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Abstract

In this paper, we describe a novel approach to scalable
group re-keying for secure multicast. Our approach, which
we call Kronos, is based upon the idea of periodic group
re-keying. We first motivate our approach by showing that
if a group is re-keyed on each membership change, as the
size of the group increases and/or the rate at which mem-
bers leave and join the group increases, the frequency of re-
keying becomes the primary bottleneck for scalable group
re-keying. In contrast, Kronos can scale to handle large
and dynamic groups because the frequency of re-keying is
independent of the size and membership dynamics of the
group. Next, we describe how Kronos can be used in con-
junction with distributed key management frameworks such
as IGKMP [10], that use a single group-wide session key for
encrypting communications between members of the group.
Using a detailed simulation, we compare the performance
tradeoffs between Kronos and other key management proto-
cols.

1 Introduction

Many emerging Internet applications (e.g., real-time in-
formation services, pay per view, computer-supported col-
laborative work) are based upon group communications. As
the next generation of the Internet is deployed, many of
these applications are expected to increase in importance.
Network protocols that support multicast communications
in an efficient and scalable manner are essential for appli-
cations based on group communications. Consequently, is-
sues such as reliable delivery of data and congestion control
in the context of multicasting over the Internet have been
active areas of research over the last few years.

An issue that is critical for mainstream adoption of mul-
ticast technology is the need forsecuringmulticast commu-
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nications. In other words, it is important to ensure that mul-
ticast communications can only be received by the intended
recipients. While security mechanisms for supporting uni-
cast communications over the Internet have been studied ex-
tensively [13], it is only recently that the research commu-
nity has started to address the issues involved in supporting
secure multicasting [5].

The multicast service currently supported in the Internet
(IP Multicast) does not have any provisions for restricting
delivery of data to a specified set of receivers. Any receiver
can join or leave a multicast group (identified by a Class D
IP address [20]) by sending IGMP (Internet Group Manage-
ment Protocol) [8] messages to their local router. Further,
any user can send data to a multicast group by addressing
the message to the group address. In other words, IP multi-
cast does not support “closed” groups.

To restrict the flow of multicast data to a specific set
of users, it is necessary to use cryptographic mechanisms.
Specifically, messages are encrypted by senders using a ses-
sion key that is only distributed to members of the group.
Participation in a group session is restricted by ensuring that
only members of the group have possession of the session
key at any given time. Thus key management (creating and
distributing session keys to authorized group members) is a
critical aspect of secure multicast.

One of the issues that has to be addressed by key man-
agement schemes for secure multicast is the need for for-
ward and backward confidentiality [23]. In other words,
new members joining a group should not be able to access
previously multicast data and old members should not be
able to continue to access data multicast after they have left
the group. For applications that require perfect forward and
backward confidentiality, the session key used for encrypt-
ing group communications needs to be changed on each
membership change and securely redistributed to the ex-
isting members of the group. This is referred to as group
re-keying.

For large groups with frequent membership changes, the
costs of re-keying the group can be quite substantial. The



straightforward approach under which a new session key
is generated on each join and leave, and securely transmit-
ted to each existing group member is not scalable to large
groups. This is because the session key will have to be en-
crypted individually for each group member and the costs of
doing so increase linearly with the size of the group. Scal-
able re-keying is therefore an important problem that needs
to be addressed in order to support secure communications
for large and dynamic groups.

Recently several protocols for group key management
for secure multicast have been proposed. The techniques
that specifically address the problem of scalable group re-
keying fall under two categories. The first set of ap-
proaches [23, 24, 3, 22], typically involve creating a logical
hierarchy of keys. The main focus of these schemes is to
reduce the overhead of re-keying the session key on a mem-
bership change. The schemes are scalable because the com-
putational overhead of re-keying is logarithmic in the num-
ber of members of the group. However, these approaches
do not attempt to reduce the frequency at which the session
key needs to be changed and redistributed to the members
of the group. As we discuss in Section 2, for large and dy-
namic groupsthe frequency of re-keyingimposes an upper
limit on the scalability of key management protocols that is
independent of the efficiency of an individual re-keying op-
eration. Secondly, with the exception of the Distributed Flat
scheme of Waldvogelet al [22], these approaches are cen-
tralized. As such, they have all the well-known advantages
(from the security point of view) and disadvantages (from
the performance and availability point of view) of providing
a centralized service on the Internet.

The second approach to scalable group re-keying em-
ploys a divide-and-conquer approach. This approach [15]
(henceforth referred to as Iolus) is inherently distributed in
nature. A group is divided into several sub-groups each with
its own session key. Membership changes in a sub-group
result in a change of the sub-group session key and do not
affect the remaining members of the group. Thus, both the
frequency and computational overhead of re-keying is de-
termined by the size of a sub-group instead of the size of the
whole group. Under this approach, however, a sub-group
manager is responsible for re-encrypting and relaying all
multicast traffic flowing between its members and the rest
of the group.

In this paper, we describe a novel approach to scal-
able group re-keying for secure multicast. Our approach,
which we call Kronos, is based upon the idea of periodic
re-keying. Periodic re-keying decouples the frequency of
re-keying from the size and membership dynamics of the
group. As such, our scheme can easily scale to large and
dynamic groups. However, this is potentially at the ex-
pense of increased latencies experienced by members join-
ing and leaving the group. Further, if the period between

key changes is too large, the delay in evicting members
may be unacceptable for some high-security applications.
In Sections 3 and 4, we explore this tradeoff and show that
by appropriately selecting the period of re-keying, accept-
able join and leave latencies can be obtained.

