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Abstract

We have conducted an empirical study of a number of competairiy exploits and determined that the
rates at which incidents involving the exploit are reportiedhe CERT can be modeled using a common
mathematical framework. Data associated with three sagmifi exploits involving vulnerabilities in phf,
imap, and bind can all be modeled using the form@lila= I + S x v/M whereC is the cumulative count
of reported incidentsM is the time since the start of the exploit cycle, ahdnd S are the regression
coefficients determined by analysis of the incident repatad Further analysis of two additional exploits
involving vulnerabilities in mountd and statd confirm thedab We believe that the models will aid in
predicting the severity of subsequent vulnerability ekptoons, based on the rate of early incident reports.

*This work was sponsored in part by an IBM Faculty Partnersiiprd.
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A Trend Analysis of Exploitations

Abstract

We have conducted an empirical study of a number of competairity exploits and determined
that the rates at which incidents involving the exploit anearted to the CERT can be modeled using a
common mathematical framework. Data associated with thigraficant exploits involving vulnerabil-
ities in phf, imap, and bind can all be modeled using the fdandi= I + S x v/M whereC is the
cumulative count of reported incident¥] is the time since the start of the exploit cycle, andnd.S
are the regression coefficients determined by analysisdhttident report data. Further analysis of two
additional exploits involving vulnerabilities in mountdéstatd confirm the model. We believe that the
models will aid in predicting the severity of subsequenteuhbility exploitations, based on the rate of
early incident reports.

1 Introduction

Flaws in system software create vulnerabilities that enaimst of the reported system intrusions. Anecdo-
tal evidence supports a hypothesis that poor system adrainis practices, including the failure to apply
available patches in a timely fashion, results in an exeessindow of vulnerability for the affected sys-
tems. As far as we have been able to determine, no studigstleisvould either confirm or refute this
conjecture though is is widely believed and often repeated.

Several previous studies have attempted to estimate théearuof computers at risk for specific vul-
nerabilities [1, 2], but none have focused on the temporsttidutions of intrusions that exploit a given
vulnerability. To address these short-comings, we exathiiaa collected by the CERT Coordination Cen-
ter for several incidents involving specific vulnerabditj and we have found that the evidence tends to
support the hypothesis even more strongly than anecddtree would tend to indicate [3]. Furthermore,
our evidence has identified a temporal distribution of isitre activity with respect to the defining events in
exploit cycles that varies substantially from that hypethed by other researchers in the field [4, 5].

In this paper, we present a statistical model that relaiesdte at which intrusions accumulate, and we
provide evidence to support it. The result is a model thasiss predicting the severity of an exploita-
tion cycle. The existence of a severity predictor allowddant handling organizations to plan and staff
accordingly. Additionally, the knowledge of the severifyam incident can assist operational organizations
in performing more effective risk management. Our modedspnted in section 4, indicates that each of
the vulnerabilities that we have studied accumulate in alaijrand near linear, fashion. ldentifying and
validating the model requires a regression analysis omiingsion data for each vulnerability.

To perform our analysis, we extracted data from the incidemrt repository of the CERT Coordination
Center. In section 3, we will describe the data availableERTand outline the procedures that we used to
select the specific vulnerabilities that we examined. Wihke available data is far from ideal, we believe
that it is usable for our purposes. The data that we extramwefirms the hypothesis in which the vast
majority of exploits occur long after patches that would dinithem are available- demonstrating that poor
administrative procedures are an enabling factor. Theoresafor these practices and the development of
interventions to alter them are left for future efforts.

The remainder of this paper is divided into several sectidfisst, we describe the events that occur
during an exploit cycle- beginning with the preconditions &xploitation and continuing until the exploit
is no longer viable. This is followed by a discussion of thdiiidual cases that we studied including a
discussion of the data available to us, and the criteria wd tsselect the reported cases. Next, we provide
the steps used to generate the model, and the results ofirmpjiiyto additional samples for validation.
Finally, we conclude the paper and describe our future work.

IMisconfiguration appears to account for many of the remainde



2 Vulnerabilities and Exploit Cycles

System software is less than perfect. As a result, it is somestpossible to take advantage of flaws in a
privileged program to force it to take or support actiong thalate the letter or intent of the security policy

of a system in which it is deployed. In this section, we discusinerabilities and exploits in terms of the

events relating to the introduction of the flaw, its discgvand the development of an exploit that takes
advantage of the flaw (now a vulnerability). We also consttierpatterns of activity that occur when the

vulnerability becomes well known, and its exploitation igle/spread.

