performance in terms of sys-
tem usage, although we do make some general observations
about computational effort.

For most of our data sets, we have only a single intrusion
script, and each method has a single threshold above which
that intrusion is detected and below which it is missed. To
get a better picture of the gradual trade-off between false
positives and false negatives that often occurs with multi-
ple intrusions, we combine results across all available pro-
grams. By using the composite results, we also can see
which methods can be used on multiple data sets with a
single set of parameters and which require hand-tuning.

However, using several programs also complicates the
design of the experiments. First, we would like to use com-
parable amounts of data for each program in building our
models of normal. Since the programs vary in complexity
and a trace does not have a similar meaning in each pro-
gram, simply choosing a fixed number of traces or system
calls to include would not be a good approach. Second,
we need to define a consistent measure for comparing false
positives.

Figure 1 shows the number of unique sequences as a
function of the total number of sequences seen for one of
our data sets. The x-axis represents the sequences seen in
chronological order, from traces added in the order in which
they were collected. At first, almost every sequence is new,
but gradually the number of new sequences drops off. One
way of establishing a consistent measure of how much train-
ing data to use across several programs is to set a target for
the slope of this growth curve. Once the rate of encoun-
tering new sequences drops below some preset value, we
say we have enough data with which to build our model of
normal.

Unfortunately, the growth curves for our data sets are
not very smooth. Several traces might pass with no new se-
quences, and then several new sequences are encountered
close together. This is not surprising, as a change in sys-
tem call order affecting one sequence generally affects the
nearby sequences as well. We considered several meth-
ods for smoothing this curve so as to get a better estimate
of the slope, and eventually settled on the following ap-
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Figure 1. Typical database growth curve. The
graph shows how the size of the normal
database grows as traces are added chrono-
logically.

proach. Figure 2 shows several different versions of the
growth curve for the same data. The pool of normal data
traces is treated as a loop, where the first trace follows the
last trace. For each curve shown in figure 2, a different start-
ing point on this loop was chosen randomly, and then the
traces were read in order from that point. This allows us
to examine variations in the growth curve without reduc-
ing the amount of data used or disrupting the chronological
ordering of traces.
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Figure 2. Alternate database growth curves
for the same data used in Figure 1. Light
lines show standard growth curves for differ-
ent starting points in the training data; the
dark line shows the mean.

The average of these individual growth curves, shown
as the darker line in figure 2, gives a smoother estimate of
the rate at which the database grows. This is not a precise
measure, but a rough way to estimate how much training
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data should be used. For our experiments, we selected the
first point on the average curve at which the local slope was
less than one new sequence per 10 traces, and remained that
way for at least 10 traces. We used each program’s average
trace length for this estimate, except in those cases where
a single long trace skewed the average. Forxlock , we
averaged the lengths of only the synthetic traces, and for
named, we used the median trace length. We chose two
groups of training traces in this fashion, one for sequences
of length six, and another for sequences of length ten. All
data not included in the second, larger training set were used
for testing. Table 1 shows how much training data we used
for each program for sequence length six.

On the testing side, false positives were measured dif-
ferently from true positives. To detect an intrusion, we re-
quire only that the anomaly signal (described below) exceed
a preset threshold at some point during the intrusion. How-
ever, making a single determination as to whether a normal
trace appears anomalous or not is insufficient, especially for
very long traces. If a program is running for several days
or more, each time that it is flagged as anomalous must be
counted separately. The simplest way to measure this is
to count individual decisions. The false-positive rate then
is the percentage of decisions in which normal data were
flagged as anomalous. Note that the same approach can-
not be used for measuring true positives. Intrusion traces
generally resemble normal traces in large part, and each in-
dividual sequence within an intrusive trace is more likely to
be normal than not.

5. Building models of normal behavior

We modeled the normal behavior of each of the data sets
described in Section 3 using each of the four methods cho-
sen earlier. This process took much longer for HMMs than
for the other methods. On our largest data set, HMM train-
ing took approximately two months, while the other meth-
ods took a few hours each. For all but the smallest data sets,
HMM training times were measured in days, as compared
to minutes for the other methods. The subsections below
explain the details behind each method.