Another advantage of periodic re-keying is that it permits
scalable group re-keying within distributed frameworks for
key management such as Iolus [15] or IGKMP [10], while
allowing the use of single group-wide session key for en-
crypting communications between members of the group.
In Section 3, we describe a scheme whereby each sub-
group key manager independently generates the same traf-
fic encryption key at fixed intervals and multicasts it to the
members of its sub-group. Since there is a single group-
wide traffic encryption key, the sub-group manager is no
longer responsible for re-encrypting and relaying all data
between its members and the rest of the group. At the
same time, group re-keying is accomplished in an efficient
and scalable fashion. We note that periodic re-keying has
long been recognized as necessary from the security point
of view [23, 10]. However, our emphasis on periodic re-
keying is motivated by the need for scalable group re-keying
for large and dynamic groups.

We make three contributions in this paper. First, we eval-
uate the impact of group size and group membership dy-
namics on the scalability of re-keying schemes. We show
that if a group is re-keyed on each membership change, as
the size of the group increases and/or the rate at which mem-
bers leave and join the group increases, the frequency of re-
keying becomes the primary bottleneck for scalable group
re-keying. Second, we propose a scalable group re-keying
approach based upon periodic re-keying that can be used in
conjunction with distributed key management frameworks
such as Iolus and IGKMP. Third, using a detailed simula-
tion, we explore the performance tradeoffs between Kronos
and other key management protocols for secure multicast.

The organization of the rest of the paper is as follows. In
Section 2, we analyze impact of group size and group mem-
bership dynamics on the scalability of re-keying schemes.
In Section 3, we describe the Kronos approach for group
re-keying. In Section 4, we evaluate the tradeoffs between
group re-keying schemes both qualitatively and quantita-
tively. Finally, Section 5 contains our conclusions.

2 The Case for Periodic Re-keying

To provide forward and backward confidentiality, key
management protocols for secure multicast change the ses-
sion key used for encrypting traffic whenever there is a
membership change. As discussed in the introduction, sev-
eral researchers have developed techniques that minimize
the overhead of generating a new session key and redis-
tributing it securely to the existing members of the group.
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However, the total overhead for re-keying over a given pe-
riod of time depends not only on the cost of an individual
re-keying operationbut also upon how often re-keying is
done during that period.

An increase in the rate of re-keying results in an increase
in the overhead of key management for several reasons.
First, the computational overhead at the key manager for
generating, encrypting, and transmitting the session key in-
creases with the rate of re-keying. Second, the computa-
tional overhead of the group members for receiving and de-
crypting the key increases with the rate of re-keying. This
is an important consideration especially for delay-sensitive
applications and for applications executing on computers
with limited resources. Third, the network overhead (num-
ber of messages per unit time and bandwidth consumed) for
the re-keying traffic increases. Another factor that should
be considered here is the overhead for ensuring that keys
are transmitted in a reliable manner to the members of the
group; this overhead may arise from a reliable multicast
protocol or from an application-specific protocol for deliv-
ering keys to the group members.

The frequency of group re-keying depends upon two fac-
tors: (i) the size of the group, and (ii) group membership
dynamics, i.e., the rate at which members join and leave the
group. In this section, we use a simple model to analyze the
impact of these two factors on the rate at which groups need
to be re-keyed.

Consider an application (e.g., a real-time information de-
livery service) that can be expected to have large and dy-
namic groups. In this application, there is a single source
multicasting a stream of data to a changing set of recipi-
ents. Assume that there exists a population ofN subscribers
or viewers who are potentially interested in the information
being multicast. Each subscriber can be modeled as alter-
nating between two states: a state in which s/he is tuned in
to the multicast (i.e., a member of the multicast group being
used by the application) and a state in which s/he is tuned
out.

An important factor that affects the membership dynam-
ics of a multicast group is the statistical correlation between
the joining/leaving times of the members of the group.
Currently, there is little empirical evidence available about
group membership dynamics for large scale multicast ap-
plications. However, there are two extremal assumptions
one can make about the correlation between the behavior
of the members of the group: (i) that the patterns of join-
ing/leaving the group arehighly correlated, i.e., all sub-
scribers join and leave the group at nearly the same time (ii)
each subscriber’s behavior isindependentof that of other
subscribers. For several applications, we can expect there
to be a high degree of correlation in subscriber joining and
leaving patterns, e.g., for a pay per view scenario, we can
expect a lot of subscribers joining the group at the beginning

of the broadcast and leaving at the end of the broadcast. For
other applications, e.g., a real-time information delivery ser-
vice, individual subscriber joining/leaving patterns are more
independent. We discuss both cases below.

Case 1: Correlated Subscriber Behavior Consider the
situation where thousands of subscribers attempt to join or
leave a group at roughly the same time. In this case, the
group manager can expect to receive a flurry of join or leave
requests over a short period of time at the beginning or end
of a broadcast. In this situation, re-keying the group on each
and every membership change is clearly untenable. Instead,
it is preferable to use a scheme under which the group is re-
keyed periodically and the new key distributed in a scalable
manner to all the current members of the group.

Case 2: Independent Subscriber Behavior The motiva-
tion for periodic re-keying is less clear in the second case:
when each subscriber’s behavior is independent of that of
other subscribers. We use a simple analytical model to ana-
lyze this case. Assume that the time for which a subscriber
is tuned in to a multicast is exponentially distributed with
mean1/µ. Further, assume that the time during which a
subscriber isnot tuned into the multicast is exponentially
distributed with meanR/µ. ThusR is the ratio of the aver-
age time for which a subscriber is tuned out to the average
time for which a subscriber is tuned in.

Under these assumptions, the number of subscribers that
are tuned in to a broadcast can be modeled by a birth-death
Markov process [21]. Note that the number of subscribers
tuned in to the multicast corresponds to users who are mem-
bers of the multicast group under consideration. Thus, each
time there is a membership change the group will need to be
re-keyed. We can show (see Appendix A) that the expected
time interval between re-keys is given by

Trekey = (1 + R)/(2µN)

This shows that as the productµN of the subscriber pop-
ulation (N ) and the reciprocal of the time for which a user
tunes in to a broadcast (1/µ) increases, the time between
re-keys decreases. In other words, the larger the subscriber
population and the smaller the time for which a subscriber
tunes in to a multicast, the smaller the interval between re-
keys. The factorR has the opposite effect; the largerR is
the larger the interval between re-keys.

