
SoK: Hardware Defenses Against Speculative
Execution Attacks

Guangyuan Hu
Princeton University
gh9@princeton.edu

Zecheng He
Princeton University

zechengh@princeton.edu

Ruby B. Lee
Princeton University
rblee@princeton.edu

Abstract—Speculative execution attacks leverage the specula-
tive and out-of-order execution features in modern computer
processors to access secret data or execute code that should
not be executed. Secret information can then be leaked through
a covert channel. While software patches can be installed for
mitigation on existing hardware, these solutions can incur big
performance overhead. Hardware mitigation is being studied
extensively by the computer architecture community. It has the
benefit of preserving software compatibility and the potential for
much smaller performance overhead than software solutions.

This paper presents a systematization of the hardware defenses
against speculative execution attacks that have been proposed. We
show that speculative execution attacks consist of 6 critical attack
steps. We propose defense strategies, each of which prevents a
critical attack step from happening, thus preventing the attack
from succeeding. We then summarize 20 hardware defenses and
overhead-reducing features that have been proposed. We show
that each defense proposed can be classified under one of our
defense strategies, which also explains why it can thwart the
attack from succeeding. We discuss the scope of the defenses, their
performance overhead, and the security-performance trade-offs
that can be made.

I. INTRODUCTION

Speculative execution attacks, also known as transient ex-
ecution attacks, are a serious security problem. They exploit
performance enhancement features in hardware to access se-
cret data and leak this secret out through microarchitectural
covert channels. This negates the confidentiality and integrity
protections provided by software isolation, and also by hard-
ware isolation features such as secure enclaves [1], [2].

In particular, Spectre [3], Meltdown [4] and Foreshadow
[5] bypass the isolation across processes and privilege levels.
The Spectre attack bypasses the memory protection provided
by software bounds checking, while the Meltdown attack
breaches the memory isolation between the kernel and a user
application. Foreshadow [5], and its variants Foreshadow-OS
and Foreshadow-VMM [6], breach the Intel SGX enclave iso-
lation, user-to-kernel memory isolation, and virtual-machine-
to-hypervisor isolation, respectively.

The severity of these attacks has resulted in many specific
fixes for specific attack variants implemented by the computer
industry. These include using instructions to serialize execu-
tion [7], [8], to flush hardware prediction states [9], to avoid
using untrusted predictions [10], and to restrict accesses to
secret information [11]–[13]. However, most of these solu-
tions require changes to the existing software. Furthermore,

Defense and Overhead-reducing Feature Conference Year
InvisiSpec [14] MICRO 2018
DAWG [15] MICRO 2018
CondSpec [16] HPCA 2019
Context-sensitive fencing (CSF) [17] ASPLOS 2019
SpectreGuard [18] DAC 2019
SafeSpec [19] DAC 2019
EfficientSpec [20] ISCA 2019
SpecShield [21] PACT 2019
STT [22] MICRO 2019
NDA [23] MICRO 2019
CleanupSpec [24] MICRO 2019
MI6 [25] MICRO 2019
IRONHIDE [26] HPCA 2020
ConTExT [27] NDSS 2020
Predictor state encryption [28] ISCA 2020
MuonTrap [29] ISCA 2020
Speculative Data-Oblivious Execution (SDO) [30] ISCA 2020
Clearing the Shadows [31] PACT 2020
InvarSpec [32] MICRO 2020

DOLMA [33] USENIX
Security 2021

TABLE I: Hardware defenses and overhead-reducing features
against speculative execution attacks published in recent com-
puter architecture and security conferences.

they also cause significant performance overhead (at least
2X slower [11], sometimes up to 8X). Last but not least,
the software countermeasures are usually attack-specific. New
patches are required to effectively protect against the emerging
attacks, which is neither efficient nor sustainable.

In response to these attacks on hardware microarchitecture
performance optimization features, there have been proposals
of hardware defenses as well as features that reduce the
performance overhead of defenses [14]–[33], which we show
in Table I in chronological order. One key advantage is that the
hardware solution can monitor the instruction execution sta-
tus and accurately protect against speculative vulnerabilities.
Another advantage of some hardware solutions is their non-
intrusive interaction with the existing software, while inducing
low performance overhead. These hardware defenses can read
the unmodified program but delay or change the execution
of secret-leaking instructions so that the information leakage
through hardware states is eliminated. Some microarchitec-
tural defenses also allow security-performance trade-offs and
overhead-reducing features [30]–[32].

However, the working mechanisms and scope of different
hardware defenses have not been systematically described and
compared. Hence, our goal in this paper is to systematize

ar
X

iv
:2

30
1.

03
72

4v
1

 [
cs

.C
R

]
 9

 J
an

 2
02

3

the hardware defenses, to illustrate their key similarities and
differences, and to assist future researchers to more easily
understand and reason about how an existing defense works.
While the goal of this paper is not to describe all the
speculative execution attacks in detail, as there are many past
work surveying and summarizing these [34]–[37], we analyze
the critical attack steps of 23 speculative execution attacks. We
then show how the hardware defenses mitigate the attacks by
preventing these steps, connecting the attacks and defenses.

Our key contributions are:
• Producing attack taxonomies based on secret access or

secret leakage, covering 23 variants of speculative exe-
cution attacks.

• Defining new defense strategies based on preventing at
least one of the critical attack steps.

• Producing a new taxonomy of 4 hardware defense strate-
gies and lower-level categories of defenses.

• Creating a systematized view and description of 20
representative hardware defenses and overhead-reducing
features proposed to date.

• Presenting the performance overhead of the defenses, and
illustrating security-performance tradeoffs.

II. MICROARCHITECTURE AND COVERT CHANNEL
BACKGROUND

We first describe hardware performance optimization fea-
tures that can be exploited for speculative execution attacks.
Out-of-Order (OoO) execution. An Out-of-Order (OoO)
processor is a microarchitecture performance enhancement
feature used to boost the throughput of processors by allowing
instructions later in the program order to execute before the
previous instructions have completed. For example, an earlier
instruction may be waiting for one of its operands, or for
a functional unit or memory to free up, or for determining
if a branch should be taken or where to branch to. Later
instructions in an in-order processor that have no dependencies
will have to wait unnecessarily. In contrast, an Out-of-Order
processor allows the instructions with no dependencies to
execute immediately, as long as they retire in-order.

Fig. 1 shows a generic Out-of-Order (OoO) processor where
instructions are fetched in program order but executed Out-
of-Order. Instructions are forced to retire in-order to maintain
precise exceptions, i.e., if an instruction results in an exception,
the following instructions must be “squashed” as if they were
never executed. We will use this generic OoO model to explain
the defenses in a unified way in the rest of the paper.

Instructions are fetched and decoded to microarchitecture-
level operations (denoted µop’s) in program order, but after
the µop’s are dispatched to the execution stage, the hardware
scheduler can schedule any ready µop’s to different functional
units for execution. Thus, the execution of later µop’s can
complete earlier than those of previous instructions, which also
allows the results of these µop’s to be used earlier. The result
from the execution of a µop is forwarded and used by other
dependent µop’s.

An important microarchitecture structure, that we will refer
to in discussing hardware defenses, is the Re-Order Buffer
(ROB) shown in Fig. 1. The ROB records the instruction’s
or µop’s information as well as its execution status, such as
whether the instruction has finished its execution (Done = “1”
in the figure) and whether the instruction should be squashed
(Squash = “1”). The ROB guarantees that if an instruction
needs to be squashed, all the subsequent instructions are also
squashed. The ROB also acts as a FIFO queue to preserve
the program order so an instruction can only retire when it
reaches the head of the ROB.
Speculative execution. Speculative execution is a further
performance enhancement that allows instructions to be ten-
tatively (i.e., speculatively) executed, even when the control
flow has not been determined, or the data from memory has
not arrived. For instance, when the processor fetches a branch
whose operand is not available, e.g., having to be read from
memory, the address of the next instruction is predicted and
fetched so that the processor does not have to stall its pipeline.
If the prediction is found to be correct later, the speculative
execution improves the performance by executing code on the
correct path in advance. However, if the prediction is found
to be incorrect, the processor needs to flush the pipeline so
that the results of the speculatively executed instructions are
discarded. This is called a squash, where the processor restores
the architectural state, e.g., the register values visible to the
software, as if the mispredicted instructions have not executed.
Hardware predictors. From the microarchitecture perspec-
tive, speculative execution happens because hardware predic-
tors are present that allow tentative forward progress even
when an instruction has unresolved dependencies. For con-
ditional branch instructions, branch predictors predict whether
the branch will be taken or not. For indirect branches, the
Branch Target Buffer (BTB) predicts the target address. For
return instructions, the Return Stack Buffer (RSB) or Return
Address Stack (RAS) predicts the address to return to after a
procedure call.
Microarchitectural state and covert channels. Microarchi-
tectural states are the states of hardware units that are not
directly accessible to the programmer or software. Even if
invisible from the software’s view, these states can impact
the execution time of certain programs and the states can be
inferred if the processor executes these programs. If one pro-
gram modifies a certain microarchitectural state with another
monitoring it, these two programs form a microarchitectural
covert channel in which the former is the sender and the latter
is the receiver. Examples include the addresses of cache lines
in various cache levels, which we describe in detail below, and
the busy status of different hardware resources.
Cache state and covert channel. One critical microarchitec-
tural state is the cache state. A cache has many cache lines
corresponding to different addresses. Since cache hits are fast,
and cache misses are slow, cache timing attacks are possible,
leaking information through observing the cache access time.