5.1. sequence time-delay embedding (stide)

In sequence time-delay embedding (stide), a profile of
normal behavior is built by enumerating all unique, contigu-
ous sequences of a predetermined, fixed lengthk that oc-
cur in the training data. We ran experiments with sequence
lengths of six and ten. For a sequence length of six, we
slide a window of length six across each trace, one system
call at a time, adding each unique sequence to the normal
database. The sequences are stored as trees to save space

and to speed up comparisons. Building such a database re-
quires only a single pass through the data, unlike some of
the methods described below.

At testing time, sequences from the test trace are com-
pared to those in the normal database. Any sequence not
found in the database is called amismatch. Any individual
mismatch could indicate anomalous behavior, or it could be
a sequence that was not included in the normal training data.

To date, all of the real intrusions we have studied produce
anomalous sequences in temporally local clusters. This is
convenient for defining an on-line measure of anomalous
activity. We derive our on-line measure, or anomaly signal,
from the number of mismatches occurring in a temporally
local region, called alocality frame. The data reported be-
low used a locality frame of 20 system calls. At each point
in our test trace, we check whether the current sequence
is a mismatch, and keep track of how many of the last 20
sequences were mismatches. ThisLocality Frame Count
(LFC) gives us our anomaly signal. (A somewhat different
approach was taken in [7], where the measure of anoma-
lous behavior was based on Hamming distances between
unknown sequences and their closest match in the normal
database.)

We then set a threshold on the LFC, below which traces
are still considered to be normal. Any time the LFC reaches
or exceeds the threshold, an anomaly is recorded. This LFC
threshold is the primary sensitivity parameter used in the
experiments described below; it ranges from 1 to 20. Lower
LFCs tend to catch more intrusions and also give more false
positives, higher LFCs tend to produce fewer true and false
positives.

5.2. stide with frequency threshold (t-stide)

A simple addition to stide allows us to test the premise
that rare sequences are suspicious. For each sequence in
the database, we keep track of how often it has been seen
in the training data. Once all the training data have been
processed, we then determine each sequence’s overall fre-
quency. For our experiments, “rare” was defined as any se-
quence accounting for less than 0.001% of the normal train-
ing data. The “t” in “t-stide” represents the addition of this
threshold on sequence frequencies.

Sequences from test traces are compared to those in the
database, as for stide. Rare sequences, as well as those
not included in the database, are counted as mismatches.
These mismatches are aggregated into locality frame counts
as described earlier. Again, the threshold on locality frame
counts is the primary sensitivity parameter.
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5.3. RIPPER

RIPPER—Repeated Incremental Pruning to Produce Er-
ror Reduction—is a rule learning system developed by
William Cohen [2]. It, like other rule learning systems, is
typically used for classification problems. Training samples
consist of a set of attributes describing the object to be clas-
sified, and a target class to which the object belongs. Given
enough such examples, RIPPER extracts rules of the form:

classA:- attrib1 = x, attrib5 = y.

classB:- attrib2 = z.

classC:- true.

In this example, class A is chosen if attributes 1 and 5 are
x and y, respectively; class B is chosen if attribute 2 is z;
and class C is the default class. Conditions can also specify
that an attribute not equal a certain value. (For other types
of data, more conditions are possible.) Multiple conditions
are always taken to mean that all conditions must hold.

For the intrusion detection problem, such classification
is useful only if one has a complete set of examples of the
abnormal class(es) with which to train the system. We are
primarily interested in the application to anomaly detection,
where we do not have both positive and negative instances.
Lee and others [13, 12] adapted RIPPER to anomaly detec-
tion by using it to learn rules to predict system calls within
short sequences of program traces.

For each program, we used a list of all unique sequences
occurring in that program to create the RIPPER training
samples. Each sequence was turned into a RIPPER sam-
ple by treating all system calls except the last in a sequence
as attributes, and the last as the target class. (This requires
renaming the last system call, as RIPPER will not accept
classes that look like attributes.) Similar attribute/target
pairs were created for test traces, but in that case all se-
quences were used, not just a sample of each unique se-
quence.

