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Abstract nications. In other words, it is important to ensure that mul-
ticast communications can only be received by the intended

In this paper, we describe a novel approach to scalable recipients. While security mechanisms for supporting uni-
group re-keying for secure multicast. Our approach, which cast communications over the Internet have been studied ex-
we call Kronos, is based upon the idea of periodic group tensively [13], it is only recently that the research commu-
re-keying. We first motivate our approach by showing that nity has started to address the issues involved in supporting
if a group is re-keyed on each membership change, as thesecure multicasting [5].
size of the group increases and/or the rate at which mem-  The multicast service currently supported in the Internet
bers leave and join the group increases, the frequency of re-(IP Multicast) does not have any provisions for restricting
keying becomes the primary bottleneck for scalable groupdelivery of data to a specified set of receivers. Any receiver
re-keying. In contrast, Kronos can scale to handle large can join or leave a multicast group (identified by a Class D
and dynamic groups because the frequency of re-keying isiP address [20]) by sending IGMP (Internet Group Manage-
independent of the size and membership dynamics of thenent Protocol) [8] messages to their local router. Further,
group. Next, we describe how Kronos can be used in con-any user can send data to a multicast group by addressing
junction with distributed key management frameworks suchthe message to the group address. In other words, IP multi-
as IGKMP [10], that use a single group-wide session key for cast does not support “closed” groups.
encrypting communications between members of the group. To restrict the flow of multicast data to a specific set
Using a detailed simulation, we compare the performance of users, it is necessary to use cryptographic mechanisms.
tradeoffs between Kronos and other key management protoSpecifically, messages are encrypted by senders using a ses-
cols. sion key that is only distributed to members of the group.

Participation in a group session is restricted by ensuring that

only members of the group have possession of the session
1 Introduction key at any given time. Thus key management (creating and
distributing session keys to authorized group members) is a
critical aspect of secure multicast.

One of the issues that has to be addressed by key man-
agement schemes for secure multicast is the need for for-
ward and backward confidentiality [23]. In other words,
new members joining a group should not be able to access
previously multicast data and old members should not be

Many emerging Internet applications (e.qg., real-time in-
formation services, pay per view, computer-supported col-
laborative work) are based upon group communications. As
the next generation of the Internet is deployed, many of
these applications are expected to increase in importance

_Network_ protocols that support multicast commumcauons_ able to continue to access data multicast after they have left
n an efficient and scalable manner are essential for app_“'the group. For applications that require perfect forward and
cues such a3 ralble dalery of data and congestion corroP2CKard confidentaly, the session key used for encrypt
in the context of multicastiné over the Internget have been ng group pommunlcatlons needs to b_e ghanged on each
active areas of research over the last few years mgmbershlp change and secure!y _redlstrlbuted to the ex-
. O i : isting members of the group. This is referred to as group
_ An issue that is critical for mainstream a_ldopt|on of mul- re-keying.
ticast technology is the need feecuringmulticast commu- For large groups with frequent membership changes, the
*also with Dept. of Computer Science, George Mason University costs of re-keying the group can be quite substantial. The




straightforward approach under which a new session keykey changes is too large, the delay in evicting members
is generated on each join and leave, and securely transmitmay be unacceptable for some high-security applications.
ted to each existing group member is not scalable to largeln Sections 3 and 4, we explore this tradeoff and show that
groups. This is because the session key will have to be enby appropriately selecting the period of re-keying, accept-
crypted individually for each group member and the costs of able join and leave latencies can be obtained.

doing so increase linearly with the size of the group. Scal-  Another advantage of periodic re-keying is that it permits
able re-keying is therefore an important problem that needsscalable group re-keying within distributed frameworks for
to be addressed in order to support secure communicationgey management such as lolus [15] or IGKMP [10], while
for large and dynamic groups. allowing the use of single group-wide session key for en-

Recently several protocols for group key managementCrypting communications between members of the group.
for secure multicast have been proposed. The techniquedn Section 3, we describe a scheme whereby each sub-
that specifically address the problem of scalable group re-group key manager independently generates the same traf-
keying fall under two Categories_ The first set of ap- fic encryption key at fixed intervals and multicasts it to the
proaches [23, 24, 3, 22], typically involve creating a logical members of its sub-group. Since there is a single group-
hierarchy of keys. The main focus of these schemes is towide traffic encryption key, the sub-group manager is no
reduce the overhead of re-keying the session key on a memlonger responsible for re-encrypting and relaying all data
bership change. The schemes are scalable because the cometween its members and the rest of the group. At the
putational overhead of re-keying is logarithmic in the num- same time, group re-keying is accomplished in an efficient
ber of members of the group. However, these approache@.nd scalable fashion. We note that periodic re-keying has
do not attempt to reduce the frequency at which the sessiorlong been recognized as necessary from the security point
key needs to be changed and redistributed to the member8f view [23, 10]. However, our emphasis on periodic re-
of the group. As we discuss in Section 2, for large and dy- keying is motivated by the need for scalable group re-keying
namic groupshe frequency of re-keyirigmposes an upper  for large and dynamic groups.
limit on the scalability of key management protocols thatis e make three contributions in this paper. First, we eval-
independent of the efficiency of an individual re-keying op- uate the impact of group size and group membership dy-
eration. Secondly, with the exception of the Distributed Flat Namics on the scalability of re-keying schemes. We show
scheme of Waldvogaedt al [22], these approaches are cen- thatif a group is re-keyed on each membership change, as
tralized. As such, they have all the well-known advantagesthe size of the group increases and/or the rate at which mem-
(from the security point of view) and disadvantages (from bers leave and join the group increases, the frequency of re-
the performance and availability point of view) of providing keying becomes the primary bottleneck for scalable group
a centralized service on the Internet. re-keying. Second, we propose a scalable group re-keying