One example exploiting a cache covert channel is the flush-

2

Out-of-order Execution

Instruction
Fetch

Decode

Scheduler

ALU, Vect, …

ALU, DIV, …

Load Buffer

Store Buffer

L1 Data Cache

Reorder Buffer (ROB)

Inst Info Done Squash

𝝁op[0] 1 0

𝝁op[1] 1 1

…

𝝁op[N] 0 1

In-order Frontend

𝝁op’s

Instruction
Cache

Branch
Prediction

Unit
…

L2 Cache

Store-to-load
Forwarding

Line Fill
buffer

In-order Retire

Load port

Result
Forwarding

Fig. 1: A block diagram of a typical out-of-order processor. The contents of the ROB show a sample situation where instruction µop[0]
executed correctly, but µop[1] to µop[N] were executed speculatively and incorrectly and had to be squased.

reload technique [38], where the sender is an insider and
the receiver an outsider attacker. During the setup phase of
the covert channel, certain cache lines are flushed out of the
cache. To send a secret out, the sender accesses a secret-
dependent address, which brings back one of the flushed lines.
The receiver will later measure the time to reload each cache
line and infer whether this cache line is fetched by the sender
by observing whether it is a cache hit. The flush-reload cache
covert channel is used in most of the speculative execution
attacks published.

There are other techniques for covert communication
through cache state. In a prime-probe [39] covert channel,
the receiver first primes the cache to fill the cache with its
own cache lines. The sender then accesses certain addresses,
evicting some of the receiver’s cache lines. The receiver
can get to know which cache lines the sender accessed by
loading each cache line and observing cache misses. In a flush-
flush [40] covert channel, the receiver keeps evicting certain
addresses by executing the flush instruction. If the sender
accesses some of these addresses and brings them into the
cache, the time to flush will be longer, so the receiver can
infer information from timing the second flush.

Many other types of covert or side channels, not using
caches, nor timing, are also possible.

III. SPECULATIVE EXECUTION ATTACKS

We first present some critical attack steps that we have
identified in existing speculative execution attacks.

A. Critical Attack Steps

Although the exact workflow of an attack may vary, we
observe that they all consist of 6 critical steps. These are shown
in the right column of Fig. 2 and described below.
Setup. The Setup step sets up the initial hardware state, e.g.,
the branch predictor state for Spectre v1, so that the processor
will enter speculative execution. It also sets up the initial state
for the covert channel, e.g., flushing the shared cache lines for
a flush-reload channel.
Authorize. The attack starts with the Authorize step. The
Authorize operation performs the authorization required for

accessing a memory location or a protected register. For
speculative attacks, the speculative execution window starts
when the authorization is delayed.
Access. When the authorization is delayed, the Access step
in a speculative attack can read a secret from the cache, the
memory, a protected register or a microarchitectural buffer that
is otherwise not allowed.
Use. The Use step uses the secret to generate a secret-
dependent operation. Examples are instructions that compute
a memory address for a later load operation.
Send. The Send step alters the microarchitectural state of
the covert channel in a secret-dependent way. Even if the
access, use and send operations will all be squashed after
the authorization fails, the microarchitectural state change may
remain and can be discovered later by the receiver.
Receive. The recovery of the secret from the covert channel
by the attacker.

B. A Spectre v1 Attack Example

For concreteness, let us first consider a particular specu-
lative attack, the Spectre v1 attack. In Fig. 2, we show the
pseudo-code of the Spectre v1 attack and the RISC assembly
instructions executed during speculative execution. Lines 1-3
set up the microarchitectural state. The cache lines containing
the shared array pointed by SHAREDPtr are flushed from
caches as the preparation for the flush-reload cache covert
channel which we described in Section II. The size of the
private array pointed to by arrayPtr is also flushed so that the
load on line 4 will take a long time to finish. Also, the branch
predictor is mistrained so that the prediction of the conditional
branch in line 5 will be “not taken”. The conditional branch,
bge, in line 5 performs the authorization for the later load byte
instruction, lbu, which accesses the secret byte in line 7. Since
the conditional branch checking is delayed by the previous
load instruction in line 4, a branch predictor is invoked. Due
to the mistraining, the branch is not taken and the secret is
illegally accessed by the lbu instruction. In line 8 and 9, the
secret is then used to calculate a memory address of the next
ld instruction in line 10. This ld instruction is a covert send

3

Pseudo-code Critical Steps

Setup microarchitectural states:
flushArray(SHAREDPtr, 256);
flush(&array_size);
mistrainPredictor();

Spectre v1 Sender:
(r2: SHAREDPtr, r3: offset to a secret, r4: arrayPtr)
ld r5, 0(&array_size)
bge r3, r5, outside
add r6, r3, r4
lbu r7, 0(r6)
slli r7, r7, 12
add r8, r2, r7
ld r9, 0(r8)

outside:

Setup

(long-latency)
Authorize

Access
Use

Send

Receiver:
for i from 0 to 255
t[i] = TimeToReload(SHAREDPtr[i*4096]);

Find the minimal t[i]
Receive

--> if (x < array_size) {

--> y = arrayPtr[x];

--> z = SHAREDPtr[y*4096];
}

1
2
3

4
5
6
7
8
9
10

11
12
13

Fig. 2: Spectre v1 attack (bypassing array bounds checking). The
assembly code and pseudo code of the attack bypass control flow
authorization by a conditional branch to access a secret. The attack
leaks an 8-bit secret through the most commonly used flush-reload
cache covert channel by loading in a cache line in the shared array
into the cache. The code in red is the transient execution that will
be squashed. The comments after the arrows show the high-level
language equivalents of the assembly code.

instruction that leaks out the secret through the cache covert
channel. In line 11-13, the receiver measures the latency to
access the shared array to find out which memory address in
the shared array was accessed by the sender. The memory
address that hits in the cache leaks the secret.

C. Other Attacks

Table II gives a listing of the speculative attacks pub-
lished to date [3]–[6], [41]–[59]. We show their Common
Vulnerabilities and Exposures (CVE) numbers, description and
publication date. All the attack variants in Table II, except for
the last speculative interference attack, introduce a new way
to bypass authorization to access the secret. The speculative
interference attack introduces a new way to change the timing
of non-speculative instructions, which adds a new dimension
to the covert Send operation.
Hardware features for malicious speculative execution. In
Fig. 3, we show the hardware features that can be exploited
to launch malicious speculative execution attacks, especially
to access a secret.

The first major category of features causing misprediction
include the conditional branch prediction, the prediction for
branch target address and the memory disambiguation. Spectre
v1 [3] attack mistrains the conditional branch for bounds
checking to read an out-of-bounds secret. Spectre v1.1 [41]
also uses misprediction for conditional branch to bypass
bounds checking but performs an out-of-bounds write during
speculative execution. Even if the write to memory will not
become visible, the write may change a jump target, e.g., the
return address, and execute an Access-Use-Send gadget (i.e.,

Attack CVE Description Date

Spectre v1 [3] 2017-5753 Speculative boundary check
bypass for read 2018.1

Spectre v1.1 [41] 2018-3693 Speculative boundary check
bypass for write 2018.7

NetSpectre [42] 2017-5753 Remote attack performing a
bounds check bypass 2018.1

Spectre v2 [3] 2017-5715 Branch target misprediction 2018.1
Spectre RSB [43], [44] 2018-15572 Return target misprediction 2018.8

Spectre SSB [45] 2018-3639 Speculative store bypass, read
stale data in memory 2018.5

Meltdown-Reg
(Spectre v3a) [46] 2018-3640 System register value leakage

to unprivileged attacker 2018.5

Lazy FP [47] 2018-3665 Leak of FPU state 2018.6
Meltdown
(Spectre v3) [4] 2017-5754 Kernel content leakage to

unprivileged attacker 2018.1

Foreshadow (L1
Terminal Fault) [5] 2018-3615 SGX enclave memory leakage 2018.8

Foreshadow-OS [6] 2018-3620 OS memory leakage 2018.8
Foreshadow-VMM [6] 2018-3646 VMM memory leakage 2018.8

Spectre v1.2 [41] N/A Speculative write to
read-only memory 2018.7

RIDL/MLPDS [48], [49] 2018-12127 MDS leakage from load port 2019.5
RIDL/ZombieLoad/
MFBDS [48]–[50] 2018-12130 MDS leakage from line fill buffer 2019.5

Fallout/MSBDS [49], [51] 2018-12126 MDS leakage from store buffer 2019.5
TAA [52] 2019-11135 TSX Asynchronous Abort 2019.11

RIDL/MDSUM [48], [49] 2019-11091 MDS leakage from
uncacheable memory 2019.5

VRS [53] 2020-0548 Vector Register Sampling 2020.1
CacheOut/L1DES [54], [55] 2020-0549 L1D Eviction Sampling 2020.1
CROSSTALK/
SRBDS [56], [57] 2020-0543 Special Register Buffer

Data Sampling 2020.6

LVI [58] 2020-0551 Load Value Injection causing
memory disclosure 2020.3

Speculative
Interference [59] N/A Speculative interference on non-

speculative instructions 2020.9

TABLE II: The Speculative (Transient) Execution Attack variants.
Date is year.month of publication.

a code snippet) as we show in lines 7-10 in Fig. 2 to read and
leak a secret. NetSpectre [42] shows that the mistraining of
the conditional branch predictor can be performed remotely.