2.1 The Defining Events

A security relevanflaw is a necessary precondition for the exploitation of a pieiceystem software.
Usually, flaws occur by “accident” or (more likely) due to ekssness on the part of a programmer or
designer. Not every flaw leads to a vulnerability, howevastfFthe flaw must beiscovered and it must be
possible teexploit the flaw in such a way as to abuse the privileges granted tlyegoroor otherwise damage
the system on which the software is installed. In some céseg,periods of time may lapse between the
introduction of the flaw, its discovery, and the developmaran exploit that takes advantage of the flaw.
For example, The TCP/IP protocols [6, 7] were defined in thily d®80s. In 1989, Bellovin [8] announced
the discovery of a flaw that he conjectured could lead to atoéxat would allow an intruder to spoof
IP addresses. Exploits did not appear until some years[@ite©n the other hand, the creation of “Trojan
Horse” code may result in the near simultaneous introdoatica flaw, its discovery, and the creation of an
exploit to take advantage of it. In general, we say that tieeesulnerability only when software affected
by a flaw is deployed and available for widespread use, thelkswbeen discovered, and an exploit exists
that takes advantage of the flaw.

Given a vulnerability, other events may occur. It is possitur apatch or otherremediation to be
created that removes the flaw or compensates for it in someenalhis also possible that the vulnerability
will be publicized so that its existence becomes widely known. In addition]aitepfor the vulnerability
may bescripted (and the script publicized) so that the exploit can be cdrdat as a rote exercise by
attackers who might (and usually do) lack the skill to catmuit in detail by themselves. The vulnerability
dies when there are no more instances of the flaw that can be exqbloithis will occur when either all
instances of the vulnerable code have been patched or weghalre been retired or replaced by a version to
the software that does not contain the flaw in question. Isis possible for a vulnerability to becormpasse
before it dies. This happens when the attention of the etgtioh community is directed elsewhere and
exploits become infrequent- even though a substantial eawivulnerable systems remain. Occasionally,
a resurgence of activity involving a passe vulnerabilitgeen, as discussed in section 3.2.3. And, in some
cases, vulnerabilities areincarnated in that a previously eliminated flaw is reintroduced in a sgogent
software version.

Note that, while the introduction of the flaw, its discoveamnd the creation of an exploit must occur in
that order, once a vulnerability is recognized, there is migue ordering requirement for the subsequent
events. Some orderings, e.g. death before scripting, mayacar.

3 \Wulnerability Case Studies

The quality of any model relies upon the validity of the dasadito generate the model. In this section, we
describe the approach we used in the collection of our datgles, as well as short descriptions of each
sample.



The initial data we examined covers a period from 1996 thindl@P9 while the validation data extends
the period through October 2000. Different periods weredetl for two reasons- to increase sample size,
and to allow the examination of more current incidents taiemghe model remains valid with more current
samples.

The data contained in the database provides a unique viemtrakions that cannot be obtained else-
where. However, there are several issues with the datahwidadiscuss below. After this, we first present
the initial three case studies that were used in the geparafiour model. Then, we present the three cases
used to validate the model.

3.1 Data Collection Approach

While the CERT/CC data is the best available source for alysisaf this type, there are several problems
related to the data. The foremost is that all of the repogssalf-selecting. Only a subset of those sites that
experience some sort of problem, either an intrusion or begrwill report it. As a result, the data collected
by CERT/CC does not accurately reflect the entire scope ahthgsion activity on the Internet.

Another problem with the data revolves around the humaneahémf reporting. At some point, the hot
vulnerability becomes passe, and focus shifts to the vabildy du jour, i.e. attackers lose interest in it,
administrators have already dealt with it and either urtdatkit or are tired of it. This may artificially lower
the incidence rate of the vulnerability. While the effectsh@se problems on the data set are significant, we
believe that the data is sufficient to provide a window in® fuch larger problem.