The second approach to scalable group re-keying em_app_roach basgd upon periodic re-keying that can be used in
ploys a divide-and-conquer approach. This approach [15] conjunction with distributed kgy mar_1agement frame_works
(henceforth referred to as lolus) is inherently distributed in SfUCh as lolus and IGKMP. Third, using a detailed simula-
nature. A group is divided into several sub-groups each with 110N We explore the performance tradeoffs between Kronos
its own session key. Membership changes in a sub-groupa”d other key me_magement protocols for secure multicast.
result in a change of the sub-group session key and do not The organization of_the rest of the paper is as follows. In
affect the remaining members of the group. Thus, both the SECtion 2, we analyze impact of group size and group mem-
frequency and computational overhead of re-keying is de- bershlp. dynamics on th_e scalability of re-keying schemes.
termined by the size of a sub-group instead of the size of the!? S€ction 3, we describe the Kronos approach for group
whole group. Under this approach, however, a Sub_(“:’mwore-keymg. In_Schon 4, we evaluate_thg tradeoffs betWt_een
manager is responsible for re-encrypting and relaying all 9/0UP ré-keying schemes both qualitatively and quantita-

multicast traffic flowing between its members and the rest iVely- Finally, Section 5 contains our conclusions.
of the group.

In this paper, we describe a novel approach to scal-2 The Case for Periodic Re-keying

able group re-keying for secure multicast. Our approach,

which we call Kronos, is based upon the idea of periodic  To provide forward and backward confidentiality, key
re-keying. Periodic re-keying decouples the frequency of management protocols for secure multicast change the ses-
re-keying from the size and membership dynamics of the sion key used for encrypting traffic whenever there is a
group. As such, our scheme can easily scale to large andnembership change. As discussed in the introduction, sev-
dynamic groups. However, this is potentially at the ex- eral researchers have developed techniques that minimize
pense of increased latencies experienced by members jointhe overhead of generating a new session key and redis-
ing and leaving the group. Further, if the period between tributing it securely to the existing members of the group.



However, the total overhead for re-keying over a given pe- of the broadcast and leaving at the end of the broadcast. For
riod of time depends not only on the cost of an individual other applications, e.g., areal-time information delivery ser-
re-keying operatiorbut also upon how often re-keying is vice, individual subscriber joining/leaving patterns are more
done during that period. independent. We discuss both cases below.

An increase in the rate of re-keying results in an increase
in the overhead of key management for several reasonsCase 1: Correlated Subscriber Behavior Consider the
First, the computational overhead at the key manager forsituation where thousands of subscribers attempt to join or
generating, encrypting, and transmitting the session key in-leave a group at roughly the same time. In this case, the
creases with the rate of re-keying. Second, the computa-group manager can expect to receive a flurry of join or leave
tional overhead of the group members for receiving and de-requests over a short period of time at the beginning or end
crypting the key increases with the rate of re-keying. This of a broadcast. In this situation, re-keying the group on each
is an important consideration especially for delay-sensitive and every membership change is clearly untenable. Instead,
applications and for applications executing on computersit is preferable to use a scheme under which the group is re-
with limited resources. Third, the network overhead (num- keyed periodically and the new key distributed in a scalable
ber of messages per unit time and bandwidth consumed) fomanner to all the current members of the group.
the re-keying traffic increases. Another factor that should
be considered here is the overhead for ensuring that keyscase 2: Independent Subscriber Behavior The motiva-
are transmitted in a reliable manner to the members of thetjgn for periodic re-keying is less clear in the second case:
group; this overhead may arise from a reliable multicast when each subscriber's behavior is independent of that of
protocol or from an application-specific protocol for deliv-  other subscribers. We use a simple analytical model to ana-
ering keys to the group members. lyze this case. Assume that the time for which a subscriber

The frequency of group re-keying depends upon two fac- is tuned in to a multicast is exponentially distributed with
tors: (i) the size of the group, and (ii) group membership mean1/u. Further, assume that the time during which a
dynamics, i.e., the rate at which members join and leave thesubscriber isiot tuned into the multicast is exponentially
group. In this section, we use a simple model to analyze thedistributed with mear? /.. ThusR is the ratio of the aver-
impact of these two factors on the rate at which groups needage time for which a subscriber is tuned out to the average
to be re-keyed. time for which a subscriber is tuned in.

Consider an application (e.g., a real-time information de- ~ Under these assumptions, the number of subscribers that
livery service) that can be expected to have large and dy-are tuned in to a broadcast can be modeled by a birth-death
namic groups. In this application, there is a single source Markov process [21]. Note that the number of subscribers
multicasting a stream of data to a changing set of recipi- tuned in to the multicast corresponds to users who are mem-
ents. Assume that there exists a populatioWafubscribers  bers of the multicast group under consideration. Thus, each
or viewers who are potentially interested in the information time there is a membership change the group will need to be
being multicast. Each subscriber can be modeled as alterfe-keyed. We can show (see Appendix A) that the expected
nating between two states: a state in which s/he is tuned intime interval between re-keys is given by
to the multicast (i.e., a member of the multicast group being
used by the application) and a state in which s/he is tuned Trekey = (1+ R)/(2uN)
out. This shows that as the produc of the subscriber pop-