Another control-flow misprediction based attack is the Spec-
tre v2 attack [3], which injects a malicious target into the
branch target buffer (BTB) for indirect branches. Similarly, the
Spectre RSB attack [43], [44] injects wrong return addresses
into the return stack buffer (RSB) for function returns. Both
can cause information leakage by directing the control flow to
an Access-Use-Send gadget.

Memory disambiguation checks whether the value written
by a previous store instruction, which has not yet been written
back to the cache-memory system, should be forwarded to a
later load instruction that reads from the same address. In the
Speculative Store Bypass (Spectre SSB) attack, if the store
address has not been computed and the processor predicts
that the addresses of the current load and a previous store are
different, then stale data, which can be a secret, can be loaded
from the memory system to the processor and get leaked out.

The second major category of hardware features exploited
consists of an illegal access that reads a secret and forwards
it to dependent instructions before it is squashed. We call
these ”faulty access and aggressive forwarding” attacks. The
first type of attacks transiently bypasses permission checks of
special registers and delays the exception handling. Meltdown-
Reg [46] can read the system parameter stored in a system
register while LazyFP [47] leaks the stale floating-point unit
(FPU) state of a previous domain that is not cleared until first
used in a new context.

The second type of faulty access attacks transiently violate
memory access permission checking and reads illegal data

4

Speculative Execution Vulnerability

Faulty Access & Aggressive ForwardingMisprediction

Spectre v1 [3],

Spectre v1.1 [41],

NetSpectre [42]

Conditional

Branch

Meltdown [4],

Foreshadow [5],

Foreshadow-OS [6],

Foreshadow-VMM [6],

Spectre v1.2 [41]

Memory Permission

Bypass

Register Permission

Bypass

Meltdown-Reg [46],

LazyFP [47]

Spectre v2 [3],

Spectre RSB

[43,44]

Branch Target

Address

Spectre SSB [45]

Memory

Disambiguation

LVI [58]

Value

Injection

Illegal Forwarding from

Microarchitectural Buffer

MLPDS (RIDL) [48, 49],

MFBDS (RIDL, ZombieLoad) [48-50],

MSBDS (Fallout) [49, 51],

TAA [52], MDSUM (RIDL) [48, 49],

VRS [53], L1DES (CacheOut) [54, 55],

SRBDS (CROSSTALK) [56, 57]

Microarchitectural Data Sampling

(MDS)

Fig. 3: Taxonomy of secret access (bypassed authorization and secret access steps). The third and fourth rows show the hardware mechanisms
used to trigger the transient execution. They correspond to delayed Authorize operations that are temporarily bypassed. The last row shows
the attacks that exploit these hardware features. These are listed in the same order as in Table I, from left to right.

with a memory access instruction. Meltdown [4] reads and
leaks kernel data before the execution is squashed due to
the failed supervisor permission check of the secret access.
The Foreshadow (L1 terminal fault) attack variants [5], [6]
exploit loads which do not have a valid virtual address to
physical address mapping. The address translation will abort
prematurely by returning a partially translated address. If a
secret at this incorrect address is present in the L1 cache,
it can be speculatively accessed and leaked out. The leaked
data can be a secret in an SGX enclave (Foreshadow), in
the kernel space (Foreshadow-OS) or in the virtual machine
monitor space (Foreshadow-VMM). Spectre v1.2 attack [41]
transiently bypasses the read/write permission and writes to
a read-only address. The illegal write can trigger an Access-
Use-Send gadget to leak a secret if it is a branch target.

The more recent type of attacks (in 2019 and 2020) exploit
the hardware vulnerability that some stale data, which is
stored in microarchitectural buffers can be read by a load
that will cause a fault or invoke a microcode assist [49].
The data can belong to another security domain and can be
at a different address from the address the faulting load is
accessing. This type of attack is called a microarchitectural
data sampling (MDS) attack. In an MDS attack, the victim
program first executes and accesses a secret. The secret can
be temporarily stored in a microarchitectural buffer when it
is in-flight. However, the stale secret value can be forwarded
to a faulting or microcode-assisted load issued by the MDS
attacker which then sends it out through a covert channel.

Microarchitectural buffers that have been shown to store
stale secret values include the load port, the line fill buffer
and the store buffer, which we show in Fig. 1. The load
port temporarily stores the data when it is read by a load
operation and being written into a register. The line fill
buffer stores a memory line that missed in the L1 data cache
and is being returned from the L2 cache [49]. The store
buffer stores the data and addresses of store operations to
be written to the L1 data cache. RIDL [48] leaks the secret
stored in the load port called Microarchitectural Load Port
Data Sampling (MLPDS) [49] and the line fill buffer called
Microarchitectural Fill Buffer Data Sampling (MFBDS) [49].

ZombieLoad [50] demonstrates more variants of the line fill
buffer leakage (MFBDS), whose secret access is triggered by
a microcode assist. Fallout [51] leaks the secret stored in
the store buffer called Microarchitectural Store Buffer Data
Sampling (MSBDS) [49].

A vulerability similar to MDS is the TSX Asynchronous
Abort (TAA) [52] in Intel processors. If the Intel TSX atomic
execution is aborted, uncompleted loads in the transaction may
also read a secret from the microarchitectural buffers exploited
by MDS and leak it through a covert channel.

The MDS and TAA techniques give rise to more attacks.
Uncacheable memory accesses [48], [49] can bring data into
the buffers mentioned above, which can be accessed using
MDS or TAA technqiues and cause the Microarchitectural
Data Sampling Uncacheable Memory (MDSUM) attack. The
Vector register sampling (VRS) vulnerability [53] allows part
of the previously accessed vector register values to be sent to
the store buffer and get leaked by an MSBDS-type attacker.
The CacheOut [54] or L1D eviction sampling (L1DES) vul-
nerability [55] shows that the modified data recently evicted
from the L1 data cache can be kept in the line fill buffer, which
gives an MFBDS-type attacker the chance to read and leak it.
In the CrossTalk [56] or special register buffer data sampling
(SRBDS) attack [57], the secret value read from certain special
registers can be stored in shared buffers and later propagated
to the line fill buffer. The secret can be leaked to an MFBDS-
type attacker who can even be from a different core. We refer
to all the above MDS-related attacks as MDS attacks in Fig. 3.

The other type of microarchitectural buffer related attack,
i.e., the load value injection (LVI) attacks [58], explore inject-
ing values to the victim domain to trigger speculation. The
attacker first places his malicious data in the microarchitectural
buffers and lets the victim access the malicious value through
the MDS vulnerabilities. If the malicious value is used by the
victim as an address to read a secret or a jump address to an
Access-Use-Send gadget, the secret can be leaked.

D. Covert Channels for Send Operation

Microarchitectural covert channels are used to transmit the
secret that has been illegally accessed. In Fig. 4, we show three

5

Covert Sending

HybridSpeculative

Cache,

AVX, port

contention…

Speculative

Interference [59]

Non-speculative

Side-channel

Attack

Fig. 4: Different ways to leak a secret through a Send operation.
The speculative interference attack [59] achieves the final covert
Send through a non-speculative instruction.

types of covert Send operations. These are through speculative
instructions, both speculative and non-speculative instructions
(hybrid), and only non-speculative instructions. Most of the
existing speculative execution attacks are in the first category,
executing a speculative Send operation to cause a secret-
dependent state change in the covert channel that can be
recovered later by the receiver. The cache covert channel is
the most commonly used channel. Examples of other covert
channels include the execution time of AVX instructions [42],
port contention [60] and the cache way predictor [61].

The recently discovered speculative interference attack [59]
leaks the secret through non-speculative instructions by chang-
ing the timing of non-speculative instructions with the spec-
ulatively executed instructions. In Fig. 4, we characterize it
as doing a hybrid two-step covert sending. In the first step,
the speculative execution causes a secret-dependent hardware
unit usage, affecting the timing of non-speculative instructions.
In the second step, the timing information of non-speculative
instructions can leak the secret. Examples include using the
speculative 1) miss status handling register (MSHR) or 2)
execution unit contention (first step) to change the timing
of a non-speculative load (second step). Essentially, the two
examples exploit two different covert channels in the first step,
rather than the commonly used flush-reload cache channel.

If the Send operation is purely non-speculative as shown
in the last case of Fig. 4, the attack becomes a side-channel
attack, especially when both Access and Send operations are
also non-speculative. This means the program has side-channel
vulnerability that allows the secret access and the operation
causing a secret-dependent microarchitectural state change,
which is beyond the scope of speculative execution attacks.
Takeaway from attack analysis. The important observation
we make is that the critical attack steps in Section III-A hold
for all speculative execution attacks, not just for the Spectre
v1 attack. Moreover, any valid combination of delayed au-
thorization, speculative secret access and a covert channel
can form a new attack variant. Based on this characterization
of speculative attacks, we propose four defense strategies that
prevent these speculative execution attacks from succeeding.