When an incident is closed by CERT/CC, a summary containlingf $he pertinent information about
the incident is created. The summary contains both formattel free format discussion sections. One of
the formatted fields is the vulnerability that was exploitd@ collect the initial data, the total number of
incidents for every vulnerability known to CERT/CC was cééted. From this list, the three vulnerabilities
with the highest incidence rate were selected for furthatyams. Next, each incident identified as involving
the specific vulnerability was examined by reading the disimn section to ensure two conditions held.
First, that the incident did in fact involve the specific vedability, and second, that the incident involved an
intrusion. In some cases, the incident only involved unessful probes for the vulnerability. If the evidence
was clear that both conditions held, then the incident wasiteal as a successful intrusion. Otherwise, the
incident was not counted. Often, an incident includes stard sometimes hundreds to thousands of hosts.
These hosts were not added to the intrusion count unlessrtbethe criteria previously mentioned. In some
of these cases, captured logs clearly indicated that nummdrosts were successfully exploited. However,
the actual dates of the exploitation of the hosts containdtea logs could not be determined. In this case,
the date that the logs were obtained was used as the incidant @he result is that an occasional spike
occurs.

3.2 Initial Vulnerability Samples

This section presents a brief description of the initialnenbbilities studied. The three vulnerabilities with
the highest incidence rate during our initial study yeaB9@l- 1999) were selected to provide as many data
points as possible.

3.2.1 Phf

Phf is the name for a common gateway interface (CGI) progka@il. programs extend the functionality of
web servers by providing a server-side scripting capgbilihe purpose of the phf program is to provide a
web based interface to a database of information- usuatisopeel information such as names, addresses,
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Figure 1: Phf intrusions

and telephone numbers. The vulnerability exploited in pa§wn implementation error, and not an under-
lying security problem with CGI or the web server. The vuliide phf program was distributed with both
the apache and NCSA HTTPd servers.

The phf script works by constructing a command line stringeolaon input from the user. While the
script attempted to filter the user’s input to prevent thecatien of arbitrary commands, the authors failed
to filter a new line character. As a result, attackers cou&tete arbitrary commands on the web server at
the privilege level of the http server daemon- usually rd@X]] A plot of the count of phf incidents over
time is shown in Figure 1. In this and all following plots, idents reported by day are binned by month, so
that multiple incidents may appear in the same month.

3.2.2 Berkeley Internet Name Domain (Bind)

Bind provides an implementation of the domain name systelN§which maps an Internet host name such
as bozo.cs.umd.edu to its Internet Protocol (IP) addressbbzo.cs.umd.edu maps to 128.8.128.38. The
flaw in bind involved a buffer overflow in the inverse querydtitive to bind which takes an IP address and
maps it to the host’s fully qualified domain name (FQDN), 128.8.128.38 maps to bozo.cs.umd.edu [13].
A plot of the count of bind incidents over time is shown in Rig.

3.2.3 Internet Message Access Protocol (IMAP)

IMAP provides a method to access electronic mail over a nétwsing a server-based approach. The
client is able to access and manipulate the messages ay ivére local. A client, once connected to the
IMAP service, may create, delete, and rename messages abdxaa. A client connects to the service by
contacting the server through a well-known port, 143. Aftennecting, the client must authenticate itself
— usually through sending a username and password. Un&telyna buffer overflow existed in the source
code distributed by the University of Washington in the togrocess such that the use of a long username
would cause a buffer overflow [11].
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Figure 2: Bind intrusions

Unfortunately, the IMAP server contained a second flaw thas wlentified almost a year later. This
flaw, also a buffer overflow, involved the server level autleation mechanism of IMAP [12].

Rather than separate the two flaws into different case suthie two were combined for two reasons.
First, the incident data, in most cases, did not differéatmetween the two flaws. And second, several later
scripts combined the two flaws- making it difficult to detemmiexactly which flaw was exploited. A plot of
the count of IMAP incidents over time is shown in Figure 3.

3.3 \Validation Samples

This section presents a brief description of three vulriktiab used as validation samples for the model
we build in the next section. In the initial samples, we cameldi the two different IMAP vulnerabilities
because it was difficult to differentiate intrusions. In tiewv samples, we also consider two vulnerabilities
with the same progranstatd This time, however, we can differentiate between the \nalpidities because
of changes in the reporting of the incidents. For severaisygaw, vulnerabilities have been given a unique
identifier by the CERT/CC. Previously, the vulnerabilitypkoited in an incident would be reported by it's
name, e.gIMAP, only. Recently, however, the incident reports now alstuhe the vulnerability identifier.
As a result, we were able to easily separate the inciderdterkto the twatatdincidents.