RIPPER has a difficult time learning rules for classes
about which there is not enough information, such as a sys-
tem call that only occurs at the end of a sequence once
[11]. Because the frequencies of each sequence are not be-
ing recorded, simple duplication of each sequencey times is
effective. We replicated each training sample twelve times
to create the training file, as did Lee and Stolfo in [12].

RIPPER takes these training samples and forms a
hypothesis—a list of rules to describe normal sequences.
For each rule, a violation score is established from the per-
centage of times that the rule was correctly applied in the
training data. For a rule whose conditions were metM
times in the training data and whose prediction was cor-
rect forT of those times, the penalty for violating that rule

is 100M=T . Lee and others used the average of these vi-
olation scores to rank a trace [12], but such a measure is
inappropriate for on-line testing. We first used a moving av-
erage of these violation scores over the locality frame, but
found that gave excessive false positives. Instead, we call
each sequence that violates ahigh-confidencerule a mis-
match, equivalent to the stide mismatches described ear-
lier. These mismatches then can be aggregated into local-
ity frame counts, also described earlier. We chosehigh-
confidenceto mean those rules with violation scores greater
than 80.

5.4. Hidden Markov Model

Standard HMMs have a fixed number of states, so one
must decide on the size of the model before training. Pre-
liminary experiments showed us that a good choice for our
application was to choose a number of states roughly cor-
responding to the number of unique system calls used by
the program. Most of our test programs use an alpha-
bet of about 40 system calls, hence 40-state HMMs were
used in most cases. We used a 20-state HMM forps and
stide , a 35-state HMM forinetd , and a 60-state HMM
for sendmail . The states are fully connected; transitions
are allowed from any state to any other state. For each state
then, we need to store the probabilities associated with tran-
sitions to each other state, and the probabilities associated
with producing each system call. For a program usingS
system calls, and hence a model ofS states, this means
roughly2S2 values.

In most cases, transition and symbol probabilities were
initialized randomly, and then trained using the Baum-
Welch algorithm as described in [14]. Occasionally, how-
ever, prior knowledge is useful in performing the initializa-
tion. This was the case with thelpr data sets. A primary
difference betweenlpr traces is in the length of the doc-
ument being printed. This is reflected in the traces as the
number ofread -write pairs. We found that randomly
initialized HMMs devoted most of the states and a great deal
of training time to modeling the different frequency distri-
butions of this particular subsequence. As a result, these
HMMs were less likely to recognize the intrusion. How-
ever, when the model was initialized with a predetermined
read state andwrite state arranged in a loop, the rest of
the model states were available to represent other parts of
the traces and accuracy improved. We assigned large prob-
abilities to the desired transitions and output system calls
for the read andwrite states, and low probabilities for
the alternatives. Transition and output probabilities for the
other states were randomized.

During training, the probabilities were iteratively ad-
justed to increase the likelihood that the automaton would
produce the traces in the training set. Several passes through
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the training data were required. To avoid over-fitting the
training data, the likelihood of the model producing a sec-
ond set of normal traces (not used in training) was period-
ically measured. When this second likelihood stopped im-
proving, training was terminated.

As mentioned earlier, training an HMM is expensive.
Calculations for each trace in each pass through the train-
ing data takeO(TS2), whereT is the length of the trace in
system calls (see Table 1), andS is the number of states (and
symbols). Also, storage requirements are high. The “trellis”
of intermediate values that must be kept while performing
the calculations for a particular trace requiresT (2S + 1)
floating point values. For our longer traces, these values
were written to a memory mapped binary file.

Fortunately, testing is more efficient. A standard way to
test an HMM is to compute the likelihood that it will pro-
duce data not in the original training set. We, however, used
a simpler measure that (unlike the standard method) is not
sensitive to trace length and is better suited to on-line use.
We use the graph underlying the HMM as a nondetermin-
istic finite automaton. We “read” a trace one system call
at a time, tracking what state transitions and outputs would
be required of the HMM to produce that system call. If the
HMM is a good model of the program, then normal traces
should require only likely transitions and outputs, while in-
trusive traces should have one or more system calls that re-
quire unusual state transitions and/or symbol outputs.