An important factor that affects the membership dynam- ulation (V) and the reciprocal of the time for which a user
ics of a multicast group is the statistical correlation between tunes in to a broadcast (i) increases, the time between
the joining/leaving times of the members of the group. re-keys decreases. In other words, the larger the subscriber
Currently, there is little empirical evidence available about population and the smaller the time for which a subscriber
group membership dynamics for large scale multicast ap-tunes in to a multicast, the smaller the interval between re-
plications. However, there are two extremal assumptionskeys. The factoR has the opposite effect; the largRris
one can make about the correlation between the behaviothe larger the interval between re-keys.
of the members of the group: (i) that the patterns of join-  Assume that the key manager generates a new key in re-
ing/leaving the group araighly correlated i.e., all sub- sponse to a membership change and multicasts it to the cur-
scribers join and leave the group at nearly the same time (ii)rent members of the group at tirfig. Assume that the av-
each subscriber’'s behavior iisdependenof that of other erage delay after which this new key reaches the members
subscribers. For several applications, we can expect theref the group, i.e., the network delay of propagating the key
to be a high degree of correlation in subscriber joining and to the members of the group, is represented\byrhus, on
leaving patterns, e.g., for a pay per view scenario, we canaverage, a member of the multicast group will receive the
expect a lot of subscribers joining the group at the beginningnew key at timel,. = T + A.



If the expected time between re-key$..., is smaller (see the point labelled X in Figure 1).
than A, it implies that the key being used to encrypt data  While these results have been obtained using simplifying
will be need to be changed even before a majority of the assumptions (e.g., exponentially distributed tune-in times),
members of the group have received the previous version ofsimilar results are obtained (albeit via simulation) if we as-
the key. Re-keying at a higher frequency will lead to sit- sume that group membership dynamics are driven by long-
uations where several keys are in transit at any given timetailed distributions similar to those observed for other net-
increasing the probability of transient security breaches andwork processes [17].
confusion. From a practical viewpoint, it is difficult to con- These results show that for large and dynamic groups the
ceive of applications that can tolerate average re-key peri-frequency at which the group is re-keyed imposes an upper
ods smaller thad\. In that sense) represents a lower limit  |imit on the scalability of the key management protocol that
on the time interval between re-keys (or an upper bound onis independent of the efficiency of an individual re-keying
rate of re-keying). Note that this lower limit arises even if operation. For a key management protocol to be able to
the computational overhead of re-keying is negligible, i.e., scale to large and dynamic groups, it is necessary to address
even if a key manager has infinite processing power avail-the factors that lead to high re-keying frequencies.
able to it. The conditions under which this re-keying inter- Previous works have attempted to reduce the frequency
val is reached thus represent limits on the scalability of ap- of re-keying in two ways. First, it is possible to avoid the
proaches that re-key the group on each membership changeyverhead of distributing a new key to all the members of the

We note that there is no inherent restriction that preventsgroup on joins by generating the new version of the session
an application from havin@;..x., smaller thamA. Indeed, key by applying a one way function to the previous key. Un-
it could be argued that the small&st.., that can be toler-  der this approach, which has been adopted in the Versakey
ated depends largely on the application under considerationproject [22] and in the LKH+[12] protocol, the overhead of

Our reasoning for selecting as a lower bound off, ey transmitting a new key to the existing members of the group
are based on the practical concerns expressed above. is only incurred when a member leaves the gréugSec-
We now compute the conditions that lead{Qy., = A. ond, under the lolus approach, the frequency of re-keying

For large groups spread across the Internet, 50 ms represent§ reduced because sub-groups have both smaller sizes and

a reasonable value of the average dﬁabefore a new key smaller rates of joins/leaves than the entire group.

reaches the majority of the members of the group. In Figure A third approach to reducing the frequency of re-keying

1, we plot the values oWV (the number of subscribers) and is to decouple it altogether from group size and membership

1/ (the average time a subscriber tunes in to the broadcastflynamics. This can be accomplished by periodic re-keying,

that will result in the expected time between re-keys being i-€., by re-keying the group at fixed intervals instead of hav-

equal to 50 ms foR = 0.5, 1,2, 10 and 100. ing the re-keying operation be driven by member joins and
The area under the line for a particular valuefotor- leaves. In the next section, we describe an approach to scal-

responds to combinations & and1/y for which the ex- able group re-keying that is based upon this observation.

pected time between rekeys will be smaller than 50 ms. For

example, consider the plot f&@ = 1. When N = 10000 3 The Kronos Approach for Scalable Group

the limiting value of the average tune-in time is 500 sec- Re-keying

onds. In other words, the time between re-keys will become

unacceptably small for average tune-in times smaller than ) .
500 seconds. Similarly, faN — 100000 and N = 1000, Kronos is a scalable approach for re-keying large and

the smallest average tune-in times that can be handled ardYnamic groups. The analysis in Section 2 shows that as
5000 seconds and 50 seconds respectively. Note that thes80UPS become large and/or dynamic, re-keying the group

limits are independent of the processing power available to®" €ach membership change becomes unsustainable irre-
the key manager. spective of the efficiency of an individual re-keying oper-

It is important to note that for large subscriber popula- ation. By re-keying the group at fixed intervals, we can de-

. o : couple the frequency of re-keying from the group size and
tions it is not necessary for the group membership to be very . : . _

. . membership dynamics. If the interval between re-keys is
dynamic before the frequency of re-keying becomes unsus-

tainable. For example, wheN = 500000 and R = 100, large enough, the scalablhty_of a central_|zed_ key manage
. N . ment protocol that uses periodic re-keying is determined
the minimum tune-in time is over twelve minutes ( see the - oo )
i o solely by the efficiency of an individual group re-keying op-
point labelled Y in Figure 1). Note thaV represents the : .
. . . . ration. By using approaches such as LKH [23, 22, 24] or
maximum subscriber population and not the average size o .
. ) .~ " One-way Function trees [2], such a protocol can scale to
the group that is tuned in. Conversely, when membership 1|2 rge arouns
very dynamic (tune-in time = 1 minute, R = 10), the max- ge groups.
imum subscriber population that can be sustained is 6600 *For these protocold.cxe, = (1 + R)/(Np)
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Figure 1. The plots for R = 0.5,1,2,10 and 100 show the combination of values of N (number of
subscribers) and 1/u (average subscriber tune-in time) that lead to an expected time between re-
keys of 50 ms. The point labeled X corresponds to 1/p =60 seconds, R = 10,and N = 6600 while the
point labelled Y correspondsto N = 500000, R = 100 and 1/ = 496 seconds.