Assume that the key manager generates a new key in re-
sponse to a membership change and multicasts it to the cur-
rent members of the group at timeTs. Assume that the av-
erage delay after which this new key reaches the members
of the group, i.e., the network delay of propagating the key
to the members of the group, is represented by∆. Thus, on
average, a member of the multicast group will receive the
new key at timeTr = Ts + ∆.
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If the expected time between re-keys,Trekey is smaller
than∆, it implies that the key being used to encrypt data
will be need to be changed even before a majority of the
members of the group have received the previous version of
the key. Re-keying at a higher frequency will lead to sit-
uations where several keys are in transit at any given time
increasing the probability of transient security breaches and
confusion. From a practical viewpoint, it is difficult to con-
ceive of applications that can tolerate average re-key peri-
ods smaller than∆. In that sense,∆ represents a lower limit
on the time interval between re-keys (or an upper bound on
rate of re-keying). Note that this lower limit arises even if
the computational overhead of re-keying is negligible, i.e.,
even if a key manager has infinite processing power avail-
able to it. The conditions under which this re-keying inter-
val is reached thus represent limits on the scalability of ap-
proaches that re-key the group on each membership change.

We note that there is no inherent restriction that prevents
an application from havingTrekey smaller than∆. Indeed,
it could be argued that the smallestTrekey that can be toler-
ated depends largely on the application under consideration.
Our reasoning for selecting∆ as a lower bound onTrekey

are based on the practical concerns expressed above.
We now compute the conditions that lead toTrekey = ∆.

For large groups spread across the Internet, 50 ms represents
a reasonable value of the average delay∆ before a new key
reaches the majority of the members of the group. In Figure
1, we plot the values ofN (the number of subscribers) and
1/µ (the average time a subscriber tunes in to the broadcast)
that will result in the expected time between re-keys being
equal to 50 ms forR = 0.5, 1, 2, 10 and 100.

The area under the line for a particular value ofR cor-
responds to combinations ofN and1/µ for which the ex-
pected time between rekeys will be smaller than 50 ms. For
example, consider the plot forR = 1. WhenN = 10000
the limiting value of the average tune-in time is 500 sec-
onds. In other words, the time between re-keys will become
unacceptably small for average tune-in times smaller than
500 seconds. Similarly, forN = 100000 andN = 1000,
the smallest average tune-in times that can be handled are
5000 seconds and 50 seconds respectively. Note that these
limits are independent of the processing power available to
the key manager.

It is important to note that for large subscriber popula-
tions it is not necessary for the group membership to be very
dynamic before the frequency of re-keying becomes unsus-
tainable. For example, whenN = 500000 andR = 100,
the minimum tune-in time is over twelve minutes ( see the
point labelled Y in Figure 1). Note thatN represents the
maximum subscriber population and not the average size of
the group that is tuned in. Conversely, when membership is
very dynamic (tune-in time = 1 minute, R = 10), the max-
imum subscriber population that can be sustained is 6600

(see the point labelled X in Figure 1).
While these results have been obtained using simplifying

assumptions (e.g., exponentially distributed tune-in times),
similar results are obtained (albeit via simulation) if we as-
sume that group membership dynamics are driven by long-
tailed distributions similar to those observed for other net-
work processes [17].

These results show that for large and dynamic groups the
frequency at which the group is re-keyed imposes an upper
limit on the scalability of the key management protocol that
is independent of the efficiency of an individual re-keying
operation. For a key management protocol to be able to
scale to large and dynamic groups, it is necessary to address
the factors that lead to high re-keying frequencies.

Previous works have attempted to reduce the frequency
of re-keying in two ways. First, it is possible to avoid the
overhead of distributing a new key to all the members of the
group on joins by generating the new version of the session
key by applying a one way function to the previous key. Un-
der this approach, which has been adopted in the Versakey
project [22] and in the LKH+[12] protocol, the overhead of
transmitting a new key to the existing members of the group
is only incurred when a member leaves the group1. Sec-
ond, under the Iolus approach, the frequency of re-keying
is reduced because sub-groups have both smaller sizes and
smaller rates of joins/leaves than the entire group.

A third approach to reducing the frequency of re-keying
is to decouple it altogether from group size and membership
dynamics. This can be accomplished by periodic re-keying,
i.e., by re-keying the group at fixed intervals instead of hav-
ing the re-keying operation be driven by member joins and
leaves. In the next section, we describe an approach to scal-
able group re-keying that is based upon this observation.

3 The Kronos Approach for Scalable Group
Re-keying

Kronos is a scalable approach for re-keying large and
dynamic groups. The analysis in Section 2 shows that as
groups become large and/or dynamic, re-keying the group
on each membership change becomes unsustainable irre-
spective of the efficiency of an individual re-keying oper-
ation. By re-keying the group at fixed intervals, we can de-
couple the frequency of re-keying from the group size and
membership dynamics. If the interval between re-keys is
large enough, the scalability of a centralized key manage-
ment protocol that uses periodic re-keying is determined
solely by the efficiency of an individual group re-keying op-
eration. By using approaches such as LKH [23, 22, 24] or
One-way Function trees [2], such a protocol can scale to
large groups.

1For these protocols,Trekey = (1 + R)/(Nµ)
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Figure 1. The plots for R = 0.5, 1, 2, 10 and 100 show the combination of values of N (number of
subscribers) and 1/µ (average subscriber tune-in time) that lead to an expected time between re-
keys of 50 ms. The point labeled X corresponds to 1/µ = 60 seconds, R = 10, and N = 6600 while the
point labelled Y corresponds to N = 500000, R = 100 and 1/µ = 496 seconds.