IV. DEFENSE STRATEGIES

We propose a taxonomy of defenses depending on the attack
step prevented, shown in Fig. 5. We identify four defense
strategies, each based on a security policy:

• No Setup (Section IV-A): Setup is prevented so that either
the malicious speculative execution cannot start or the
covert channel state cannot be initialized.

• No Access without Authorization (Section IV-B): Access
cannot execute before the authorization is completed.

• No Use without Authorization (Section IV-C): Access
can execute but Use of a secret is blocked before the
authorization is completed.

• No Send without Authorization (Section IV-D): Both
Access and Use can execute but no secret can be sent,
before the secret access is authorized.

The insight about No Access without Authorization is that
while Authorize and Access may not have any data de-
pendencies, they have a security dependency [37] since an
access should not be allowed until it is authorized. Hence
the No Access without Authorization security policy prevents
the security breach. Given that Access, Use and Send are
a chain of 3 data-dependent instructions, No Use without
Authorization and No Send without Authorization defense
strategies can be understood as enforcing the protection at a
later stage to try to reduce the performance overhead.

We will describe representative defense proposals for each
of these defense strategies.

A. No Setup

There are two ways to prevent the Setup step. A defense
can prevent either the preparation of the covert channel state
or the trigger for speculative execution. Both can be achieved
with an isolation-based method shown in Fig. 5.

The isolation method requires partitioning of otherwise
shared hardware resources or flushing of a hardware resource
if it is time-multiplexed. DAWG [15] partitions the cache lines
using the domain id’s and guarantees no interference through
the cache replacement state. Context-sensitive fencing [17]
implements a new micro-op to flush the branch target buffers
(BTB) or return stack buffer (RSB) state when entering a
different protection domain. MI6 [25] partitions the shared
DRAM and last-level cache (LLC) resources between trusted
enclaves and untrusted software and enables clearing any per-
core states such as branch predictors, L1 caches and TLBs,
with a new instruction. IRONHIDE [26] implements a similar
partitioning of LLC and memory resources and also a core-
level partitioning by reserving certain cores for a security-
critical program to reduce the cost of clearing per-core states.

Encryption can be applied to hardware states to implement
an obfuscation-based isolation defense. Predictor state encryp-
tion [28] encrypts the BTB or RAS state with a context-
specific secret when storing a new target address and decrypts
it for usage. This prevents the attacker in another process
from injecting malicious jump/return targets, without requiring
the clearing of microarchitectural states. Such context-specific
encryption can also be considered a form of isolation.

However, note that these No Setup defenses usually require
that the victim and the attacker come from different security
domains, as the isolation-based method uses the domain in-
formation to allocate resources and enforce access control and

6

Hardware Defenses of Speculative Execution Attacks

No Access w/o

Authorization

No Use w/o

Authorization
No Send w/o Authorization

CSF-

LFENCE[17]

CondSpec[16],

EfficientSpec

[20],

DOLMA [33]

Delay Roll-back

Cleanup-

Spec[24]

NDA[23],

SpectreGuard[18],

ConTExT[27],

SpecShieldERP[21]

Basic No Use
No Sensitive

Use

SpecShield-

ERP+[21],

STT[22]

CSF-

CFENCE[17]

Prevent

InvisiSpec[14],

SafeSpec[19],

MuonTrap[29]

Shadow

Structure

No Setup

Isolation

DAWG [15],

CSF-clearing [17],

MI6 [25],

IRONHIDE[26],

Predictor state encryption [28]

Isolation

DAWG [15],

CSF-clearing [17],

MI6 [25],

IRONHIDE[26]

Performance-enhancing features for hardware defenses: SDO [30], Clearing the Shadows [31], InvarSpec [32]

Fig. 5: Taxonomy of hardware defenses. The second row shows the 4 defense strategies. The third row shows the child defense categories
under each strategy. The fourth row shows the proposed hardware defenses belonging to each defense category.

Out-of-order Execution

Scheduler

ALU…

Cache/Mem

In-order
Retire

Inst
Fetch

Decode

In-order Frontend

𝝁Op’s

…

fence

ld

…

Load/Store
Buffer

older_access

…

fence

ld

Fig. 6: Inserting fences to stall the speculative execution of loads.

the encryption-based method uses the same key for a certain
domain. The same-domain attack, e.g., NetSpectre [42], cannot
be mitigated with these techniques.

B. No Access Without Authorization

To prevent a security breach, we should prevent the se-
cret Access before the authorization is completed. Software
solutions can insert memory barriers such as the lfence in
the x86 ISA to defeat speculative attacks, but they require
re-compilation or post-processing of the binary [62]. Also,
significant performance overhead is incurred with these soft-
ware fences. A hardware defense can also prevent the secret
access by automatically inserting a fence micro-op. Hardware-
inserted fences have the advantage of non-intrusive protection
and much lower overhead.

The Context-Sensitive Fencing (CSF) defense proposed
in [17] is shown in Fig. 6. It uses customizable decoding
from software instructions to hardware micro-operations to
insert hardware fences after a conditional branch instruction
before a subsequent load instruction. To defeat the Spectre v1
attack, CSF-LFENCE can place a fence between these two
instructions. As no secret data is accessed in the first place,
the No Access without Authorization defense provides strong
protection that is independent of the type of covert channel
used to exfiltrate the data.

C. No Use without Authorization

Hardware defenses can allow the secret access but prevent
its usage in subsequent execution. This improves performance

Out-of-order Execution

Inst
Fetch

Decode

Scheduler

ALU…

ALU…

Load Buffer

Store Buffer

Cache/Memory

In-order RetireIn-order
Frontend ROB

Inst Info Done Squash Auth

𝝁op[0]

𝝁op[1]

…

𝝁op[N]

Load port

Result
Forwarding

Fig. 7: Hardware modification to support No Use without Authoriza-
tion.

but still blocks the Use step in a speculative attack. We call it
the No Use without Authorization defense strategy.

This strategy requires modifying the feed-forward logic
which forwards the result of a producer instruction to de-
pendent instructions so that forwarding is allowed to later
operations only when the producer instruction is completed
and authorized. This can be achieved when both the Done
and the new Auth bits are set in the ROB in Fig. 7.

There are two subclasses of defenses in this category. The
“Basic No Use” defenses simply prevent the data forwarding
to any dependent instructions. The “No Sensitive Use” de-
fenses improve the performance by only preventing the data
forwarding to sensitive instruction types such as memory load
instructions, which can be used to send cache covert channel
signals, or for other known covert channels.
Basic no use. An example of the “Basic No Use” de-
fense strategy is the NDA (Non-speculative Data Access)
defense proposal [23]. This has many variants, based on which
authorization checks and Access operations are considered.
NDA-Permissive checks the resolution of conditional branch
conditions and indirect branch addresses (first 2 columns
in Fig. 3). NDA-Permissive-BR (Bypass Restriction) checks
these and also checks memory address disambiguation (the
third column in Fig. 3). These two NDA-Permissive variants
protect accesses from the cache and memory and from special
registers like control registers.

There are also two NDA-Strict variants: NDA-Strict and
NDA-Strict-BR. These are like their NDA-Permissive coun-
terparts, except that they also prevent accesses of secrets that

7

are already in the general-purpose registers.
The NDA-Load variant further adds hardware to prevent the

data forwarding from an Access operation until the instruction
is retired, i.e., the instruction is at the head of the ROB
queue and has its Authorization completed. This covers the
first 5 columns in Fig. 3. Since NDA was proposed before
the last two columns in Fig. 3, it is not known if it covers
the attacks that do illegal forwarding from microarchitectural
buffers. NDA-Full is the most secure variant, combining NDA-
Strict-BR with NDA-Load.

SpectreGuard [18] is another example of a “Basic No
Use” defense. While it only discusses Spectre v1, its key
contribution is providing the Linux OS interface to identify
sensitive memory pages and mark these as non-speculative.
Only data accessed from sensitive pages will not be forwarded
during speculative execution, reducing the performance over-
head. ConTExT [27] implements similar software support to
mark secret data, which should not be used in speculative
execution, as non-transient. In addition, ConTExT allows taint
propagation in the processor to also taint the values derived
from non-transient values. These tainted values cannot be used
in speculative execution that happens in the future.

SpecShield [21] also implements a “Basic No Use” defense.
It protects any secret in the memory which can be read
by load operations. SpecShieldERP prevents data forwarding
until the authorization of control flow, memory disambiguation
and memory-related permission checking is completed and no
violation is found.
No sensitive use. Another variant in [21], SpecshieldERP+,
implements a “No Sensitive Use” defense policy by consid-
ering the same authorization of control-flow, memory disam-
biguation authorization and memory permission checking as
SpecshieldERP, but only preventing the data forwarding to
sensitive instructions like loads and branches.

Speculative Taint Tracking (STT) [22] is another example
of the “No Sensitive Use” policy. STT further considers the
covert channels due to implicit information flows and marks
loads, branches, stores and data-dependent arithmetic instruc-
tions as being sensitive. To improve the performance, STT
implements an efficient taint tracking mechanism to untaint
authorized operations. STT has two variants, STT-Spectre and
STT-Future. STT-Spectre considers only the authorization of
control flow while STT-future tries to include potential future
speculative attacks by deeming a load operation safe only
when it reaches the head of the ROB or cannot be squashed.