While a centralized key management service can be im-place.
plemented without requiring a distributed trusted infrastruc-
ture, it suffers from all the well-known disadvantages of 3.1 Distributed Key Management Frameworks
providing a centralized service on the Internet, viz. a single
point of failure, high latencies for (network-wise) distant Mittra [15] and Hardjanet al[10] have proposed frame-
hosts, unavailability due to network partitions, etc. To ro- \yqrks for distributing the task of key management for se-
bustly support large multicast groups with members spreadere multicast groups. Under the Intra-domain Group Key
across the Internet, it is necessary to distribute the key Many\janagement Protocol (IGKMP), an administrative domain
agement protocol. is divided into several “areas”. Each host-member of a

We note that several issues that need to be addressethulticast group is assumed to reside in a particular area.
for supporting distributed key management protocol such IGKMP distinguishes between multicast groups for the pur-
as multicast address allocation and the design of protocolgpose of key management and payload delivery. There is a
for the creation, initialization, and advertisement of multi- domain-wide key distributor (DKD) and an area key distrib-
cast groups are still at the research stage. We envision thatitor (AKD) corresponding to each area. Each host-member
Kronos would be used within a distributed key managementin a specific area is a member of a multicast group estab-
framework such as that proposed by Hardjahal [9, 10] lished for the purpose of key distribution that includes its
or Mittra [15]. Our focus in this paper is not on how such a AKD. All the AKDs and the DKD are members of another
framework should be established but on how scalable groupmulticast group that is used by the DKD for transmitting the
re-keying can be accomplished once such a framework is inmulticast data encryption key to the AKD, which in turn,



transmits it to each host-member in its area. Note that therethe group in their area. Instead each AKilependently
is a single group-wide multicast data encryption key under generates theamegroup-wide traffic encryption kegt the
this scheme. same timend transmits it to the members in its area. Sec-
Before a host can start participating in a group session,ond, Kronos uses periodic re-keying to decouple the rate of
it has to join the group. Joining a group involves sending re-keying from group size and membership dynamics.
a request to the AKD. The AKD authenticates the request  Under Kronos, group re-keys are not driven by member
and checks the credentials of the member. If the member isoin or leave requests. Instead, at periodic intervals, all the
allowed to join the group, the AKD will establish a private  member join and leave requests that have accumulated at an
key that is shared with the member. This key will be used to AKD are processed and the new multicast traffic encryption
encrypt the group wide data encryption key when it is sent key is securely transmitted to the existing members of the
to the member. Note that if an approach such as LKH is group. An algorithm such as LKH can be used by each
used at the sub-group or area level, a set of keys will needAKD to accomplish this task in a scalable manner. Note that
to be transmitted to the member [23, 24]. A member is con- most of the processing required for joins and leaves can be
sidered to have joined the group only when it has receiveddone during the time interval between re-keys. Further note
the group data encryption key. that under this approach a new traffic encryption key will
The lolus framework is similar to IGKMP in many re- be transmitted by an AKD to the members in its area even if
spects. For example, each multicast group is divided intothere has been no membership change during the previous
several sub-groups, each with their own manager (a Grouptime period.
Security Intermediary using lolus terminology). Members  Two issues need to be addressed for this approach to
join and leave requests are sent to the sub-group managework correctly. First, all the AKDs must use the same pe-
However, lolus differs from IGKMP in that its framework  riod for re-keying and must have their clocks synchronized
supports both data delivery and key management. Theresg that they re-key at the same time. Second, the AKDs
is no group-wide data encryption key; instead, there is a must share some state information that enables them to gen-
separate data encryption key for each subgroup. Each suberate the same key without any communication. Further, no
group manager is responsible for re-encrypting and relayingentity other than the AKDs should be able to generate the
all traffic flowing between the members of its sub-group and group key.
the other sub-groups. The first issue is addressed by having the AKDs agree

Tradeoffs: The lolus approach can scale to handle large and!n @dvance on the re-keying period and by using a clock
dynamic groups because joins and leaves within sub-grougy"chronization algorithm such as the Network Time Pro-
do not affect the rest of the group. However, sub-group to_cc_)l (NTP) [14]. NTP can synchronlze hosts _tq within a
managers are responsible for both payload delivery and ke);mlllsecond on.LANs and within a few tgns of mﬂhsecpnds
management. Under the IGKMP framework, however, key " _WANs rglauve_ to a server synghrpnlzed tq Coordinated
managementand payload delivery are decoupled since ther&NIVérsal Time via a Global Positioning Service (GPS) re-
is a single group-wide key that is used for encrypting group C€1Ve Further, NTP _car_l_be configured to use multiple re-
traffic. This allows data packets to be routed using the bestd“n_d":mt paths fo_r re||ab|llty, and authentication to prevent
multicast communications scheme and removes the need foRccidental or malicious protocol attacks. ,
the packets to be re-encrypted by the sub-group manager. The second issue can be addressed as follows. First,
Having a single group-wide key, however, implies that the @ll the AKDs need to agree on two shared secrets,/say
scalability of group re-keying is affected by the size and the @1d o This can be accomplished by having the DKD (or
membership dynamics of the whole group. If the DKD mul- the group coordinator) selectin§ and R, and transmit-
ticasts a new key to the AKDs on every membership change,t'”g it to the AKDs using a secure channel. Alternatively,

the scheme will not scale to large and dynamic groups. the AKDs can use a group key agreement algorithm such as
Cliques[19] to generat& and Ry in a contributory fashion.