While a centralized key management service can be im-
plemented without requiring a distributed trusted infrastruc-
ture, it suffers from all the well-known disadvantages of
providing a centralized service on the Internet, viz. a single
point of failure, high latencies for (network-wise) distant
hosts, unavailability due to network partitions, etc. To ro-
bustly support large multicast groups with members spread
across the Internet, it is necessary to distribute the key man-
agement protocol.

We note that several issues that need to be addressed
for supporting distributed key management protocol such
as multicast address allocation and the design of protocols
for the creation, initialization, and advertisement of multi-
cast groups are still at the research stage. We envision that
Kronos would be used within a distributed key management
framework such as that proposed by Hardjanoet al [9, 10]
or Mittra [15]. Our focus in this paper is not on how such a
framework should be established but on how scalable group
re-keying can be accomplished once such a framework is in

place.

3.1 Distributed Key Management Frameworks

Mittra [15] and Hardjanoet al[10] have proposed frame-
works for distributing the task of key management for se-
cure multicast groups. Under the Intra-domain Group Key
Management Protocol (IGKMP), an administrative domain
is divided into several “areas”. Each host-member of a
multicast group is assumed to reside in a particular area.
IGKMP distinguishes between multicast groups for the pur-
pose of key management and payload delivery. There is a
domain-wide key distributor (DKD) and an area key distrib-
utor (AKD) corresponding to each area. Each host-member
in a specific area is a member of a multicast group estab-
lished for the purpose of key distribution that includes its
AKD. All the AKDs and the DKD are members of another
multicast group that is used by the DKD for transmitting the
multicast data encryption key to the AKD, which in turn,
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transmits it to each host-member in its area. Note that there
is a single group-wide multicast data encryption key under
this scheme.

Before a host can start participating in a group session,
it has to join the group. Joining a group involves sending
a request to the AKD. The AKD authenticates the request
and checks the credentials of the member. If the member is
allowed to join the group, the AKD will establish a private
key that is shared with the member. This key will be used to
encrypt the group wide data encryption key when it is sent
to the member. Note that if an approach such as LKH is
used at the sub-group or area level, a set of keys will need
to be transmitted to the member [23, 24]. A member is con-
sidered to have joined the group only when it has received
the group data encryption key.

The Iolus framework is similar to IGKMP in many re-
spects. For example, each multicast group is divided into
several sub-groups, each with their own manager (a Group
Security Intermediary using Iolus terminology). Members
join and leave requests are sent to the sub-group manager.
However, Iolus differs from IGKMP in that its framework
supports both data delivery and key management. There
is no group-wide data encryption key; instead, there is a
separate data encryption key for each subgroup. Each sub-
group manager is responsible for re-encrypting and relaying
all traffic flowing between the members of its sub-group and
the other sub-groups.

Tradeoffs: The Iolus approach can scale to handle large and
dynamic groups because joins and leaves within sub-group
do not affect the rest of the group. However, sub-group
managers are responsible for both payload delivery and key
management. Under the IGKMP framework, however, key
management and payload delivery are decoupled since there
is a single group-wide key that is used for encrypting group
traffic. This allows data packets to be routed using the best
multicast communications scheme and removes the need for
the packets to be re-encrypted by the sub-group manager.
Having a single group-wide key, however, implies that the
scalability of group re-keying is affected by the size and the
membership dynamics of the whole group. If the DKD mul-
ticasts a new key to the AKDs on every membership change,
the scheme will not scale to large and dynamic groups.

3.2 Our Approach

We now describe a scalable approach, which we call
Kronos, for re-keying a large and dynamic group that can
be used within a distributed framework such as IGKMP.

The operation of the Kronos protocol is similar to that
of IGKMP as discussed in Section 3.1 with two key dif-
ferences. First, the DKD or group manager is not directly
involved in generating the new group traffic encryption key
that is distributed by the AKDs to the existing members of

the group in their area. Instead each AKDindependently
generates thesamegroup-wide traffic encryption keyat the
same timeand transmits it to the members in its area. Sec-
ond, Kronos uses periodic re-keying to decouple the rate of
re-keying from group size and membership dynamics.

Under Kronos, group re-keys are not driven by member
join or leave requests. Instead, at periodic intervals, all the
member join and leave requests that have accumulated at an
AKD are processed and the new multicast traffic encryption
key is securely transmitted to the existing members of the
group. An algorithm such as LKH can be used by each
AKD to accomplish this task in a scalable manner. Note that
most of the processing required for joins and leaves can be
done during the time interval between re-keys. Further note
that under this approach a new traffic encryption key will
be transmitted by an AKD to the members in its area even if
there has been no membership change during the previous
time period.

Two issues need to be addressed for this approach to
work correctly. First, all the AKDs must use the same pe-
riod for re-keying and must have their clocks synchronized
so that they re-key at the same time. Second, the AKDs
must share some state information that enables them to gen-
erate the same key without any communication. Further, no
entity other than the AKDs should be able to generate the
group key.

The first issue is addressed by having the AKDs agree
in advance on the re-keying period and by using a clock
synchronization algorithm such as the Network Time Pro-
tocol (NTP) [14]. NTP can synchronize hosts to within a
millisecond on LANs and within a few tens of milliseconds
on WANs relative to a server synchronized to Coordinated
Universal Time via a Global Positioning Service (GPS) re-
ceiver. Further, NTP can be configured to use multiple re-
dundant paths for reliability, and authentication to prevent
accidental or malicious protocol attacks.

The second issue can be addressed as follows. First,
all the AKDs need to agree on two shared secrets, sayK
andR0. This can be accomplished by having the DKD (or
the group coordinator) selectingK and R0 and transmit-
ting it to the AKDs using a secure channel. Alternatively,
the AKDs can use a group key agreement algorithm such as
Cliques[19] to generateK andR0 in a contributory fashion.
Once the shared secrets are established, every AKD gener-
ates the multicast group key,R1, by applying a secret-key
encryption algorithm,E, to R0 usingK as the secret key.
Thus,R1 = EK(R0). R1 is then securely transmitted to
the members of the group in the AKD’s area.