3.3.1 mountd

The networked file system (NFS) uses a privileged daemonrerseo permit clients to mount remote file
systems and utilize them as local file systems. A buffer aweréixisted in this daemon programountd
on Linux and SGI systems which permitted an attacker to dreamitrary code on the server [14].

3.3.2 statd bounce

Thestatdbounce vulnerability utilized two distinct vulnerabiés-statdandautomountd NFS uses the statd

program to communicate changes between NFS servers antsclidhe automountd program automatically
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Figure 3: IMAP intrusions

mounts file systems when they are required.

The vulnerability withstatdaccepted calls to services and forward them as if they aigihfrom the
statd program. Attackers utilized this to send a requesttonaountd which contained a localhost buffer
overflow. “Bouncing” the request througitatdpermitted the exploitation of a localhost flaw remotely [15]

3.3.3 statd format

Thestatdformat vulnerability allows the remote execution of ardiyr code at the privilege level gbc.statd
which is usually root as the result of unchecked user inpsit [1

4 Modeling and Analysis

When we started our investigation, we were primarily indezd in confirming the “poor system adminis-
tration” hypothesis as noted in the introduction, and we dadhitial intuitive idea of the process whereby
vulnerabilities are discovered, exploited, and re-mediatin general, we expected the rate at which ex-
ploits occur to be fairly small in the period following thesdovery of a vulnerability and to increase as the
vulnerability and its associated exploit become more widkelown. We expected the rate to decrease as
the exploit became passe or as the pool of vulnerable macbeeame smaller due to the availability and
application of patches or the replacement of vulnerablansoé.

Figure 4 illustrates the kind of behavior that we expectefirtd. We were not alone in making these
assumptions. Kendall [5] gives a similar model in his MastEnhesis, and more recently, Bruce Schneier
put forth a similar model in his online newsletter, Cryptagr[4]. When we analyzed the CERT data for
the incidents discussed in the previous section, we disedvibat we were wrong. As the graphs in Figures
1-3 indicate, the incidents have a decidedly positive skewvatd early months in the reporting, rather than
the negative skew hypothesized in figure 4. Further, alnbst the incidents that were associated with the
vulnerabilities we examined were avoidable. Patches wexidadle prior to the start of significant reporting
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activity, which occurred when a script for the exploit wasdmavailable, rather than shortly following
disclosure. Thus, scripting seems to be the major triggeinfadents, and the largest number of incidents
appear soon after this event. This is discussed in mord éétawhere [3] and will not be considered further
here.

Having found similar shapes in the raw data for all threedants, we then examined the cumulative
graphs of the incidents over time, and found that each cadd be transformed into a nearly linear form.
As a result, we performed a statistical analysis of the dadiehave determined that data from the three cases
can be modeled using a single framework. Data from the tvgervalidation exploit cycles also seem to
fit the framework as well Thus, it appears that data from the early stages of an éxgldie, particularly
the rate at which incidents are reported following the redeaf a script, can be used to predict the magnitude
of the cycle, but not, as yet, its duration.

In the remainder of this section, we describe our analytieethniques and our results. The section is
illustrated with graphical results from a single exploitky; phf, as described in section 3.2.1, but similar
graphs for the other cycles are given in Appendix 5.

4.1 Graphical Analysis

Our goal in studying three different vulnerability inciderwas to determine if there were any underlying
similarities or trends that were independent of any padicincident. Such trends could then potentially
be used to understand and respond more effectively to futargents. We plotted the raw and cumulative
data grouped by month for the three vulnerability incideimt& also split the IMAP data into two separate
incidents based on the discovery date of the second incgtetitat we could also consider both incidents
separately. Raw and cumulative plots for the phf incideatséiown in Figure 1 and Figure 5. Raw plots for
the other incidents appear in Figures 3 and 2. Cumulativis fbo the other incidents are found in Appendix
5 (Figures 10-13). All of these plots show similar shapedicating that a common model relating time to

2The third validation sample does not contain enough datatpas yet.
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Figure 5: Cumulative phf intrusions

incidents might be applicable to all the incidents, and apshto future incidents as well. The shape of the
cumulative plots indicates that a standard linear regrassiodel can be applied using month as a predictor
for incident count, but only after satisfying certain asgtions.