3.2 Our Approach Once the shared secrets are established, every AKD gener-
ates the multicast group keg:, by applying a secret-key

We now describe a scalable approach, which we call €ncryption algorithm/s, to Ry using X' as the secret key.
Kronos, for re-keying a large and dynamic group that can 'NuS, 1 = Ex (Ro). Ry is then securely transmitted to
be used within a distributed framework such as IGKMP.  the members of the group in the AKD's area.

The operation of the Kronos protocol is similar to that This process is repeated at each iteration, i.e., the AKD
of IGKMP as discussed in Section 3.1 with two key dif- ©obtains the next multicast group key by applying the se-
ferences. First, the DKD or group manager is not directly cret key encryption algorithm to the the previous group key.
involved in generating the new group traffic encryption key Thus
that is distributed by the AKDs to the existing members of Riy1 = Ex(R;),i>0



The choice of the encryption functiof, and the length  current key right away instead of having to wait until the
of the key, K, is dictated by the security requirements of next re-key to join the group.
the application. Any function such as DES, triple DES,  If an application distinguishes between member leaves
or IDEA [18] can be used. In addition, periodically, for and member ejections, and it is critical to eject a member as
enhanced security the AKDs should re-establish the sharedoon as possible, then another variant can be used in which
secretsK andR. re-keying is done either periodically or when a member is

The choice of the re-keying period for our approach is ejected from the group. Since it is reasonable to assume
largely dependent on the security and performance requirethat ejections are less frequent than joins and leaves, this
ments of the application. However, the fact that the AKDs does not affect the scalability of the scheme.
do not need to coordinate while re-keying enables us to se- Finally, we note that the re-keying interval for a group
lect re-key periods that can be as small as one second. Uscan be made adaptive so that it matches group membership
ing this approach, a distributed key management frameworkdynamics. An example hybrid protocol would be one in
such as IGKMP can re-key large and dynamic groups in awhich in times of heavy load, the Kronos approach would
scalable way while maintaining a single group-wide multi- pe used whereas at other times re-keying can be initiated by
cast key. the DKD.

3.3 Discussion Trust Considerations: Kronos builds upon distributed key
management frameworks such as IGKMP and therefore in-

Using periodic re-keying implies that join and leave la- herits the trust relationships assumed by these frameworks.
tencies will be on average equal to half the the interval be- Thus, it is assumed that each host member in an area trusts
tween re-keys plus the network delay for the join request its AKD, and that all AKDs and the DKD trust each other.
and the reply. We assume that a join is considered completeAs such, a protocol such as Kronos may be more applicable
when the user receives the current session key, and a leave i®r applications where the AKDs and DKD are all under the
completed when the existing members of the group receivecontrol of a single organization.
the new session key. If the interval between re-keys is large,
this latency may be unacceptable for some applications. On :
the other hand by making the re-keying interval relatively 4 Evaluation
small (of the order of seconds), this latency can be reduced
to acceptable levels for most applications. We explore this  In this section, we use a detailed simulation to evaluate
issue in more detail in Section 4. the performance tradeoffs between Kronos and other ap-

We note that periodic re-keying has long been rec- proaches for scalable key management, specifically LKH
ognized as being necessary from the security point ofand lolus.
view [10]. This is because employing the same key for a
long period of time increases the chances of that key being4 1 Metrics
successfully crypto-analyzed by an attacker who has col-
lected the ciphertext of messages encrypted with that key. . . .

An advantage of periodic re-keying from the point of The performance metrics of interest are the following:
view of the application is that the overhead of re-keying
is predictable and bounded. This is especially advanta-
geous for applications executing on platforms with limited
resources or for real-time applications. Another advantage
of periodic re-keying is that typically several joins and/or
leaves will processed at the same time. This allows the use
of optimizations such as those proposed by Ma@texi [16]
and Changet al [3] that result in the size of the periodic
re-key message being smaller than the sum of the sizes of
the individual re-key messages transmitted under a protocol
that re-keys the group on each membership change.

Join/leave latency This is the time that elapses between

the submission of a join or leave request by a mem-
ber and the receipt of the keying material that enables
it to decrypt group communications. We assume that a
user has previously established a private key with the
group (or sub-group) manager using Diffie-Hellman

agreement before submitting the join request. Thus,
the components that make up the join/leave latency in-
clude (i) the network delay for the packets correspond-
ing to the request and the reply (ii) the delay at the

server corresponding to the computation time for re-

Variants: Itis also possible to come up with variants on the ceiving and authenticating the request, generating and
basic periodic re-keying scheme. If the security requirement encrypting the new keys, creating the message digest,
of perfect backward confidentiality is relaxed, then there is signing the response, and transmitting it to the member

no need to change the current session key on a join. Thus, (i) the queueing delay at the server (iv) delay due to
a user who makes a join request can be supplied with the lost requests or responses.