D. No Send without Authorization

The No Send without Authorization defenses prevent send-
ing a signal on a covert channel so that the secret cannot
be recovered by the attacker, who is the receiver of the covert
channel. This signal is sent by changing the microarchitectural
state. The defenses under this strategy are usually specific to
one or multiple covert channels. Below, we describe five ways
to achieve this goal. Although related defense proposals have
considered different sets of covert channels, the cache covert
channel is the main target that is addressed by all defenses.

Hence, we consider specifically the memory load instructions,
which change the cache state, to explain these covert channels.
Delay state change. The processor can delay the execution of
a load when it needs to modify the cache state. An example is
the Conditional Speculation (CondSpec) defense [16], where
an unauthorized memory load that hits in the cache can read
the data and complete its execution. However, a load that has
a cache miss is held up to be re-issued later.

The Efficient Invisible Speculative execution (EfficientSpec)
defense [20] also implements this “delay on miss” mechanism
while adding a value predictor to provide a predicted value
upon a cache miss. This is compared with the real value after
the authorization is completed.

The DOLMA defense [33] addresses a broader scope of
covert channels including not only data caches but also TLBs,
instruction caches and hardware predictor state covert chan-
nels. It delays both explicit state changes and the changes
caused by implicit secret-dependent execution flow and by
resource contention. DOLMA considers stores as well as loads
as the Send operation.
Prevent state change. The hardware can allow a speculative
load to read the data but prevent the cache state change by
making the load uncacheable.

Context-sensitive fencing [17], with some variants imple-
menting No Access without Authorization (Section IV-B), also
provides a new type of fence, CFENCE, to implement No Send
without Authorization. A load can execute before a previous
CFENCE but it will be converted to a non-cacheable load
when it causes a cache miss. This allows the data to be read
while preventing the cache state change. The defense variant
placing a CFENCE before every load is denoted by “CSF-
CFENCE” in Fig. 5.
Store speculative state in shadow structures. Visible cache
state can be changed only on a successful authorization, by
adding a shadow structure to hold the speculatively accessed
cache lines.

InvisiSpec [14] prevents the modification of the cache state,
including the cache coherence state in the multiprocessor
system, by extending the processor with a speculative buffer
to store the speculatively accessed data. If the authorization
is completed and verified, each speculative load will issue
a second access to the same address and cause safe cache
state change. If the authorization is completed but rejected,
the load is squashed, and no modification is made to the
cache state. One InvisiSpec variant, InvisiSpec-Spectre, deems
a load unauthorized until all the control-flow predictions are
verified. The other variant, InvisiSpec-Futuristic, deems a load
unauthorized until it reaches the head of the reorder buffer
(ROB) or it cannot be squashed.

The SafeSpec defense [19] implements a similar shadow
buffer to prevent the modification of both cache and translation
lookaside buffer (TLB) states. The cache coherence state is not
protected by SafeSpec.

MuonTrap [29] adds the filter caches as the shadow buffers
for I-cache, D-cache and TLB. The speculatively accessed

8

Feature Enhanced Defense Category Benchmark Overhead
Before After

SDO [30] STT [22] No Use SPEC2017 About 22% 10.05%
ClearShadow
[31]

Delay on miss
[20] No Send SPEC2006 9% faster than basic

delay-on-miss

InvarSpec
[32]

fence [14] No Access SPEC2006 199.3% 101.9%
SPEC2017 195.3% 108.2%

Delay on miss
[16], [20] No Send SPEC2006 46.1% 22.3%

SPEC2017 39.5% 24.4%

InvisiSpec [14] No Send SPEC2006 18.0% 9.6%
SPEC2017 15.4% 10.9%

TABLE III: The improvement in performance overhead by ap-
plying SDO, ClearShadow and InvarSpec to existing defenses.

entries are only stored in these and get cleared upon security
domain switches. A key difference from previous work is
that MuonTrap allows non-sensitive modification to the cache
coherence state. In a MESI protocol, a speculative access
can only be fetched in shared state and any sensitive action
changing another cache line from M or E state to S or I state
is delayed until it is authorized.
Restore state change (Roll-back). The hardware can allow
the cache state change during speculative execution but restore
the old cache state if the authorization fails.

CleanupSpec [24] prevents a speculative execution attack
from modifying the cache state by restoring the cache state
when the speculation is found to be wrong. Before the au-
thorization is completed, CleanupSpec allows bringing new
cache lines into the cache during speculative execution, but
extends each memory request with its side-effect fields to track
which cache line is fetched into the cache and which cache
line is evicted from the L1 data cache, due to this unauthorized
request. If a memory request needs to be squashed, a request is
sent to invalidate any new cache line fetched during speculative
execution, and bring back any cache line evicted speculatively
from the L1 data cache. The L2 and last-level caches in
CleanupSpec implement address encryption [63] to prevent
eviction-based information leakage.
Isolation of states between security domains. Assuming
that the sender and the receiver are from different security
domains, some isolation-based defenses that prevent Setup can
also prevent the attacker from receiving the covert signaling.
For example, the clearing of the branch predictor state can
prevent mistraining in the Setup phase and also prevent the
leakage through covert sending [64]. Hence, a defense can
prevent two steps as a No Setup defense and a No Send without
Authorization defense.

E. Reducing Overhead of Defenses

Techniques have been proposed to reduce the performance
overhead of defenses described earlier. Table III shows the
performance improvements they achieve.

Speculative Data-Oblivious Execution (SDO) [30] allows
an instruction, which may depend on a secret, to execute. For
instance, a speculative load can access certain cache levels
without making any state changes and the performance is
improved if the data is found. SDO can be integrated with
STT [22].

Clearing the Shadows (ClearShadow) [31] improves the per-
formance by accelerating the computation of branch conditions

Strategy Defense Platform Performance
Overhead (%)

No Setup &
No Send

DAWG [15] Zsim [65] 0 ∼15
MI6 [25] RiscyOO [66] 16.4

IRONHIDE [26] Tilera Tile-Gx72
processor [67]

-20
(Compared to an
SGX-like baseline)

No Access CSF-LFENCE [17] GEM5 [68] 48

No Use

NDA [23] GEM5 [68] 10.7 ∼125
SpectreGuard [18] GEM5 [68] 8, 20

ConTExT [27] Software approximation
on Intel processor 0.1 ∼71.1

SpecShieldERP(+) [21] GEM5 [68] 10, 21
STT [22] GEM5 [68] 8.5, 14.5, 24, 27

No Send

CondSpec [16] GEM5 [68] 6.8, 12.8, 53.6
EfficientSpec [20] GEM5 [68] 11 (IPC loss)
DOLMA [33] GEM5 [68] 10.2 ∼42.2
CSF-CFENCE [17] GEM5 [68] 7.7, 21
InvisiSpec [14], [69] GEM5 [68] 5, 17
SafeSpec [19] MARSSx86 [70] -3
MuonTrap [29] GEM5 [68] -5, 4
CleanupSpec [24] GEM5 [68] 5.1

TABLE IV: Performance numbers reported by existing work.
The numbers may not be directly comparable as they are
measured in different configurations. Numbers separated by
commas are for different defense variants or benchmarks.

and memory addresses so that Authorize can finish earlier.
ClearShadow moves the instructions that Authorize depends
on to the front to shorten or remove the speculation window.
ClearShadow has been used to improve a “delay-on-miss”
defense [20].

InvarSpec [32] allows some sensitive instructions to execute
earlier without protection. InvarSpec software identifies the
safe set (SS) of an instruction I which contains instructions
that are older than I but do not affect I’s input and execution.
InvarSpec hardware extension reads the SS and allows I to be
issued even if some SS instructions are not resolved. InvarSpec
can be applied to the fence-based defense, the delay-on-miss
defense and the InvisiSpec defense as we show in Table III.

F. Software-hardware Co-design

Some hardware defenses require software support. One
way is changing the application software as described above
for ClearShadow [31] and InvarSpec [32]. Another way is
modifying the system software. DAWG [15] needs the system
software to assign a proper domain ID to the protected
program so that the domain ID is not shared with any
potential attackers. Context-sensitive fencing [17] has a set
of model-specific registers (MSRs) to specify the fence type
and the insertion strategy. SpectreGuard [18] and ConTExT
[27] enable marking secret data as non-transient by using a
bit in the page table entry, which requires both compiler and
OS software modifications.

V. UNDERSTANDING PERFORMANCE OVERHEAD

A. Performance Overhead Reported by Defense Papers

TABLE IV shows the performance overhead reported by
some hardware defenses, listed according to the hardware
defense taxonomy we presented in Fig. 5. The same gem5
cycle-accurate processor simulator [68] is used by most of
the hardware defense papers. The overhead of isolation-
based defenses to prevent cross-domain Setup and Send is
mainly due to the clearing of microarchitectural states and
the partitioning of hardware resources. CSF-LFENCE [17]

9

HW Defense

No Use w/o Auth.

NDA

Permissive Permissive+BR Strict Strict+BR Load Full

Perf. Overhead 10.7% 22.3% 36.1% 45% 100% 125%

HW Defense

No Send w/o Auth.