At a given timet, there is a list of current possible states.
Choosing only the most likely state for any single system
call might not be consistent with the best path through the
HMM for a sequence of system calls, so we keep track of all
possible paths. Thresholds are set for “normal” state transi-
tion and output probabilities. Then, if we encounter a sys-
tem call in the trace which could only have been produced
using below-threshold transitions or outputs, it is flagged
as a mismatch. Note that we could have used the LFC to
aggregate these mismatches, but HMM anomalies are usu-
ally not temporally clumped, so we thought it more fair
to count individual mismatches. For our experiments, the
same threshold was used for both state transitions and out-
puts. This parameter was the primary sensitivity parameter,
with thresholds varying from 0.01 to 0.0000001. Note that
HMMs are making anomaly decisions at each system call,
rather than on sequences as in the other three methods.

The time to check each system call depends on the model
size and the sizes of the current list of valid states. The
latter tends to stay very small with normal traces, but can
include up to allS states after an anomaly has been identi-
fied. For each current valid state, our implementation of the
program takes O(S) to decide whether there is an anomaly
or not. If s = S, this means O(S2) to process one sys-
tem call. These times could be improved by converting the
model to a better representation of the automaton once the

testing probability thresholds are known.

6. Results

We tested each of the four data modeling methods on
each of the data sets (traces of Unix programs) at several dif-
ferent sensitivity thresholds. False positives are reported for
normal data not used during training, and true positives are
reported for traces of anomalous behavior. We first present
the overall results, and then discuss accuracy on individual
data sets.

To get a picture of how well the detection methods per-
form on a variety of data, we first averaged the results across
all the data sets. Figure 3 shows these average results for
each combination of data modeling method and sensitiv-
ity threshold. A different symbol is used to denote each
method, and each point shows performance at a particular
threshold. For HMMs, we distinguish between results with
randomly-initialized HMMs and those using HMMs initial-
ized to include human knowledge of the modeled program.

In Figure 3, the y-axis represents overall ability to de-
tect anomalies. As mentioned earlier, any above-threshold
signal anywhere in the intrusive trace(s) counts as correct
detection of the intrusion. The x-axis represents false pos-
itives, measured on an individual decision basis rather than
by traces. False positives are shown as a fraction of the total
number of sequences (or system calls) in a trace of normal
behavior, and therefore can range from 0 to 1. The figure,
however, shows only the region from 0 to 0.001 which is
of primary interest. As a very rough estimate, traces are
often on the order of a thousand system calls long. Iden-
tifying one in a thousand sequences (or system calls, for
HMMs) as anomalous is roughly equivalent to identifying
each trace as anomalous. Of course, this does not hold
everywhere, because of the vast differences in traces men-
tioned earlier. However, it does suggest that for practicality,
false-positive rates should be well below 0.001. Perfect per-
formance would be correct detection of all intrusions and no
false positives, represented by points in the upper left corner
of the figure.

For many of the data sets, the individual true-positive
rate was either one, if the intrusion(s) was successfully de-
tected, or zero, because there are only two data sets for
which some intrusion traces are harder to recognize than
others. This makes the true-positive average a simple repre-
sentation of how many intrusions are detected. The normal
data, however, are more varied. With differences between
false positives that span several orders of magnitude, the av-
erage is heavily influenced by the worst results. Thus, we
also show the median scores in the inset of figure 3. Note
that the scale for false positives is much smaller on this fig-
ure, as the median is significantly lower than the average for
all methods and thresholds. (t-stide results do not show up
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Figure 3. Composite results for each method on all data sets, sequence length 6. Each point rep-
resents performance at a particular threshold. True-positive values are the fraction of intrusions
identified. For the sequence-based methods, false positives are the fraction of sequences giving
mismatches at or above the specified locality frame count threshold. For HMMs, false positives
are the fraction of system calls corresponding to state transitions or outputs below the specified
probability threshold. Points labeled “HMM” are for only randomly-initialized HMMs, while those for
“HMM+” use the specially-initialized HMMs designed to handle lpr data. No t-stide points appear in
the median plot because the false positives are off the scale. Results for four HMM thresholds all
map to the single median point shown.