This process is repeated at each iteration, i.e., the AKD
obtains the next multicast group key by applying the se-
cret key encryption algorithm to the the previous group key.
Thus

Ri+1 = EK(Ri), i ≥ 0
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The choice of the encryption function,E and the length
of the key,K, is dictated by the security requirements of
the application. Any function such as DES, triple DES,
or IDEA [18] can be used. In addition, periodically, for
enhanced security the AKDs should re-establish the shared
secrets,K andR0.

The choice of the re-keying period for our approach is
largely dependent on the security and performance require-
ments of the application. However, the fact that the AKDs
do not need to coordinate while re-keying enables us to se-
lect re-key periods that can be as small as one second. Us-
ing this approach, a distributed key management framework
such as IGKMP can re-key large and dynamic groups in a
scalable way while maintaining a single group-wide multi-
cast key.

3.3 Discussion

Using periodic re-keying implies that join and leave la-
tencies will be on average equal to half the the interval be-
tween re-keys plus the network delay for the join request
and the reply. We assume that a join is considered complete
when the user receives the current session key, and a leave is
completed when the existing members of the group receive
the new session key. If the interval between re-keys is large,
this latency may be unacceptable for some applications. On
the other hand by making the re-keying interval relatively
small (of the order of seconds), this latency can be reduced
to acceptable levels for most applications. We explore this
issue in more detail in Section 4.

We note that periodic re-keying has long been rec-
ognized as being necessary from the security point of
view [10]. This is because employing the same key for a
long period of time increases the chances of that key being
successfully crypto-analyzed by an attacker who has col-
lected the ciphertext of messages encrypted with that key.

An advantage of periodic re-keying from the point of
view of the application is that the overhead of re-keying
is predictable and bounded. This is especially advanta-
geous for applications executing on platforms with limited
resources or for real-time applications. Another advantage
of periodic re-keying is that typically several joins and/or
leaves will processed at the same time. This allows the use
of optimizations such as those proposed by Moyeret al [16]
and Changet al [3] that result in the size of the periodic
re-key message being smaller than the sum of the sizes of
the individual re-key messages transmitted under a protocol
that re-keys the group on each membership change.

Variants: It is also possible to come up with variants on the
basic periodic re-keying scheme. If the security requirement
of perfect backward confidentiality is relaxed, then there is
no need to change the current session key on a join. Thus,
a user who makes a join request can be supplied with the

current key right away instead of having to wait until the
next re-key to join the group.

If an application distinguishes between member leaves
and member ejections, and it is critical to eject a member as
soon as possible, then another variant can be used in which
re-keying is done either periodically or when a member is
ejected from the group. Since it is reasonable to assume
that ejections are less frequent than joins and leaves, this
does not affect the scalability of the scheme.

Finally, we note that the re-keying interval for a group
can be made adaptive so that it matches group membership
dynamics. An example hybrid protocol would be one in
which in times of heavy load, the Kronos approach would
be used whereas at other times re-keying can be initiated by
the DKD.

Trust Considerations: Kronos builds upon distributed key
management frameworks such as IGKMP and therefore in-
herits the trust relationships assumed by these frameworks.
Thus, it is assumed that each host member in an area trusts
its AKD, and that all AKDs and the DKD trust each other.
As such, a protocol such as Kronos may be more applicable
for applications where the AKDs and DKD are all under the
control of a single organization.

4 Evaluation

In this section, we use a detailed simulation to evaluate
the performance tradeoffs between Kronos and other ap-
proaches for scalable key management, specifically LKH
and Iolus.

4.1 Metrics

The performance metrics of interest are the following:

Join/leave latency This is the time that elapses between
the submission of a join or leave request by a mem-
ber and the receipt of the keying material that enables
it to decrypt group communications. We assume that a
user has previously established a private key with the
group (or sub-group) manager using Diffie-Hellman
agreement before submitting the join request. Thus,
the components that make up the join/leave latency in-
clude (i) the network delay for the packets correspond-
ing to the request and the reply (ii) the delay at the
server corresponding to the computation time for re-
ceiving and authenticating the request, generating and
encrypting the new keys, creating the message digest,
signing the response, and transmitting it to the member
(iii) the queueing delay at the server (iv) delay due to
lost requests or responses.
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Time between RekeysAs discussed in Section 2, the
shorter the time between the rekeys, the higher the net-
work overhead in terms of both the number of mes-
sages and the bandwidth consumed. In addition, the
computational overhead at the member hosts for re-
ceiving and decrypting new keys increases with de-
creasing re-key times.

Data packet latency This is the average network delay be-
fore a data packet transmitted by the source reaches
the members of the group. For the LKH and Kronos
protocols, multicast data delivery is independent of the
keying protocol. However, under Iolus, each packet
sent by the source is re-encrypted and relayed by the
sub-group manager to its subgroup. The extra delay
for these actions is reflected in data packet latency.

4.2 The Simulation Environment

Network Model: Our simulations were written using the
packet-level, event-based network simulator ns2 [25] from
UC, Berkeley. We used the Tiers network topology gener-
ator [6] to generate the topologies used in our simulation.
Tiers generates 3-level hierarchical networks consisting of
WANs, MANs, and LANs. While we ran simulations for
several different topologies, the base network topology for
which results are reported in this section consisted of 360
nodes distributed over a WAN corresponding to the back-
bone, 10 MANs, and 50 LANs. The WAN backbone has
10 routing sites and each MAN also has 10 routing sites,
while each LAN has 5 hosts. The average degree of re-
dundancy (extra edges between nodes) for both WAN and
MAN routers is 2. The bandwidth of the WAN, MAN, and
LAN links are assumed to be 2248 Mb/s, 155 Mb/s and 100
Mb/sec respectively. The average link propogation delay is
approximately 60 ms for WAN links, 17 ms for MAN links
and 1 ms for LANs.