First, the plots of the data should indicate a linear refesigp. The cumulative plots are all slightly
curved as a result of fewer reported incidents in later n@nflis drop off violates the first assumption, as
well as the second, which requires a relatively normal ithstion of the raw data measured. The raw data
plots all show a slightly positive skew away from a normatritition as a result of more reported incidents
in earlier months.

4.2 Transformation Analysis

To solve these problems, a standard technique in regreasighysis is to apply a transformation to the
independent or dependent variable or both. In [17], theaathuggest that applying either a square root
or logarithmic transformation to the independent varigbienth) can help correct positive skewness in the
raw data. Such transformations also remove some of thetcwevitom the cumulative data. We performed
regressions using both transformations, as well as stdndan-transformed regression, and obtained the
best overall results (criteria described below) for alethincidents using the square root transformation.
Plots for the phf incident are shown in Figure 6 and Figure TotsPfor the other incidents appear in
Appendix 5 (Figures 14-21). All of the transformed raw ddt@gpshow a more normal distribution, and
the transformed cumulative plots are more linear, as disire

4.3 Residual Analysis

In addition to the assumptions about linearity and normaiftthe raw data, linear regression also requires
certain properties be true of the errors in the regressiotemaVhile a good regression model will explain

most of the relationship between the independent and depéndriables being studied, some degree of
error always remains. Regression seeks to reduce errorrigniming residuals, the differences between the
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Phf Incident: Hormal Probability Plot

&td. re=idual

percentile

Figure 8: Phf incident normal probability plot

measured values of the dependent variable and the valudistpreby the regression model. These residuals
should be normally distributed with mean 0 and constaniawae. To check the normality property, one
plots the standardized residuals against the corresppméncentile in a normal probability plot. If the
residuals are normally distributed, the points will falbag) a straight line. To check the constant variance
property (known as homoscedasticity), one plots the staimal residuals against the independent variable.
If the residuals have constant variance, they should fallhorizontal band above and below the horizontal
line Y=0.

The normal probability plot (Figure 8) for the phf incideriosvs the results for the square root trans-
formation and indicates that the distribution of the realdus relatively, though not perfectly normal. The
standardized residual plot for the square root transfaomain the phf incident (Figure 9) is not perfectly
scattered, but does not indicate any particular pattemwts Bbr the other incidents show similar results and
appear in Appendix 5 (Figures 22—-29). In [18], the authorgssts a number of possible remedies when
these plots do not look appropriate. A logarithmic transfation, rather than a square root transformation,
is suggested for removing the S shape from the normal priityaplots, but this transformation did not
improve these plots over the square root transformatiorightéed regression, multiple regression, nonlin-
ear regression, and removal of outliers are also suggebtedever, weighted regression, which involves
assigning a different weight to each point in the data, iy aseful when the residuals exhibit a pattern
indicative of a non-constant variance. Multiple regressiwhich uses more than one predictor, may be
appropriate, but we currently only have time as a known ptedi Nonlinear regression is usually only
appropriate when there is a known, underlying relationgtd@jween the independent and dependent vari-
ables, such as a biological or chemical phenomena. We didlaotify or remove any outliers because we
aggregated our data by month, so any day to day abnormalitakd likely be smoothed out.

4.4 Regression Analysis

Having identified the square root transformation as the ¢estlidate for meeting the assumptions required
for regression, we performed the regression analysis. @dts of the regressions on the transformed data