Time between RekeysAs discussed in Section 2, the DVMRP [7].

shorter the time between the rekeys, the higher the net—W Kioad Model: Wi idered i
work overhead in terms of both the number of mes- Workload Model: ‘We considered two multicast scenar-

sages and the bandwidth consumed. In addition, thel0S: @ one-to-many scenario and a many-to-many scenario.
computational overhead at the member hosts for re- For both scenarios, there were 2_40 pote_nt|a| multlca.stgroup
ceiving and decrypting new keys increases with de- members (the ngmbergfsubsc_nbe_Ns,usmg the terminol-
creasing re-key times. ogy introduced in Section 2) Q|str|bu§ed among the LAN—
level nodes of the network. As in Section 2, each subscriber
Data packet latency This is the average network delay be- independently alternates between a state in which itis mem-
fore a data packet transmitted by the source reacheser of the multicast group corresponding to the application
the members of the group. For the LKH and Kronos and a state in which it is not a member. In our simulations,
protocols, multicast data delivery is independent of the we assumed that the time spent in these states is exponen-
keying protocol. However, under lolus, each packet tially disitributed. Further, we assumed th&t the ratio
sent by the source is re-encrypted and relayed by theof the time spent in these states was 1, while the time for
sub-group manager to its subgroup. The extra delaywhich a host is a member of the group/[:) was varied
for these actions is reflected in data packet latency. ~ from 5 seconds to 12.5 seconds. Our intent was to simulate
situations in which there were a large number of join and
4.2 The Simulation Environment leave requests arriving per unit time at the group manager,
i.e., situations in which the frequency of group re-keying
would become a bottleneck for protocols which re-keyed
Network Model: Our simulations were written using the the group on every membership change. As discussed in
packet-level, event-based network simulator ns2 [25] from Section 2, the frequency of re-keying depends upon both
UC, Berkeley. We used the Tiers network topology gener- group membership dynamics (as determined®mandl /)
ator [6] to generate the topologies used in our simulation. as well as the size of the subscriber populatidf).(Since
Tiers generates 3-level hierarchical networks consisting of simulating large groups with thousands of members is not
WANSs, MANSs, and LANs. While we ran simulations for feasiblé, we achieved our goal of high rates of join and
several different topologies, the base network topology for leave requests by selecting relatively small (and unrealistic)
which results are reported in this section consisted of 360values ofl /. andR.
nodes distributed over a WAN corresponding to the back-  Each simulation run corresponds to 70 seconds of simu-
bone, 10 MANSs, and 50 LANs. The WAN backbone has lated time. Statistics are gathered only after the first 10 sec-
10 routing sites and each MAN also has 10 routing sites, onds of the simulated time have elapsed to remove cold-start
while each LAN has 5 hosts. The average degree of re-effects. In the one-to-many scenario, a single CBR source
dundancy (extra edges between nodes) for both WAN andmulticasts data to the group at 224 Kb/sec. The CBR source
MAN routers is 2. The bandwidth of the WAN, MAN, and starts transmitting data after 0.6 seconds in the simulation.
LAN links are assumed to be 2248 Mb/s, 155 Mb/s and 100 In the many-to-many scenario, the fraction of the members
Mb/sec respectively. The average link propogation delay is that are senders is varied from 10% to 40%. These senders
approximately 60 ms for WAN links, 17 ms for MAN links  are uniformly distributed over the network topology. Each
and 1 ms for LANSs. member that is a sender alternates between a state in which
In order to simulate large topologies in a reasonable itis a CBR sender (sending state) and a state in which it does
amount of time, we we only simulated traffic flows corre- not transmit any data (quiet state). The time each sender
sponding to the multicast application under consideration spends in both the “sending state” and the “quiet state” is
and the control traffic for group key management. To model uniformly distributed between 0 and 12.5 seconds.
the effect of background traffic and queueing, on each hop In our simulations for LKH, there is a single group man-
each packet experiences a random delay drawn from a uniager that is co-located with the data source in the one-to-
form distribution between 0 and 2 ms. Further, each link many scenario. Separate multicast addresses are used for
has an associated loss ratg, Thus each packet travers- data and control traffic. The logical keytree has a degree of
ing the link gets dropped with a probability. While we 4 and key-oriented keying [24] is used. In our implementa-
considered several different loss models corresponding totion of LKH, if multiple join and leave requests are present
different network conditions, in the loss model used for the in the request queue, they are processed as a batch while re-
results reported in this section, higher packet losses occukeying the logical keytree. For lolus and Kronos, the net-
in some of the MANs. Specifically, 30% of the MAN and work is divided into “areas” each with their own AKD or
MANTWAN.ImkS have a loss prObablmy of 2% while th_e 2Each run of our simulations for the network and workload models
remaining links have a loss probability of 0.5%. In the Sim-  gescribed in this paper took more than one day on a PC with a Pentium Ill
ulation, routers run dense mode multicast routing similar to 600 MHz CPU and required between 200 and 400 MB of RAM




sub-group manager. Each sub-group manager (AKD) usedeen lost. This timer is set based on the round-trip-time

the LKH algorithm for key management in its sub-group between the member and its key manager.

(area). For lolus, the re-encryption done at the sub-group

manager for each data packet simply involves decrypting4.3 Results

and re-encrypting the message key that is associated with

each message [15] (and notthe entire payloadin the packet). ypjess stated otherwise, the results discussed below use
For Kronos (lolus), the location of the AKDs (sub-group  the network and workload models described in Section 4.2.

managers) affects the join and leave latency for the hosts inTpe results for lolus and Kronos assume the “sparse” map-

that a_trea. In the case of lolus, the latency of the multicastping of AKDs on the network topology. The re-key interval
data is also affected by the location of the sub-group man-,sed for Kronos is 1 second.