In order to simulate large topologies in a reasonable
amount of time, we we only simulated traffic flows corre-
sponding to the multicast application under consideration
and the control traffic for group key management. To model
the effect of background traffic and queueing, on each hop
each packet experiences a random delay drawn from a uni-
form distribution between 0 and 2 ms. Further, each link
has an associated loss rate,li. Thus each packet travers-
ing the link gets dropped with a probabilityli. While we
considered several different loss models corresponding to
different network conditions, in the loss model used for the
results reported in this section, higher packet losses occur
in some of the MANs. Specifically, 30% of the MAN and
MAN-WAN links have a loss probability of 2% while the
remaining links have a loss probability of 0.5%. In the sim-
ulation, routers run dense mode multicast routing similar to

DVMRP [7].

Workload Model: We considered two multicast scenar-
ios: a one-to-many scenario and a many-to-many scenario.
For both scenarios, there were 240 potential multicast group
members (the number of subscribers,N , using the terminol-
ogy introduced in Section 2) distributed among the LAN-
level nodes of the network. As in Section 2, each subscriber
independently alternates between a state in which it is mem-
ber of the multicast group corresponding to the application
and a state in which it is not a member. In our simulations,
we assumed that the time spent in these states is exponen-
tially disitributed. Further, we assumed thatR, the ratio
of the time spent in these states was 1, while the time for
which a host is a member of the group (1/µ) was varied
from 5 seconds to 12.5 seconds. Our intent was to simulate
situations in which there were a large number of join and
leave requests arriving per unit time at the group manager,
i.e., situations in which the frequency of group re-keying
would become a bottleneck for protocols which re-keyed
the group on every membership change. As discussed in
Section 2, the frequency of re-keying depends upon both
group membership dynamics (as determined byR and1/µ)
as well as the size of the subscriber population (N ). Since
simulating large groups with thousands of members is not
feasible2, we achieved our goal of high rates of join and
leave requests by selecting relatively small (and unrealistic)
values of1/µ andR.

Each simulation run corresponds to 70 seconds of simu-
lated time. Statistics are gathered only after the first 10 sec-
onds of the simulated time have elapsed to remove cold-start
effects. In the one-to-many scenario, a single CBR source
multicasts data to the group at 224 Kb/sec. The CBR source
starts transmitting data after 0.6 seconds in the simulation.
In the many-to-many scenario, the fraction of the members
that are senders is varied from 10% to 40%. These senders
are uniformly distributed over the network topology. Each
member that is a sender alternates between a state in which
it is a CBR sender (sending state) and a state in which it does
not transmit any data (quiet state). The time each sender
spends in both the “sending state” and the “quiet state” is
uniformly distributed between 0 and 12.5 seconds.

In our simulations for LKH, there is a single group man-
ager that is co-located with the data source in the one-to-
many scenario. Separate multicast addresses are used for
data and control traffic. The logical keytree has a degree of
4 and key-oriented keying [24] is used. In our implementa-
tion of LKH, if multiple join and leave requests are present
in the request queue, they are processed as a batch while re-
keying the logical keytree. For Iolus and Kronos, the net-
work is divided into “areas” each with their own AKD or

2Each run of our simulations for the network and workload models
described in this paper took more than one day on a PC with a Pentium III
600 MHz CPU and required between 200 and 400 MB of RAM

8



sub-group manager. Each sub-group manager (AKD) uses
the LKH algorithm for key management in its sub-group
(area). For Iolus, the re-encryption done at the sub-group
manager for each data packet simply involves decrypting
and re-encrypting the message key that is associated with
each message [15] (and not the entire payload in the packet).

For Kronos (Iolus), the location of the AKDs (sub-group
managers) affects the join and leave latency for the hosts in
that area. In the case of Iolus, the latency of the multicast
data is also affected by the location of the sub-group man-
agers. We consider two cases in our simulations. In the first
case, which we label as the “dense” mapping, each MAN
is considered an “area”; thus, there are 10 areas each with
an AKD that performs the key management for 24 hosts in
the area. In the second case, which we label as the “sparse”
mapping, the network topology is mapped into 8 areas each
with 30 hosts. While most of the hosts in an area are lo-
cated in the same MAN as their AKD, some of the hosts are
in “nearby” MANS.

Finally, for Kronos, we assume that an algorithm such as
NTP is being used to keep the clocks of the AKDs synchro-
nized to within 25 ms. Thus, in our simulations, the clock
skew between the AKDs is uniformly distributed between
0 and 25 ms. The costs assumed in our simulations for the
various tasks performed by the LKH, Iolus, and Kronos are
listed in Table 4.2. These costs assumed are based on results
reported in the literature [3, 18].

Encryption algorithm DES3
Key Length 168 bits

Key Encryption Time 1.64 msec
Key Generation Time 2.8 msec

Data packet size 500 bytes
Signature algorithm RSA
Signature Length 512 bits

Authentication rate 1506 KB/sec
Signature rate 367 KB/sec

Table 1. The costs used in our simulations
for the LKH, Iolus and Kronos protocols. The
signing and authentication rates include the
time for taking a MD5 hash.

Reliable key delivery: While UDP is used for both data
and key messages, we use a simple receiver-initiated proto-
col for reliable-key delivery. Each message contains a clear
text field that indicates the key version number used to en-
crypt the message. Group members use the version number
field of each message to detect if they are missing some
keys. If this is the case, a request for the missing keys is
sent to the key manager. Each group member maintains an
adaptive timer for detecting if its messages to its AKD have

been lost. This timer is set based on the round-trip-time
between the member and its key manager.

4.3 Results

Unless stated otherwise, the results discussed below use
the network and workload models described in Section 4.2.
The results for Iolus and Kronos assume the “sparse” map-
ping of AKDs on the network topology. The re-key interval
used for Kronos is 1 second.