10
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for all three incidents and the two split IMAP incidents astdd in Table 1. These regressions calculate a
slope and intercept such that the relationship between (fimemonths) since the start of the exploit cycle
(M) and cumulative incident coun€ satisfies the linear equatioti! = I + S x v/M wherel andS are
the intercept and slope of the regression line, respegtifdle quality of the regression is usually measured
using the coefficient of determination, knownZ% which describes the proportion of the observed variation
in the count that can be explained by time. The closer thisevad to 1, the better the regression. We
obtained values larger than .89 for all incidents, indi@atihat this regression model is quite good. An
analysis of variance (ANOVA) test comparing the variatioglained byR? to the variation explained by
errors yielded almost negligible P-valuesgF01) for all incidents, indicating a strong probability thhe
model adequately explains the relationship. We also paedrregressions using the untransformed data
and the logarithmically transformed data for comparisae (Sable 2). Thek? values for the square root
transformation were the best for all incidents except fer ¢bcond Imap incident, where the logarithmic
transformation was slightly better. However, even in thist Icase, we would still choose the square root
transformation because the difference is so small and thie far the square root transformation were better.
The results for the values of the slopes and intercepts dintéein Table 1 do not indicate any similarity
in line shape across the incidents. The slope value for thegident is roughly double that of the combined
IMAP incidents, and roughly quadruple that of the bind imeitd The bind incident took place over a much
shorter period of time than the other two incidents, and MAR incident includes two separate events.
These differences may account for the lack of a common slapérintercept shared by the incidents,
though such a common model may not be realistic even witmeleanore uniform data given that the
nature of the incidents may be quite different. Nonethelésssts on all the values of the slopes and
intercepts yielded almost negligible P-valuesg(®1) for all incidents, indicating a strong probability tha
these values can be used to adequately explain the relifiobetween month and cumulative count for
each separate incident.

11



R? P-Value | Slope| P-Value | Intercept | P-Value
bind 0.908| 3.70E-29 | 60 3.70E-29 | -50 1.40E-12
phf 0.939| 2.03E-130| 240 2.03E-30 | -378 1.75E-65
All IMAP 0.981| 8.02E-182| 126 8.02E-182| -167 2.09E-96
1st IMAP | 0.965| 1.22E-80 | 124 1.22E-80 | -160 1.79E-50
2nd IMAP | 0.896| 6.96E-50 | 86 6.96E-50 | -96 1.31E-23

Table 1: Regression results for square root transformation

Square Root | Logarithmic | Untransformed
bind 0.908 0.903 0.884
phf 0.939 0.910 0.881
AllIMAP | 0.981 0.952 0.971
1st IMAP | 0.965 0.942 0.943
2nd IMAP | 0.896 0.897 0.833

Table 2: Comparison ak? values for three types of regressions

4.5 Testing the Model

To test the accuracy of our model, we applied it to additimamhples to see if it was robust enough to handle
more recent incidents. The mountd and statd bounce inadigsticribed in sections 3.3.1 and 3.3.2 provided
data over about 15 months, less than the approximately 3@hseoovered by the IMAP and phf incidents,
but still enough to consider. We did not consider the statchéd incident described in section 3.3.3 as it
only covered four months- too few data points to provide agadte test as of yet. We performed the same
analyses described above to see if the model held. Thesem@ltquite encouraging. For both data sets,
we performed standard regression, square root transflormeggression, and logarithmic transformation
regression. For both data sets, both transformations wegdrthe raw and cumulative data plots as compared
to the untransformed data. For both data sets, both tranafmns also improved the normal probability
and residual plots. For brevity, we illustrate these point&ppendix 5 with the same set of plots as the
original analysis: the raw and cumulative plots for the ansformed data and the square root transformed
data, and the normal probability and residual plots for thease root transformed data (Figures 30-41).

The coefficients of determinatio¢) for the regressions performed on the two additional dataese
their square root and logarithmic transformations are shiomfable 4. For both data sets, both the square
root and logarithmic transformations produce better teghhn the untransformed data. All tRé values
for the transformed data are .839 or better, indicating @ngtrcorrelation between cumulative count and
time, though not as strong as our original data. For both sistg theR? for the logarithmic transformation
is better than that for the square root transformation, iwtl@es not support our original choice of the square
root model. However, the smaller size of the two new datarsetgartificially skew the data in favor of the
logarithmic model. Given more data over a longer periodroktfor these two incidents, we would expect
to see the number of incidents decrease. This in turn woultt the square root model, consistent with our
analysis on the larger data sets. We will obtain more datthse two incidents to verify these hypotheses
in the future.