on this new scale; although t-stide median results are lower
than their corresponding means, they are not as low as those
for the other methods). Many of plotted points on the y-axis
of the inset (median true positives) are 1.0, because stide
and both HMM methods correctly detect a majority of the
intrusion traces at all thresholds. RIPPER’s true positive
rates, however, drop off gradually with increasing thresh-
old, while its false positives drop rapidly; this accounts for
the points running down the y-axis.

The composite picture shown in figure 3 gives only a
rough outline of the data. Figure 4 shows the relation-
ship between thresholds and true or false positives in more
detail. As the sensitivity threshold is relaxed, fewer se-
quences (or system calls) are identified as anomalous in all
traces, affecting both true and false positives. “Relaxed” for
the sequence-based methods means an increase in the LFC
needed to flag an anomaly, while it means a decrease in the
minimum probability for an HMM to generate a normal sys-
tem call. The RIPPER curves are steeper because RIPPER

rarely generates high LFCs. Because RIPPER’s rules de-
pend only on a few of the system calls in a sequence, not all
sequences in an anomalous part of the trace are classified as
anomalous.

We can use the results shown in figure 4 to choose good
thresholds for each method. The definition of “good,” how-
ever, is not fixed. On one system it may be more important
to maximize true positives, while on another, minimizing
false positives may be key. For the moment, we choose
“good” to mean an average true-positive rate above 95%.
HMMs, stide and t-stide all have at least one threshold at
which the average true-positive rate is 96.9%, missing only
two of thelogin intrusion traces. RIPPER’s closest match
is a true-positive rate of 95.3%, missing three of thelogin
intrusion traces. Using these thresholds, we now turn to a
comparison of the corresponding false-positive rates.

Figure 5 shows the false-positive rate for each method
on each of the six normal test sets, using thresholds cho-
sen as described above. Values for one data set vary over
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Figure 4. Average true and false positives versus threshold for each method, sequence length 6.
HMM results are for randomly-initialized HMMs only.

orders of magnitude (note the logarithmic scale on the y-
axis). There is some correlation between long traces and
low false-positive rates (ignoring thenamed daemon for
the moment), but the number of misclassified normal traces
still varies widely between programs. More important than
trace length are the complexity of a program and the vari-
ability in its usage. Thesendmail program is larger and
more complicated than the other programs, producing traces
with a larger variety of system calls and sequence patterns,
so it is not surprising that it is more difficult to model. By
contrast,xlock andstide are much simpler programs,
which do not interact with a network. They also gave our
least realistic data sets—xlock because the test data come
from just one abnormally long trace, andstide because
it is an application program. The twolpr data sets were
produced by the same program, but the UNM false posi-
tives are higher for all methods. We speculate that because
the UNM data were collected over a much longer period of
time, they reflect more changes in network configurations
and user behavior than the MIT data.

It is possible that we simply did not use enough train-
ing data to characterize the more complex data sets ade-
quately, even though our training set sizes were determined
by the variability of system call patterns (see Section 4).
Thesendmail training set was larger than any other pro-
gram’s training set, and thelpr training sets used a larger
percentage of the available data. Yetsendmail and UNM
lpr had the worst false-positive rates.

Results across modeling methods for a particular data

set are more similar than results for the same method across
different data sets. Although it is clear that t-stide consis-
tently performs below the other methods, none of the other
methods is a clear winner. We would need to better under-
stand why false-positive rates vary so much between data
sets before we could conclusively identify one method as
best. That is, our data suggest that there is no single best
choice for all the data sets. However, none of the methods
(other than t-stide) would be a bad choice.