Join and Leave Latency:Our first set of results compares
the performance of LKH, Iolus and Kronos for the one-to-
many scenario described above. In Figure 2, we plot the join
and leave latencies seen by the members of the group for
these protocols as a function of the average time for which
a user joins the group (1/µ). We can make three observa-
tions from Figure 2. First, LKH has higher join and leave
latencies than Iolus for all values of1/µ. Second, the join
(leave) latencies for Iolus and Kronos are not affected by
changing1/µ. Third, the join (leave) latencies for LKH in-
crease dramatically as1/µ is decreased below 10 seconds.

The join and leave latency for a member depends on two
components: the network delay for the request and reply
and the delay at the key manager. While the network delay
for the request and reply largely depends upon the network
“distance” between the member and the key manager, the
delay at the key manager depends on the load on the key
manager. Recall from Section 2 that the load on the key
manager depends upon the number of subscribers (N ) and
the group membership dynamics (as determined by1/µ and
R). For a fixedR, the load on the manager increases as1/µ
decreases. In the case of LKH, Figure 2 shows that the key
manager becomes overloaded when1/µ is decreased below
10 seconds. Thus the major component of the join and leave
latency under LKH is the queuing delay at the key manager.

In the case of Iolus and Kronos, the task of re-keying is
distributed among the AKDs and sub-group managers. In
our experiments, varying1/µ between 5 and 12.5 seconds
did not impose a heavy load on the AKDs, and thus did have
any noticeable impact on the join and leave latency. For Io-
lus, the major component of the join latency is the network
delay for the request and the manager’s response. In the
case of Kronos, the major component of the join (leave) la-
tency is the queueing time at the AKD, which is on average
equal to half the fixed re-keying period - in this case 0.5
seconds.

Data Latency: Figure 3 plots the average latency for the
data packets multicast by the CBR source in the one-to-
many scenario. In the case of LKH and Kronos, data deliv-
ery is independent of the group key management protocol.
Thus, the data latency is not affected by changing1/µ. On
the other hand, in the case of Iolus, the CBR source first
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Figure 2. Average member join and leave latencies under LKH, Iolus, and Kronos as a function of
1/µ.

multicasts the data to the sub-group managers who are re-
sponsible for re-encrypting it and forwarding it to the mem-
bers of their respective sub-groups. Figure 3 shows that the
data latency under Iolus is significantly larger than under
LKH and Kronos. Note that the higher data latency under
Iolus relative to LKH and Kronos isnotbecause of the cost
of re-encryption which is less than 2 ms per packet. In-
stead, the difference in data latency is because of the extra
network delay in routing each packet to its destination via
the sub-group manager. Further note that the results in Fig-
ure 3 were obtained for the “sparse” mapping of sub-group
managers on the network topology. Later in this section we
examine the effect of changing the location of the sub-group
managers on the data latency for Iolus.

We also examined the average data latency for the pro-
tocols for the many-to-many scenario described in Section
4.2. In contrast to the one-to-many scenario, in the case
of the many-to-many scenario, the encryption bandwidth
available at the Iolus sub-group manager has a significant
impact on the average data latency. For the base parameters
listed in Table 4.2, the Iolus sub-group manager is capable
of re-encrypting approximately 610 packets per second3. In
our many-to-many scenario, the number of packets that are
delivered to the sub-group manager is much larger than this.
As a result, each packet experiences long queueing delays
at the sub-group manager leading to high data latencies4.

In Figure 4, we plot the average data latency under Kro-
nos and Iolus for the many-to-many scenario as a function

3Note that for each packet only a single key is re-encrypted, not the
entire payload of the packet

4We assume that the sub-group manager has sufficient buffer space for
these queued packets.
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Figure 3. Average data latencies for LKH, Kro-
nos, and Iolus as a function of 1/µ

of the fraction of group members who are senders. For Io-
lus, we consider the effect of doubling and quadrupling the
encryption bandwidth at the subgroup managers. We ob-
serve that changing the fraction of senders has no impact on
the data latency under Kronos. (Although not shown in the
figure, the same is true for LKH.) For Iolus, it is clear that
the encryption bandwidth becomes a bottleneck as the num-
ber of senders increases. Quadrupling the processing power
of the sub-group manager results in the data latencies under
Iolus being comparable to those of Kronos when the frac-
tion of group members that are senders is below 30%. To
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Figure 4. Avg. data latency under the Many-
to-Many multicast scenario for Kronos and
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Iolus( NX) represents the case where the en-
cryption bandwidth of each sub-group man-
agers is N times the baseline encryption
bandwidth.

obtain comparable data latencies for the 40% percent case,
it was necessary to increase the encryption bandwidth at the
sub-group managers by a factor of 5.

Time between Group Re-keys:Figure 5 shows the impact
of changing1/µ on the time interval between group re-keys.
For Kronos, the interval between re-keys is fixeda priori
so changing1/µ has no effect. For Iolus, decreasing1/µ
increases the rate at which join and leave requests arrive at
the sub-group key managers, thus increasing the frequency
of sub-group re-keying. Thus, we see that the time between
re-keys decreases from 400 milliseconds when1/µ = 12.5
seconds to around 190 milliseconds when1/µ = 5 seconds.

For LKH, the re-key period increases as1/µ decreases.
While this may seem counter-intuitive, it can be explained
by the fact that (as discussed above) the key manager be-
comes overloaded as1/µ is decreased. Consequently, long
queues of join and leave requests build up at the key man-
ager. In our simulation implementation of LKH, the key
manager processes all the join and leave requests present in
the queue as a single batch. Thus, the number of re-keys
is not as large as would be the case if each and every join
or leave request resulted in a group re-key. Figure 5 also
shows the average re-key period for LKH if the processing
power at the key manager is doubled. In this case, we see
that the re-key period for LKH is much smaller; it decreases
from around 90 ms to 60 ms as1/µ decreases from 12.5 to
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Figure 5. Avg. time between re-keys for
the various policies. LKH(2X) represents the
case where the processing power at the key
manager is doubled.