The R?, slope, and intercept values and their respective P vahrethé regression on the square root
transformed data are shown in Table 3. Although this washmbest model for these new data sets, the
P-values for all but the intercept for the statd incidentasignificant (R«.01), indicating that the model

12



R? P-Value | Slope | P-Value | Intercept | P-Value
mountd | 0.839| 7.25E-28| 72 7.25E-28| -84 3.91E-14
statd 0.857| 8.47E-20| 52 8.57E-20| -10 1.98E-01

Table 3: Regression results for square root transformation

Square Root | Logarithmic | Untransformed
mountd | 0.839 0.868 0.761
statd 0.857 0.935 0.707

Table 4: Comparison ak? values for three types of regressions

remains valid. As with the three original data sets, theesdwt appear to be any relation between the slope
and intercept values for the two incidents.

4.6 Model Selection and Prediction

Given the results of the regression analyses above, a liegegssion model using a square root transforma-
tion on time appears to provide very good predictive powetttie accumulation of security vulnerability
incidents following the release of a script for the vulndéiigb More data is needed to authoritatively select
the square root transformation over the logarithmic moolgi,we believe the square root model will pre-
vail. The incidents studied vary widely on the values of tlope and intercept of their respective regression
lines, indicating that there is no one formula for a line aggille to all past and future incidents which is as
expected. However, given a few months of data for a new imtjdee believe that a regression line fit using
the square root transformation will provide an accurateagxtiation of the incident reporting pattern in the
future. This information provides a powerful tool for systadministrators. Although it cannot predict the
duration of a vulnerability, it can identify the most sevetgnerabilities - those with the steepest regression
line slopes. Armed with this information, the security coomity can become pro-active rather than reactive
with respect to incident response.

5 Conclusions and Future Work

Intuitively, many researchers have felt that the availghdf patches reduce the severity of incidents after a
small time delay. Unfortunately, our evidence has found thinot the case, and that incidents accumulate
regardless of the existence of corrections for the exgloitdnerabilities. The incidents, however, accumu-
late in a near linear fashion which has allowed us to devektptstical model of the incident accumulation
rate. While the model does not yet determine when an inciddhtlissipate, it does provide a predictor
for the rate of growth of incidents. The benefits of such aiptedare significant. For instance, once the
first few months of incident data have been collected, adénti handling organization can use our model
to forecast the rate at which the incident will continue. ISaoalysis permits the organization to plan it’s
staffing requirements rather than reacting. Operatiorgdrozations, can benefit from the knowledge of the
severity of continuing incidents. For instance, most of@nal organizations test vendor supplied patches
prior to deployment to ensure that the fix for the vulnerépitioes not produce unwanted side effects. In
the case of security related patches, a time-bar is usustiplkished as to when the patch must be deployed.
This time-bar is set based on the severity of the vulnetgtalnd weighs the risk of the vulnerability verses
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the risk of reduced testing. By using the severity of thedent in conjunction with the severity of the
vulnerability, organizations can establish a time-bat gnavides significantly better risk management than
if they had just considered the severity of the vulnerahilit

In the future, we plan to collect additional data to contimaédation our model and to perform “real
time” tests by predicting the severity of current incidenfge also plan to examine additional models that
may assist in predicting the duration of incidents- extegdbur analysis from a linear regression into a
multi-variate regression. This will require the considiena of additional dependent variables such as the
type of systems involved in the incident as well as the eviertse exploit cycle.

We also plan on investigating new methods and practices iaffant to reduce the large window of
vulnerability that exists because of poor systems managen@ne method we are currently investigating
is the secure automation of the deployment of patches. Vghith a solution appears easy at first glance,
developing the process and the implementation that worlkswidle scale is not.

References

[1] J. Howard,An Analysis Of Security Incidents On The Internet: 1989 -51%®hD thesis, Carnegie —
Mellon University, April 1997.

[2] G. A. Office, “Information security: Computer attacksdapartment of defense pose increasing risks,”
Tech. Rep. GAO/AIMD-96-84, U.S. Government Accounting €Hfi1996.

[3] Anonymous, “Anonymous for reviewing purposes,”

[4] B. Schneier, “Full disclosure and the window of vulngliyn” In Crypto-Gram available a$it t p:
[ I www. count er pane. com crypt o- gram 0009. ht ml #1, September 15, 2000.

[5] K. Kendall, “A database of computer attacks for the eaéilan of intrusion detection systems,” BS/MS
thesis, Massachusetts Institute of Technology, June 1999.