All of the results presented in figures 3, 4, and 5 were
computed using a sequence length (window size) of six, and
the corresponding choice of training data. Results for se-
quence length ten are qualitatively similar, but there are a
few points worth noting. We expected the results for the
sequence-based methods to be similar for the two sequence
lengths because we chose the size of the training set based
on the sequence length. The training set chosen for se-
quence length ten was much larger than that for sequence
length six, reflecting the fact that there are many more pos-
sible sequences of length ten than of length six. RIPPER
and stide average results appear to be slightly better for se-
quence length six, despite training on less data, possibly
because the smaller sequences allow better generalization.
However, HMMs do not depend on the sequence length;
HMM accuracy was better for most data sets on the larger
training set.

However, these trends in the average behavior do not
hold for all programs. Each method has some programs for
which sequence length six false positive rates are lower and
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Figure 5. False-positive rates for each of six data sets, sequence length six. stide threshold: 6, t-stide
threshold: 4, RIPPER threshold 2, HMM threshold = 0.001. Note that the RIPPER true-positive rate
at this threshold is is slightly lower than those of the other methods. False-positive rates are shown
on a logarithmic scale.

others for which they are higher. This is likely due to the
fact that our results depend somewhat on which traces or se-
quences are included in the training set. A different choice
of training data, even if the amount of data were the same,
would yield different test results in some cases. We have
not attempted to measure this variation or obtain an error
estimate for the false positives. The comparisons made here
are suggestive, rather than tests of statistical significance.

7. Discussion

Intrusion detection is an important and active area of re-
search. Various research groups have suggested methods
that look promising on at least one set of data. But in or-
der to choose from among these different methods, we need
good comparisons between them on a variety of data. Such
comparisons are not easy. Differences in how the methods
work and large variations in the amount and types of data
both complicated our study.

One such difference is in the way anomaly signals are
generated. The sequence-based methods tend to produce
multiple mismatches even for a single misplaced system
call, because that system call affects multiple sequences.
Because HMMs, as used here, check only a single sys-
tem call at a time, they automatically produce fewer mis-
matches. This biases the results in favor of HMMs. An
alternative that seems more fair at first is to comparepeaks.
A trace region where locality frame counts are all above 0
shows up as a peak in a graph of the anomaly signal over
time. Such a peak might be equivalent to a single HMM
anomaly. But the size of the locality frame might cause

multiple anomalies to be lumped together in one such peak.
Perhaps contiguous mismatches would be a better defini-
tion of peak. However, in either case, it is impossible to
calculate a percentage for false positives, because there is
no notion of how many such peaks are possible in a given
trace.

Regardless of how the false positives are calculated,
more test data would improve our confidence in the results.
Although we have collected data for a spectrum of different
kinds of programs and intrusions, we still have a relatively
small number of data sets. Each individual data set carries
too much weight in the final outcome, and adding results
for one more data set might change the composite results
enough to favor other methods.

Studies such as ours can always be conducted more thor-
oughly. As with collecting data, there are no predetermined
stopping criteria. Each modeling method has a number of
parameters that affect anomaly signals, but only a few rep-
resentative variations were investigated here. Also, there is
a random element to both RIPPER and HMMs, so results
for these methods should ideally be averaged over multiple
trials.

For these reasons, we cannot definitively determine
which method is best. However, we can make some general
statements about which properties of the data were helpful
or harmful for each of the methods.

We purposely chose methods that could handle discrete
data, but the large number of distinct system calls used is
a problem for some methods. In training an HMM, the
time for each pass is roughly proportional to the square of
the alphabet size (number of different system calls). More
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complex programs using more system calls require signifi-
cantly longer training times. On the testing side, each de-
cision in the current implementation requires a number of
tests directly proportional to the number of distinct system
calls. By contrast, in stide and t-stide, the number of sys-
tem calls is only an indirect factor in training and test times,
because of the way the data are stored. The search time
for a sequence in the database depends on the number of
branches in the sequence trees. Although the number of
possible branches at each level is equal to the number of
system calls, the number encountered in practice is signifi-
cantly fewer. These methods scale dramatically better with
the number of system calls used.