InvisiSpec

Spectre Futuristic

Perf. Overhead 5% 17%

HW Defense

No Use w/o Auth.

SpecShield

SpecShieldERP SpecShieldERP+

Perf. Overhead 21% 10%

(a) Performance overhead with different Authorization and Access types

(b) Different Authorization types (c) Restricting potential covert channels

TABLE V: Security-performance trade-offs of different variants
within the same work.

inserts lfence for only kernel loads but already incurs an
overhead of 48%. The No Use without Authorization defenses
differ a lot in their performance overhead as they may cover
different types of authorization (NDA), protect certain data
region (SpectreGuard), be emulated with software (ConTExT),
and prevent certain sensitive Use’s (SpecShield and STT). The
No Send without Authorization defenses generally have lower
perfromance overhead as they only address certain covert
channels, especially the cache covert channel.

We illustrate how some of the defenses trade off security
and performance. For increased security, more attacks and
vulnerabilities can be covered, and more covert channels
mitigated, but at increased performance overhead.
Increased overhead for covering more attacks. Table V(a)
shows the increase in performance overhead for the NDA [23]
defense variants to prevent more types of attacks. The “Per-
missive” variant considers the control flow authorization only
(the first two columns in Fig. 3). The “Permissive+BR (Bypass
Restriction)” variant further considers memory disambiguation
authorization (the third column in Fig. 3). “Load” (NDA-Load)
considers the first five columns in Fig. 3 by not deeming an
Access operation authorized until it is retired. A fair compar-
ison of performance overhead is from “Permissive” (10.7%),
to “Permissive+BR” (22.3%), then to “Load” (100%), since
they all protect secrets in memory and special registers.

InvisiSpec [14] provides two variants: InvisiSpec-Spectre
defends against control-flow misprediction based attacks and
InvisiSpec-Futuristic tries to defend against future attacks,
where any speculative load may pose a threat. The latter one
is more secure but has more performance overhead (17% vs.
InvisiSpec-Spectre’s 5% in Table V (b)) [69].
Access type vs. Performance trade-off. TABLE V(a) also
shows that as more types of Access are considered, the
performance overhead increases. The variant “Strict+BR” con-
siders the accesses to general-purpose registers (GPRs) in
addition to special registers and memory, which are considered
by “Permissive+BR”. The overhead increases from 22.3%
(Permissive+BR) to 45% (Strict+BR) due to the GPR access
consideration.
Mitigated covert channels vs. Performance trade-off. In
Table V (c) which compares two SpecShield [21] variants,
SpecShieldERP disallows the forwarding from a speculative
load to all instructions while SpecShieldERP+ only disallows
the forwarding to sensitive loads and branch instructions,

No	Send without	Authorization

time
Auth.

Unconstrained	speculation

Branch

No	Usewithout	Authorization
No	Access without	Authorization
No speculation

No	Send without	Authorization

Auth.

Unconstrained	speculation

Branch

No	Usewithout	Authorization
No	Access without	Authorization
No speculation

Short access

Long access

Use Send

(a)	Short	access

(b)	Long	access

t1
Short access Use Send
Short access

Short access
Short access

Use
Use

Send
Send

Use Send

Long access
Long access

Long access
Long access

Use Send
Use Send

t1 Use Send
Use Send
Use Send

Fig. 8: Performance analysis of different speculative execution
defense strategies on a fast access (a) and a slow access (b).

which may be covert Send’s. SpecShieldERP+ relaxes some
of the security guarantees to reduce the performance impact
of SpecShieldERP from 21% to 10%.

B. Security-Performance Tradeoffs Considering Our Defense
Strategies

We now consider the theoretical performance overhead
reductions that might be expected, as we relax the secu-
rity policy from No Access without Authorization to No
Use without Authorization to No Send without Authorization.
These correspond to the three main categories in our defense
strategies in Fig. 5. Since speculative attacks are rare, our
goal is to compare the impact of these defense strategies on
normal (benign) speculative execution. We consider an exam-
ple benign program containing a branch instruction, a first
load instruction, an arithmetic instruction and a second load
instruction, that is data dependent on the arithmetic instruction
which is data dependent on the first load instruction. While
there may be an arbitrary number of instructions between
these 3 instructions, we show them as sequential (in Fig. 8),
to simplify the discussion. To help correlate this code with a
speculative execution attack, e.g., Spectre v1 in Fig. 2, these
4 instructions correspond to the Authorize, Access, Use and
Send operations.

We illustrate the timelines of the Authorize, Access, Use and
Send operations in Fig. 8. We consider two scenarios: a fast
secret access (Fig. 8(a)), e.g., the first load has a cache hit,
and a slow secret access (Fig. 8(b)), e.g., the first load has a
cache miss. In each scenario, we present 1) an insecure OoO
processor allowing any speculation (Unconstrained Specula-
tion); 2) a No Send without Authorization defense; 3) a No
Use without Authorization defense; 4) a No Access without
Authorization defense; and 5) a processor disabling speculation
(No Speculation).

The Access, Use and Send are a chain of three data-
dependent instructions. Therefore the Access, Use and
Send operations cannot run together. In Fig. 8(a)), the No Send
without Authorization, the No Use without Authorization, and
the No Access without Authorization strategies delay the Send,
Use and Access operations, respectively, till after the Autho-
rization is resolved. Hence they have increasing performance
overhead, showing the intrinsic performance overhead in these

10

defense strategies. The slowest but most rigorous security
policy, No Access without Authorization, is as slow as No
Speculation, if the first load instruction (Access) immediately
follows the branch instruction, and there are no other non-
dependent instructions that can be executed in the speculation
window.

In Fig. 8(b), the slow Access (cache miss) may not be
fully covered by the delay in the Authorize operation. The
No Speculation defense still causes the longest delay, same
as the No Access without Authorization defense strategy.
The No Use without Authorization and the No Send without
Authorization defense strategies introduce shorter delay, and
can achieve the fastest performance like the Unconstrained
Speculation case.
Takeaway: In general, the No Speculation and Unconstrained
Speculation cases give the upper and lower bounds, respec-
tively, for the total execution time. The overheads of the three
defense strategies decrease from the strict security policy of
No Access without Authorization, to the more relaxed but still
secure No Use without Authorization, to the No Send without
Authorization strategies, with not much difference in overhead
between the last two strategies.

VI. PROBLEMS FOR SOME DEFENSES

Problem scenarios for isolation-based defenses The
isolation-based defenses can be used to either prevent the
Setup step (Section IV-A) or the covert Send step (Sec-
tion IV-D). These defenses can prevent the attack when the
victim and the attacker are from different security domains.
However, the mis-training can happen in the same domain
[35], [42]. The sender and the receiver of covert channel com-
munication can also be from the same domain. For instance,
in a Meltdown attack demo [71] where the secret is in the
kernel space, the sender instructions that read the secret and
send it out are in a user-level process, which also executes the
receiver’s code to reveal the secret. These special cases can
make the isolation-based defenses ineffective. For instance,
the DAWG [15] cache uses the domain ID to parition the
cache resouces and therefore, it cannot prevent the same-
domain attack where the sender and the receiver are in the
same process and have the same domain ID. Other No Send
without Authorizationdefenses may also have to be applied,
e.g., defenses following Delay, Prevent, Shadow Structure or
Roll-back in Section IV-D.
Problem with covert channel blocking defenses. The issue
with the No Send without Authorization defenses is that they
only protect against one or a few covert channels. However,
they do not restrict how secrets are illegally accessed and can
protect against new speculative execution or other attacks - but
only for the specific covert channels considered in the defense.

VII. RECOMMENDATIONS AND FUTURE WORK

Recommendation of defense strategies. From a security
perspective, preventing the Access and Use of a secret is more
critical, since all covert channels requiring secret-dependent

usage are eliminated. Between these two strategies, the No Use
without Authorization has better performance as some long-
latency loads can be performed under speculative execution,
reducing the performance overhead in benign situations.
Mitigating the aggressive forwarding of faulty access. The
faulty access attacks can read data that the current program
does not have the permission to access. Some defenses pre-
vent [17], [23] these attacks by blocking the execution or
completion of an Access operation until it is at the head
of the reorder buffer (ROB) so that any exception will be
immediately handled. We argue that for the faulty access that
violates the permission check of memory or special registers,
delaying the forwarding to any dependent instructions until its
permission check is finished is enough, i.e., a No Use without
Authorization policy.

For the illegal forwarding from microarchitectural buffers,
our suggestion is to disallow the forwarding to any faulting
memory accesses, or return a dummy value and disallow its
usage. Simply returning a dummy value without preventing its
usage is not enough. For instance, returning a dummy value
of 0 may cause the leakage of the data at address 0 if the
dummy value is speculatively used as an address.

VIII. CONCLUSIONS

In this paper, we first show how speculative execution
attacks can be classified according to what hardware features
are exploited to bypass security checks, that we call authoriza-
tions. We then show a new attack characterization based on
the critical attack steps common to all speculative execution
attacks, namely, Setup, Authorize, Access, Use, Send and Re-
ceive. We observe that the root cause of the attacks succeeding
is the bypassing of the Authorize step during speculative
execution. This attack characterization enables us to propose
the first taxonomy of defense strategies, where each strategy
prevents one of the critical attack steps of Setup, Access, Use
and Send. We show that the 20 defense proposals considered
in this paper can be categorized under at least one of these
four defense strategies, or as an overhead-reducing feature. We
describe important features in these defenses and some of their
key hardware modifications. Security-performance tradeoffs
are also discussed for defenses that propose multiple variants.
We discuss the scope of these hardware defense strategies and
show their relative performance overhead.