[6] “Transmission control protocol - darpa internet pragraprotocol specification,” RFC 973,
USC/Information Sciences Institute, September 1981.

[7] “Internet protocol - darpa internet program protocoesiication,” RFC 971, USC/Information Sci-
ences Institute, September 1981.

[8] S. Bellovin, “Security problems in the TCP/IP protocalite,” Computer Communication Revigw
vol. 19, pp. 32-48, April 1989.

[9] “CERT Advisory CA-1995-01: IP spoofing attacks and hijad terminal connections.” Available at
http://ww. cert. org/advisories/CA- 1995-01. ht ml , January 1995.

[10] “CERT Advisory CA-1996-06 : Vulnerability in NCSA/Amde CGl example code.” Available at
http://ww. cert.org/advi sories/ CA-1996- 06. ht nl , March 1996.

[11] “CERT Advisory CA-1997-09 : Vulnerability in IMAP and®P.” Available aht t p: / / www. cert.
or g/ advi sori es/ CA- 1997- 09. ht m , April 1997.

[12] “CERT Advisory CA-1998-09 : Buffer overflow in some imgshentations of IMAP servers.” Available
athttp://wwv. cert. org/advi sories/ CA- 1998- 09. ht m , July 1998.

14



[13] “CERT Advisory CA-1998-05 : Multiple vulnerabilitiesn BIND.” Available at htt p: / / wwww.
cert.org/advisories/ CA-1998- 05. ht m , April 1998.

[14] “CERT Advisory CA-1998-12 : Remotely exploitable beiffoverflow vulnerability in mountd.” Avail-
able athtt p: // www. cert. org/ advi sori es/ CA- 1998- 12. ht m , October 1998.

[15] “CERT Advisory CA-1999-05 : Vulnerability in statd empes vulnerability in automountd.” Available
at http://ww. cert.org/advi sori es/ CA-99- 05- st at d- aut omount d. ht m , June
1999.

[16] “CERT Advisory CA-2000-17 : Input validation problem ipc.statd.” Available aht t p: / / vwww.
cert.org/advisories/ CA-2000-17. ht m , August 2000.

[17] B. Tabachnick and L. FidellJsing Multivariate StatisticsHarper and Row, 1983.

[18] J. Devore,Probability and Statistics for Engineering and the Scienc®uxbury Press, fourth ed.,
1995.

15



Appendix: Supporting Graphs
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Figure 10: Cumulative bind intrusions

Figure 12: Cumulative IMAPL1 intrusions
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Figure 11: Cumulative IMAP intrusions

Figure 13: Cumulative IMAPZ2 intrusions
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Figure 14: Transformed bind intrusions



Bind Incident: Transformed
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Figure 15: Transformed cumulative bind intrusions
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Figure 16: Transformed IMAP intrusions
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Figure 18: Transformed 1st IMAP intrustions
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Figure 19: Transformed cumulative 1st IMAP intru-
sions
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Figure 17: Transformed cumulative IMAP intrusions Figure 20: Transformed 2nd IMAP intrusions
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2nd Imap Incident: Transformed
Cumulative Count Plot
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Figure 21: Transformed cumulative 2nd IMAP intru-
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Figure 24: All IMAP incidents normal probability
Figure 22: Bind incident normal probability plot plot
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Figure 23: Bind incident residual plot
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Figure 25: All IMAP incidents residual plot
Figure 27: First IMAP incident residual plot
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Figure 26: First IMAP incident normal probability
plot Figure 28: Second IMAP incident normal probabil-

ity plot
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Figure 29: Second IMAP incident residual plot
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Mountd Incident: Raw Data Plot
Statd Incident: Raw Data Plot
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Figure 30: Mountd intrusions
Figure 32: Statd intrusions
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Figure 31: Cumulative mountd intrusions

Figure 33: Cumulative statd intrusions
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Figure 34: Transformed mountd intrusions
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Figure 35: Transformed cumulative mountd intru
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Figure 36: Transformed statd intrusions
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Figure 37: Transformed cumulative statd intrusions

Figure 38: Mountd incident normal probability plot
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Figure 39: Mountd incident residual plot
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Figure 40: statd incident normal probability plot
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Figure 41: Statd incident residual plot
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