Scaling with the length of the traces is another factor. All
of the methods have training and test times that are linear in
the length of the trace. However, the training algorithms
for HMMs and RIPPER make multiple passes through the
training data, whereas stide and t-stide require only a single
pass to build their normal databases. Also, as mentioned
earlier, HMMs must store intermediate data while training,
with the number of floating point values proportional to the
trace length multiplied by the number of states. For long
traces, this is very expensive.

The number of unique sequences in a data set is not di-
rectly related to the trace length. In fact, longer traces often
repeat a small number of sequences many times. As men-
tioned earlier, the primary difference betweenlpr traces
is the number ofread -write pairs. Also, in the long
xlock live trace, the bulk of the data consists of the same
five system calls repeated over and over. This is one reason
why RIPPER is trained on only the unique sequences, and
not on the raw data. Otherwise, those few very common
sequences would dominate, and few or no rules would be
extracted for the other sequences. It also suggests a prob-
lem for the frequency-based methods. With a few sequences
accounting for a large percentage of the data, frequencies
of other normal sequences tend to look insignificant, and
can be flagged as anomalous. However, these common
sequences do not dominate every trace; in the shorter se-
quences frequencies are more evenly distributed. Because
of this, simple methods for comparing rare and common
sequences are insufficient, although more sophisticated ap-
proaches could perhaps make better use of the frequency
information.

Each method we used was designed to take advantage
of the locality of intrusions. The sequence based methods,
using locality frame aggregates of the mismatch counts, all
focus on the local history of system calls. Although HMMs
have the potential to capture some long-term history as well,
the way we used them also concentrated on local events.
This is partly because of our choice of model size; more
states would be required to give the HMMs a longer mem-
ory.

In these relatively small HMMs, each state might be
used to characterize multiple parts of the traces. A single
state producing primarilyread system calls, for example,
might represent several different program states in which
reading data is required. Transitions out of that state might
reflect the different possibilities for going on towrite or
to close or to anotherread . There is a potential here
for missing anomalies, because such state transitions might
make it possible to mix prefixes and suffixes that do not go
together. However, there is also a potential for better gener-
alization than that offered by the sequence-based methods.
As an example, if the training data include examples of a
system call being used one, three, or four times in a row, an
HMM will likely accept a trace using that system call twice
in a row. The sequence based methods (with the possible
exception of RIPPER) would identify at least some mis-
matches. In the data we have studied, such sequences are
always false positives, and do not contribute to identifying
anomalies.

An additional factor in evaluating methods is the degree
to which training can be automated. The ability to add hu-
man knowledge to the model might be helpful, but such
knowledge should not be required.

8. Conclusions

We compared four methods for characterizing normal
behavior and detecting intrusions based on system calls in
privileged processes. Each method was tested on the same
suite of data sets, consisting of different types of programs
and different intrusion techniques. On this test suite, three
of the four methods performed adequately. Hidden Markov
models, generally recognized as one of the most powerful
data modeling methods in existence, gave the best accuracy
on average, although at high computational costs. Surpris-
ingly, the much simpler sequence time-delay embedding
method compared favorably with HMMs. We conclude that
for this problem, the system call data are regular enough
for even simple modeling methods to work well. The av-
erage results indicate that it might be possible to achieve
increased accuracy with HMMs, provided significant com-
putational resources are available to train and run them.

However, no one method consistently gave the best re-
sults on all programs, and results between programs var-
ied more than results between methods. Variations in false
positives were due more to the complexity of the traced
programs and their environments than to differences in the
analysis methods. Although there are multitudes of alterna-
tive methods that were not tested, our results demonstrate
that for this problem, several methods perform well. We
believe that the choice of data stream (short sequences of
system calls) is a more important decision than the particu-
lar method of analysis.
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Historically, many computationally sophisticated meth-
ods have been applied to the intrusion-detection problem,
yet there are few well-accepted solutions in widespread use.
One lesson from this paper is that perhaps a disproportion-
ate amount of attention has been directed to the data model-
ing problem, and that equal attention should be paid to con-
sidering what are the most effective data streams to monitor.
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