Future work can consider new attacks and defenses, using
and adding to our taxonomies of attacks and defenses. New
defenses can be proposed to reduce the performance overhead
and/or cover more attack types. For fair comparisons, new
defenses should compare their performance with those that
target the same set of exploited vulnerabilities, secret accesses
and covert channels.
Acknowledgements. This work was supported in part by
NSF SaTC #1814190, SRC Hardware Security #2844 and a
Qualcomm Faculty Award for Prof. Lee. We thank Shuwen
Deng and Jakub Szefer for help with initial performance
numbers.

11

REFERENCES

[1] “Intel SGX,” https://software.intel.com/content/www/us/en/develop/
documentation/sgx-developer-guide/top.html.

[2] “Arm tee,” https://www.arm.com/why-arm/technologies/
trustzone-for-cortex-a/tee-reference-documentation.

[3] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre attacks: Exploit-
ing speculative execution,” in 2019 IEEE Symposium on Security and
Privacy (SP), 2019.

[4] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and
M. Hamburg, “Meltdown: Reading kernel memory from user space,”
in 27th USENIX Security Symposium, 2018. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp

[5] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-of-order
execution,” in 27th USENIX Security Symposium, 2018.

[6] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, R. Strackx, T. F. Wenisch, and Y. Yarom, “Foreshadow-
NG: Breaking the virtual memory abstraction with transient out-of-order
execution,” Technical report, 2018, see also USENIX Security paper
Foreshadow [5].

[7] “Intel analysis of speculative execution side channels,”
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/
Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf, 2018.

[8] “Arm cache speculation side-channels,” https://developer.arm.com/
support/arm-security-updates/speculative-processor-vulnerability/
download-the-whitepaper, 2018.

[9] “Deep dive: Indirect branch restricted speculation,” https:
//software.intel.com/security-software-guidance/deep-dives/
deep-dive-indirect-branch-restricted-speculation, 2018.

[10] “Retpoline: A branch target injection mitigation,” https:
//software.intel.com/security-software-guidance/api-app/sites/default/
files/Retpoline-A-Branch-Target-Injection-Mitigation.pdf?source=
techstories.org, 2018.

[11] “A year with spectre: a v8 perspective,” https://v8.dev/blog/spectre,
2019.

[12] “What spectre and meltdown mean for webkit,” https://webkit.org/blog/
8048/what-spectre-and-meltdown-mean-for-webkit/, 2018.

[13] “The chromium projects: Mitigating side-channel attacks,” https://www.
chromium.org/Home/chromium-security/ssca, 2018.

[14] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Tor-
rellas, “Invisispec: Making speculative execution invisible in the cache
hierarchy,” in The 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2018.

[15] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“Dawg: A defense against cache timing attacks in speculative execution
processors,” in The 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2018.

[16] P. Li, L. Zhao, R. Hou, L. Zhang, and D. Meng, “Conditional spec-
ulation: An effective approach to safeguard out-of-order execution
against spectre attacks,” in 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2019.

[17] M. Taram, A. Venkat, and D. Tullsen, “Context-sensitive fencing:
Securing speculative execution via microcode customization,” in The
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019. [Online]. Available: https:
//doi.org/10.1145/3297858.3304060

[18] J. Fustos, F. Farshchi, and H. Yun, “Spectreguard: An efficient
data-centric defense mechanism against spectre attacks,” in The 56th
Design Automation Conference (DAC), 2019. [Online]. Available:
https://doi.org/10.1145/3316781.3317914

[19] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Pono-
marev, and N. Abu-Ghazaleh, “Safespec: Banishing the spectre of a
meltdown with leakage-free speculation,” in The 56th Design Automa-
tion Conference (DAC), 2019.

[20] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander,
“Efficient invisible speculative execution through selective delay
and value prediction,” in The 46th International Symposium on
Computer Architecture (ISCA), 2019. [Online]. Available: https:
//doi.org/10.1145/3307650.3322216

[21] K. Barber, A. Bacha, L. Zhou, Y. Zhang, and R. Teodorescu, “Spec-
shield: Shielding speculative data from microarchitectural covert chan-
nels,” in The 28th International Conference on Parallel Architectures
and Compilation Techniques (PACT), 2019.

[22] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and
C. W. Fletcher, “Speculative taint tracking (stt): A comprehensive
protection for speculatively accessed data,” in The 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2019. [Online]. Available: https://doi.org/10.1145/3352460.3358274

[23] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci,
“Nda: Preventing speculative execution attacks at their source,” in The
52nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2019. [Online]. Available: https://doi.org/10.1145/3352460.
3358306

[24] G. Saileshwar and M. K. Qureshi, “Cleanupspec: An ”undo” approach
to safe speculation,” in The 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2019. [Online]. Available:
https://doi.org/10.1145/3352460.3358314

[25] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, Arvind, and S. Devadas,
“Mi6: Secure enclaves in a speculative out-of-order processor,” in The
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019. [Online]. Available: https://doi.org/10.1145/3352460.3358310

[26] H. Omar and O. Khan, “Ironhide: A secure multicore that efficiently
mitigates microarchitecture state attacks for interactive applications,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2020.

[27] M. Schwarz, M. Lipp, C. Canella, R. Schilling, F. Kargl, and D. Gruss,
“Context: A generic approach for mitigating spectre,” in The 27th Annual
Network and Distributed System Security Symposium (NDSS’20), San
Diego, CA, USA, 2020.

[28] B. Grayson, J. Rupley, G. Z. Zuraski, E. Quinnell, D. A. Jiménez,
T. Nakra, P. Kitchin, R. Hensley, E. Brekelbaum, V. Sinha, and
A. Ghiya, “Evolution of the samsung exynos cpu microarchitecture,”
in The ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), 2020.

[29] S. Ainsworth and T. M. Jones, “Muontrap: Preventing cross-domain
spectre-like attacks by capturing speculative state,” in The ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA),
2020.

[30] J. Yu, N. Mantri, J. Torrellas, A. Morrison, and C. W. Fletcher,
“Speculative data-oblivious execution: Mobilizing safe prediction for
safe and efficient speculative execution,” in The ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), 2020.

[31] K.-A. Tran, C. Sakalis, M. Själander, A. Ros, S. Kaxiras, and
A. Jimborean, “Clearing the shadows: Recovering lost performance
for invisible speculative execution through hw/sw co-design,” in
The ACM International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2020. [Online]. Available: https:
//doi.org/10.1145/3410463.3414640

[32] Z. N. Zhao, H. Ji, M. Yan, J. Yu, C. W. Fletcher, A. Morrison, D. Mari-
nov, and J. Torrellas, “Speculation invariance (invarspec): Faster safe
execution through program analysis,” in The 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2020.

[33] K. Loughlin, I. Neal, J. Ma, E. Tsai, O. Weisse, S. Narayanasamy,
and B. Kasikci, “DOLMA: Securing speculation with the principle
of transient non-observability,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity21/presentation/loughlin

[34] “Consumption of speculative data bar-
rier,” https://msrc-blog.microsoft.com/2018/03/15/
mitigating-speculative-execution-side-channel-hardware-vulnerabilities.

[35] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von Berg,
P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic
evaluation of transient execution attacks and defenses,” in 28th
USENIX Security Symposium, 2019. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity19/presentation/canella

[36] W. Xiong and J. Szefer, “Survey of transient execution attacks and their
mitigations,” ACM Computing Surveys, 2021.

[37] Z. He, G. Hu, and R. Lee, “New models for understanding and rea-
soning about speculative execution attacks,” in 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), 2021.