agers. We consider two cases in our simulations. In the first
case, which we label as the “dense” mapping, each MAN Join and Leave Latency: Our first set of results compares
is considered an “area”; thus, there are 10 areas each witlthe performance of LKH, lolus and Kronos for the one-to-
an AKD that performs the key management for 24 hosts in many scenario described above. In Figure 2, we plot the join
the area. In the second case, which we label as the “sparse@nd leave latencies seen by the members of the group for
mapping, the network topology is mapped into 8 areas eachthese protocols as a function of the average time for which
with 30 hosts. While most of the hosts in an area are lo- a user joins the group (). We can make three observa-
cated in the same MAN as their AKD, some of the hosts are tions from Figure 2. First, LKH has higher join and leave
in “nearby” MANS. latencies than lolus for all values of u. Second, the join
Finally, for Kronos, we assume that an algorithm such as (leave) latencies for lolus and Kronos are not affected by
NTP is being used to keep the clocks of the AKDs synchro- changingl /. Third, the join (leave) latencies for LKH in-
nized to within 25 ms. Thus, in our simulations, the clock Ccrease dramatically 5y is decreased below 10 seconds.
skew between the AKDs is uniformly distributed between ~ The join and leave latency for a member depends on two
0 and 25 ms. The costs assumed in our simulations for thecomponents: the network delay for the request and reply
various tasks performed by the LKH, lolus, and Kronos are and the delay at the key manager. While the network delay
listed in Table 4.2. These costs assumed are based on resulfer the request and reply largely depends upon the network

reported in the literature [3, 18]. “distance” between the member and the key manager, the
delay at the key manager depends on the load on the key
Encryption algorithm DES3 manager. Recall from Section 2 that the load on the key
Key Length 168 bits manager depends upon the number of subscribéysa(d
Key Encryption Time| 1.64 msec the group membership dynamics (as determinet/hyand
Key Generation Timg 2.8 msec R). For afixedR, the load on the manager increases$ 4s
Data packet size 500 bytes decreases. In the case of LKH, Figure 2 shows that the key
Signature algorithm RSA manager becomes overloaded wi¢p is decreased below
Signature Length 512 bits 10 seconds. Thus the major component of the join and leave
Authentication rate | 1506 KB/sec latency under LKH is the queuing delay at the key manager.
Signature rate 367 KB/sec In the case of lolus and Kronos, the task of re-keying is
distributed among the AKDs and sub-group managers. In
Table 1. The costs used in our simulations our experiments, varying/u between 5 and 12.5 seconds
for the LKH, lolus and Kronos protocols. The did notimpose a heavy load on the AKDs, and thus did have
signing and authentication rates include the any noticeable impact on the join and leave latency. For lo-
time for taking a MD5 hash. lus, the major component of the join latency is the network

delay for the request and the manager’s response. In the
case of Kronos, the major component of the join (leave) la-
tency is the queueing time at the AKD, which is on average
equal to half the fixed re-keying period - in this case 0.5
seconds.

Reliable key delivery: While UDP is used for both data
and key messages, we use a simple receiver-initiated proto
col for reliable-key delivery. Each message contains a clear
text field that indicates the key version number used to en-Data Latency: Figure 3 plots the average latency for the
crypt the message. Group members use the version numbettata packets multicast by the CBR source in the one-to-
field of each message to detect if they are missing somemany scenario. In the case of LKH and Kronos, data deliv-
keys. If this is the case, a request for the missing keys isery is independent of the group key management protocol.
sent to the key manager. Each group member maintains aThus, the data latency is not affected by chandifig. On
adaptive timer for detecting if its messages to its AKD have the other hand, in the case of lolus, the CBR source first
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Figure 2. Average member join and leave latencies under LKH, lolus, and Kronos as a function of
1/p.

multicasts the data to the sub-group managers who are re- @ LKH m Iolus OKronos
sponsible for re-encrypting it and forwarding it to the mem- o3s
bers of their respective sub-groups. Figure 3 shows that the
data latency under lolus is significantly larger than under
LKH and Kronos. Note that the higher data latency under
lolus relative to LKH and Kronos isotbecause of the cost

of re-encryption which is less than 2 ms per packet. In-
stead, the difference in data latency is because of the extra
network delay in routing each packet to its destination via
the sub-group manager. Further note that the results in Fig-
ure 3 were obtained for the “sparse” mapping of sub-group
managers on the network topology. Later in this section we
examine the effect of changing the location of the sub-group
managers on the data latency for lolus. o " - - o

We also examined the average data latency for the pro- /1 (sec)
tocols for the many-to-many scenario described in Section
4.2. In contrast to the one-to-many scenario, in the case Figyre 3. Average data latencies for LKH, Kro-
of the many-to-many scenario, the encryption bandwidth  nos, and lolus as a function of 1/
available at the lolus sub-group manager has a significant
impact on the average data latency. For the base parameters
listed in Table 4.2, the lolus sub-group manager is capable

of re-encrypting approxmgtely 610 packets per secofrd of the fraction of group members who are senders. For lo-

our many-to-many scenario, the ”“mber of packets that a.reius, we consider the effect of doubling and quadrupling the
delivered to the sub-group manager is much larger than this.

As a result, each packet experiences long queueing delaygncryptlon bandwidth at the subgroup managers. We ob-

i . . . Serve that changing the fraction of senders has no impact on
atthe S_Ub group manager leading to high data lateficies the data latency under Kronos. (Although not shown in the
In Figure 4, we plot the average data latency under Kro- g, re the same is true for LKH.) For lolus, it is clear that

nos and lolus for the many-to-many scenario as a functiony,e encryntion bandwidth becomes a bottleneck as the num-
SNote that for each packet only a single key is re-encrypted, not the ber of senders increases. Quadruplmg the processmg power

entire payload of the packet ' of the su_b—group manager results in the data latencies under
4\e assume that the sub-group manager has sufficient buffer space fol0lUS being comparable to those of Kronos when the frac-

these queued packets. tion of group members that are senders is below 30%. To
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Figure 5. Avg. time between re-keys for
the various policies. LKH(2X) represents the
case where the processing power at the key
manager is doubled.

lolus( VX) represents the case where the en-
cryption bandwidth of each sub-group man-
agers is N times the baseline encryption

bandwidth. 5 seconds.