5 seconds.

Impact of increasing processing power for LKH: As the
results above show, for LKH the key manager becomes a
bottleneck as the rate of join and leave requests increases.
Increasing the processing power at the key manager will ob-
viously remove this bottleneck. Figure 6 shows that when
the processing power at the key manager is doubled (rela-
tive to the baseline parameters listed in Table 4.2), the join
and leave latencies are significantly reduced. However, we
note that increasing the processing power also results in a
reduction in the time between re-keys as shown in Figure
5. Further note that for the network topology considered in
our simulations, the average latency for keys to distributed
to the members of the group is around 150 msec which is
larger than the re-key period (90 msec). This implies that
the group key is changed by the key manager even before
all members have received the previous key. These results
show that for protocols that re-key the group on every mem-
bership change the frequency of group re-keying imposes
limits on the scalability that are independent of the process-
ing power available at the key manager.

Impact of manager location on Iolus and Kronos: The
results reported above for Iolus and Kronos are for the
“sparse” mapping of sub-group managers described in Sec-
tion 4.2. In the case of the “dense” mapping, each manager
is located in the same MAN as its members so that messages
between members and their key managers never traverse the
network backbone. Figures 7 (a) and (b) compare the join
and data latencies for the dense and sparse mappings under
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Figure 6. The impact of increasing the pro-
cessing power at the key manager on LKH
performance. LKH(2X) represents the case
where the processing power at the key man-
ager is doubled.

Kronos and Iolus. We observe that the average join laten-
cies for both Iolus and Kronos are significantly reduced (by
around 300 ms) for the dense mapping. In the case of Iolus,
the data latency is also reduced (by around 120 ms) for the
dense mapping. On the other hand, for Kronos, the AKDs
are not involved in data delivery so their location has no
impact on the data latency.

Impact of changing the re-key period for Kronos: Our
last set of experiments examines the impact of changing

the re-key time period on the join and leave latencies un-
der Kronos. In Figure 8, we plot the avg. join latency for
the “dense” manager mapping for re-key periods of 0.5, 1,
and 1.5 seconds. As expected, the average join latency in-
creases with the re-key period.

4.3.1 Summary of Results

From the results above, we can draw the following conclu-
sions:

• The increase in the frequency of re-keying with in-
creasing join and leave rates imposes limits on the scal-
ability of LKH that are independent of the processing
power available at the key manager.

• For most scenarios, Iolus results in the lowest join
and leave latencies among the three protocols. How-
ever, Iolus has the highest data packet delivery laten-
cies among the three protocols because of the need for
re-encryption and re-transmission. The location of the
Iolus sub-group manager has a significant impact on
the data latency. Further, in the case of the many-to-
many scenario, the encryption bandwidth of the sub-
group managers become a bottleneck as the number of
senders in a group and the rate at which they are trans-
mitting data increases.

• The join and leave latencies under Kronos depend
upon the re-keying period. By selecting a re-key pe-
riod of 1 second, we can obtain join and leave latencies
that are comparable to those of Iolus. Further, Kronos
has the attractive properties that the data latencies are
independent of the location of the AKDs, and that the
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Figure 8. The effect of changing the re-key
period on the join latency under Kronos.

group re-keying rate is independent of group size and
membership dynamics.

5 Conclusions

In this paper, we have described Kronos, a novel ap-
proach to scalable group re-keying for secure multicast. We
showed that if a multicast group is re-keyed on each mem-
bership change, as the size of the group increases and/or the
rate at which members leave and join the group increases,
the frequency of re-keying becomes the primary bottleneck
for scalable group re-keying. In contrast, Kronos is based
on periodic re-keying which decouples the frequency of
re-keying from the size and membership dynamics of the
group. Another feature of Kronos is that it can be used in
conjunction with a distributed framework for key manage-
ment such as IGKMP [10] that uses a single group-wide
session key for encrypting communications between mem-
bers of the group.

Using a detailed simulation, we examined the perfor-
mance tradeoffs between Kronos, Iolus, and LKH. Our
results indicate that the join and leave latencies obtained
for Kronos are acceptable for most applications. Further,
the average data latencies for the multicast application are

lower than those obtained under Iolus. Finally, the network
and processing overheads for group re-keying under Kronos
are predictable and lower than those obtained under Iolus
and LKH.
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A Average Time between Rekeys

We derive the expected time between re-keys for the In-
dependent Subscriber Behaviour case discussed in Section
2.

Assume that the time for which a subscriber is tuned in to
a multicast is exponentially distributed with mean1/µ. Fur-
ther, assume that the time during which a subscriber isnot
tuned in to the multicast is exponentially distributed with
mean1/λ = R/µ. ThusR is the ratio of the average time
for which a subscriber is tuned out to the average time for
which a subscriber is tuned in.

Under these assumptions, the number of subscribers that
are tuned in to a multicast can be modeled by a birth-death
Markov process [21]. Consider a state in which there arei
subscribers tuned in to the multicast. Thus, there areN − i
subscribers that are tuned out. The transitions into statei
can occur from statei − 1 at a rate(N − i + 1)λ and from
statei+1 at a rate(N−i−1)µ. The transitions out of statei
occur at a rateiµ+(N− i)λ. Solving the balance equations
for this Markov chain, we can obtain the probability of each
statei.

Since the group is re-keyed each time there is a mem-
bership change, the rate at which transitions occur out of a
given statei is the rate at which the group will be re-keyed.

Thus, the expected time between re-keys is given by

Trekey =
N∑

i=0

(iµ + (N − i)λ)pi

wherepi is the probability of being in statei. After some
straightforward algebraic manipulation, we find that

Trekey = (1 + R)/(2µN)
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