[38] Y. Yarom and K. Falkner, “Flush+reload: A high resolution,
low noise, l3 cache side-channel attack,” in 23rd USENIX

12

https://software.intel.com/content/www/us/en/develop/documentation/sgx-developer-guide/top.html
https://software.intel.com/content/www/us/en/develop/documentation/sgx-developer-guide/top.html
https://www.arm.com/why-arm/technologies/trustzone-for-cortex-a/tee-reference-documentation
https://www.arm.com/why-arm/technologies/trustzone-for-cortex-a/tee-reference-documentation
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/download-the-whitepaper
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/download-the-whitepaper
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/download-the-whitepaper
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-indirect-branch-restricted-speculation
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-indirect-branch-restricted-speculation
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-indirect-branch-restricted-speculation
https://software.intel.com/security-software-guidance/api-app/sites/default/files/Retpoline-A-Branch-Target-Injection-Mitigation.pdf?source=techstories.org
https://software.intel.com/security-software-guidance/api-app/sites/default/files/Retpoline-A-Branch-Target-Injection-Mitigation.pdf?source=techstories.org
https://software.intel.com/security-software-guidance/api-app/sites/default/files/Retpoline-A-Branch-Target-Injection-Mitigation.pdf?source=techstories.org
https://software.intel.com/security-software-guidance/api-app/sites/default/files/Retpoline-A-Branch-Target-Injection-Mitigation.pdf?source=techstories.org
https://v8.dev/blog/spectre
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://www.chromium.org/Home/chromium-security/ssca
https://www.chromium.org/Home/chromium-security/ssca
https://doi.org/10.1145/3297858.3304060
https://doi.org/10.1145/3297858.3304060
https://doi.org/10.1145/3316781.3317914
https://doi.org/10.1145/3307650.3322216
https://doi.org/10.1145/3307650.3322216
https://doi.org/10.1145/3352460.3358274
https://doi.org/10.1145/3352460.3358306
https://doi.org/10.1145/3352460.3358306
https://doi.org/10.1145/3352460.3358314
https://doi.org/10.1145/3352460.3358310
https://doi.org/10.1145/3410463.3414640
https://doi.org/10.1145/3410463.3414640
https://www.usenix.org/conference/usenixsecurity21/presentation/loughlin
https://www.usenix.org/conference/usenixsecurity21/presentation/loughlin
https://msrc-blog.microsoft.com/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities
https://msrc-blog.microsoft.com/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella

Security Symposium, 2014. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity14/technical-sessions/presentation/yarom

[39] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: The case of aes,” in Topics in Cryptology – CT-RSA 2006,
D. Pointcheval, Ed., 2006.

[40] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush: A fast
and stealthy cache attack,” in Detection of Intrusions and Malware, and
Vulnerability Assessment, J. Caballero, U. Zurutuza, and R. J. Rodrı́guez,
Eds., 2016.

[41] V. Kiriansky and C. Waldspurger, “Speculative buffer overflows: Attacks
and defenses,” arXiv preprint arXiv:1807.03757, 2018.

[42] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss, “Net-
spectre: Read arbitrary memory over network,” in European Symposium
on Research in Computer Security, 2019.

[43] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,”
in 12th USENIX Workshop on Offensive Technologies (WOOT 18),
2018. [Online]. Available: https://www.usenix.org/conference/woot18/
presentation/koruyeh

[44] G. Maisuradze and C. Rossow, “Ret2spec: Speculative execution using
return stack buffers,” in The 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018. [Online]. Available:
https://doi.org/10.1145/3243734.3243761

[45] J. Horn, “Speculative execution, variant 4: Speculative store
bypass, 2018,” URl: https://bugs.chromium.org/p/project-
zero/issues/detail?id=1528, 2018.

[46] “Spectre v3a (rsre),” https://www.intel.com/content/www/us/en/
security-center/advisory/intel-sa-00115.html, 2018.

[47] “Lazy fp,” https://www.intel.com/content/www/us/en/security-center/
advisory/intel-sa-00145.html, 2018.

[48] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “Ridl: Rogue in-flight data load,”
in 2019 IEEE Symposium on Security and Privacy (SP), 2019.

[49] “Microarchitectural data sampling,” https://
software.intel.com/content/www/us/en/develop/articles/
software-security-guidance/technical-documentation/
intel-analysis-microarchitectural-data-sampling.html, 2019.

[50] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “Zombieload: Cross-privilege-boundary data
sampling,” in The 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019.

[51] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar et al., “Fallout: Leaking
data on meltdown-resistant cpus,” in The 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019.

[52] “TAA,” https://software.intel.com/content/www/us/en/
develop/articles/software-security-guidance/advisory-guidance/
intel-tsx-asynchronous-abort.html, 2019.

[53] “VRS,” https://software.intel.com/content/www/us/en/develop/articles/
software-security-guidance/advisory-guidance/vector-register-sampling.
html, 2020.

[54] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and Y. Yarom,
“Cacheout: Leaking data on intel cpus via cache evictions,” in 2021
IEEE Symposium on Security and Privacy (SP), 2021.

[55] “L1d eviction sampling,” https://software.intel.com/content/www/
us/en/develop/articles/software-security-guidance/advisory-guidance/
l1d-eviction-sampling.html, 2020.

[56] H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuffrida, “Crosstalk:
Speculative data leaks across cores are real,” in 2021 IEEE Symposium
on Security and Privacy (SP), 2021.

[57] “Special register buffer data sampling,” https://software.intel.com/
content/www/us/en/develop/articles/software-security-guidance/
technical-documentation/special-register-buffer-data-sampling.html,
2020.

[58] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lippi, M. Minkin,
D. Genkin, Y. Yarom, B. Sunar, D. Gruss, and F. Piessens, “Lvi:
Hijacking transient execution through microarchitectural load value
injection,” in 2020 IEEE Symposium on Security and Privacy (SP), 2020.

[59] M. Behnia, P. Sahu, R. Paccagnella, J. Yu, Z. N. Zhao, X. Zou,
T. Unterluggauer, J. Torrellas, C. Rozas, A. Morrison et al., “Specu-
lative interference attacks: Breaking invisible speculation schemes,” in
The 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2021.

[60] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “Smotherspectre: exploiting spec-
ulative execution through port contention,” in The 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019.

[61] M. Lipp, V. Hažić, M. Schwarz, A. Perais, C. Maurice, and
D. Gruss, “Take a way: Exploring the security implications of
amd’s cache way predictors,” in The 15th ACM Asia Conference on
Computer and Communications Security, 2020. [Online]. Available:
https://doi.org/10.1145/3320269.3384746

[62] “Speculative execution side channel mitigations,” https:
//software.intel.com/content/dam/develop/external/us/en/documents/
336996-speculative-execution-side-channel-mitigations.pdf, 2018.

[63] M. K. Qureshi, “Ceaser: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in The 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2018.

[64] D. Evtyushkin, R. Riley, N. Abu-Ghazaleh, and D. Ponomarev,
“Branchscope: A new side-channel attack on directional branch pre-
dictor,” in The Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems, 2018.
[Online]. Available: https://doi.org/10.1145/3173162.3173204

[65] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate
microarchitectural simulation of thousand-core systems,” in The 40th
Annual International Symposium on Computer Architecture (ISCA),
2013. [Online]. Available: https://doi.org/10.1145/2485922.2485963

[66] S. Zhang, A. Wright, T. Bourgeat, and A. Arvind, “Composable building
blocks to open up processor design,” in The 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2018.

[67] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal, “On-chip
interconnection architecture of the tile processor,” IEEE Micro, vol. 27,
no. 5, 2007.

[68] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, 2011.
[Online]. Available: https://doi.org/10.1145/2024716.2024718

[69] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and
J. Torrellas, “Correction: Invisispec: Making speculative execution
invisible in the cache hierarchy,” 2019. [Online]. Available: https:
//iacoma.cs.uiuc.edu/iacoma-papers/corrected micro18.pdf

[70] A. Patel, F. Afram, and K. Ghose, “Marss-x86: A qemu-based micro-
architectural and systems simulator for x86 multicore processors,” in 1st
International Qemu Users’ Forum, 2011.

[71] “Meltdown proof-of-concept,” https://github.com/IAIK/meltdown, 2019.

13

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://doi.org/10.1145/3243734.3243761
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00145.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00145.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/technical-documentation/intel-analysis-microarchitectural-data-sampling.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/technical-documentation/intel-analysis-microarchitectural-data-sampling.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/technical-documentation/intel-analysis-microarchitectural-data-sampling.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/technical-documentation/intel-analysis-microarchitectural-data-sampling.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/intel-tsx-asynchronous-abort.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/intel-tsx-asynchronous-abort.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/intel-tsx-asynchronous-abort.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/vector-register-sampling.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/vector-register-sampling.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/vector-register-sampling.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/l1d-eviction-sampling.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/l1d-eviction-sampling.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/l1d-eviction-sampling.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/technical-documentation/special-register-buffer-data-sampling.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/technical-documentation/special-register-buffer-data-sampling.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/technical-documentation/special-register-buffer-data-sampling.html
https://doi.org/10.1145/3320269.3384746
https://software.intel.com/content/dam/develop/external/us/en/documents/336996-speculative-execution-side-channel-mitigations.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/336996-speculative-execution-side-channel-mitigations.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/336996-speculative-execution-side-channel-mitigations.pdf
https://doi.org/10.1145/3173162.3173204
https://doi.org/10.1145/2485922.2485963
https://doi.org/10.1145/2024716.2024718
https://iacoma.cs.uiuc.edu/iacoma-papers/corrected_micro18.pdf
https://iacoma.cs.uiuc.edu/iacoma-papers/corrected_micro18.pdf
https://github.com/IAIK/meltdown

	I Introduction
	II Microarchitecture and Covert Channel Background
	III Speculative Execution Attacks
	III-A Critical Attack Steps
	III-B A Spectre v1 Attack Example
	III-C Other Attacks
	III-D Covert Channels for Send Operation

	IV Defense Strategies
	IV-A No Setup
	IV-B No Access Without Authorization
	IV-C No Use without Authorization
	IV-D No Send without Authorization
	IV-E Reducing Overhead of Defenses
	IV-F Software-hardware Co-design

	V Understanding Performance Overhead
	V-A Performance Overhead Reported by Defense Papers
	V-B Security-Performance Tradeoffs Considering Our Defense Strategies

	VI Problems for Some Defenses
	VII Recommendations and Future Work
	VIII Conclusions
	References