Impact of increasing processing power for LKH: As the
results above show, for LKH the key manager becomes a
obtain comparable data latencies for the 40% percent casehottleneck as the rate of join and leave requests increases.
it was necessary to increase the encryption bandwidth at theéncreasing the processing power at the key manager will ob-
sub-group managers by a factor of 5. viously remove this bottleneck. Figure 6 shows that when
\ . . the processing power at the key manager is doubled (rela-
Time between Group Re-keysFigure 5 shows the impact e 1o the baseline parameters listed in Table 4.2), the join
of changingl /. on the time interval between groupre-keys. 4 jeave latencies are significantly reduced. However, we
For Kronos, the interval between re-keys is fixa@griori note that increasing the processing power also results in a
so changingl/u has no effect. For lolus, decreasifif  reqyction in the time between re-keys as shown in Figure
increases the rate at which join and leave requests armive ak £ rther note that for the network topology considered in
the sub-group key managers, thus increasing the frequency,, simylations, the average latency for keys to distributed
of sub-group re-keying. Thus, we see that the time betweery, e members of the group is around 150 msec which is
re-keys decreases from 400 milliseconds when = 12.5 larger than the re-key period (90 msec). This implies that
seconds to around 190 mlllllsec.onds whep =5 seconds.  ha group key is changed by the key manager even before
For LKH, the re-key period increases B5. decreases. )| members have received the previous key. These results
While this may seem counter-intuitive, it can be explained gnow that for protocols that re-key the group on every mem-
by the fact that (as discussed above) the key manager bepership change the frequency of group re-keying imposes
comes overloaded dg .. is decreased. Consequently, I0ng jimits on the scalability that are independent of the process-
queues of join and leave requests build up at the key man4,q power available at the key manager.
ager. In our simulation implementation of LKH, the key
manager processes all the join and leave requests present iimpact of manager location on lolus and Kronos: The
the queue as a single batch. Thus, the number of re-keysesults reported above for lolus and Kronos are for the
is not as large as would be the case if each and every join“sparse” mapping of sub-group managers described in Sec-
or leave request resulted in a group re-key. Figure 5 alsotion 4.2. In the case of the “dense” mapping, each manager
shows the average re-key period for LKH if the processing is located in the same MAN as its members so that messages
power at the key manager is doubled. In this case, we seéetween members and their key managers never traverse the
that the re-key period for LKH is much smaller; it decreases network backbone. Figures 7 (a) and (b) compare the join
from around 90 ms to 60 ms ag . decreases from 12.5t0 and data latencies for the dense and sparse mappings under
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Figure 6. The impact of increasing the pro-
cessing power at the key manager on LKH
performance. LKH(2X) represents the case
where the processing power at the key man-
ager is doubled.

Kronos and lolus. We observe that the average join laten-
cies for both lolus and Kronos are significantly reduced (by

around 300 ms) for the dense mapping. In the case of lolus,
the data latency is also reduced (by around 120 ms) for the
dense mapping. On the other hand, for Kronos, the AKDs
are not involved in data delivery so their location has no

impact on the data latency.

Impact of changing the re-key period for Kronos: Our
last set of experiments examines the impact of changing

12

the re-key time period on the join and leave latencies un-
der Kronos. In Figure 8, we plot the avg. join latency for
the “dense” manager mapping for re-key periods of 0.5, 1,
and 1.5 seconds. As expected, the average join latency in-
creases with the re-key period.

4.3.1 Summary of Results

From the results above, we can draw the following conclu-

sions:

e The increase in the frequency of re-keying with in-
creasing join and leave rates imposes limits on the scal-
ability of LKH that are independent of the processing
power available at the key manager.

e For most scenarios, lolus results in the lowest join
and leave latencies among the three protocols. How-
ever, lolus has the highest data packet delivery laten-
cies among the three protocols because of the need for
re-encryption and re-transmission. The location of the
lolus sub-group manager has a significant impact on
the data latency. Further, in the case of the many-to-
many scenario, the encryption bandwidth of the sub-
group managers become a bottleneck as the number of
senders in a group and the rate at which they are trans-
mitting data increases.

e The join and leave latencies under Kronos depend
upon the re-keying period. By selecting a re-key pe-
riod of 1 second, we can obtain join and leave latencies
that are comparable to those of lolus. Further, Kronos
has the attractive properties that the data latencies are
independent of the location of the AKDs, and that the



lower than those obtained under lolus. Finally, the network

and processing overheads for group re-keying under Kronos
are predictable and lower than those obtained under lolus
09 and LKH.
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wherep; is the probability of being in state After some
straightforward algebraic manipulation, we find that

Trekey = (]- + R)/(QIJ’N)

A Average Time between Rekeys

We derive the expected time between re-keys for the In-
dependent Subscriber Behaviour case discussed in Section
2.

Assume that the time for which a subscriber is tuned in to
a multicast is exponentially distributed with megfu. Fur-
ther, assume that the time during which a subscribaots
tuned into the multicast is exponentially distributed with
meanl/\ = R/u. ThusR is the ratio of the average time
for which a subscriber is tuned out to the average time for
which a subscriber is tuned in.

Under these assumptions, the number of subscribers that
are tuned in to a multicast can be modeled by a birth-death
Markov process [21]. Consider a state in which therejare
subscribers tuned in to the multicast. Thus, thereMare i
subscribers that are tuned out. The transitions into state
can occur from state— 1 at a rate( /N — ¢ + 1)\ and from
statei+1 at aratg N —i—1)u. The transitions out of state
occur at a ratéu + (IV —i)A. Solving the balance equations
for this Markov chain, we can obtain the probability of each
state:.

Since the group is re-keyed each time there is a mem-
bership change, the rate at which transitions occur out of a
given state is the rate at which the group will be re-keyed.
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