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Abstract—Without a doubt, the security of Internet of Things
(IoT) systems is of crucial importance. The use of such systems
has significantly increased in the recent year, where in every
aspect of our daily life we interact with IoT environments and
devices of any type. Therefore, it comes with no surprise that the
relevant security concerns have attracted the focus of the security
community and there is a rising need for security solutions
in the IoT domain. GHOST is an EU Horizon 2020 Research
and Innovation funded project, aiming at developing a reference
architecture for securing smart-home IoT ecosystems. One of the
approaches employed in GHOST project is to model the behavior
of the IoT devices with regard to the network activity with the
aim to detect and following mitigating cyber-security events. This
functionality is mainly provided by two GHOST system modules,
that is the Network and Data Flow Analysis (NDFA) and the
Profile Builder (PB), described in detail in this paper.

Index Terms—IoT, smart-home, security, profile building, mon-
itoring, abnormal behaviour

I. INTRODUCTION

During the recent years, IoT systems growth has created
significant security concerns. The number of devices that
are foreseen to be installed in the near future is enormous,
while the various security incidents encountered are multiply-
ing [18], [19]. There are not few the cases where security
incidents involving IoT devices becoming headlines. The most
prominent example is the break out of the Mirai botnet, where
the use of default passwords allowed the cyber-crooks to take
over hundreds of thousands of IoT devices with the purpose
to entangled them in Distributed Denial of Service (DDoS)
attacks [6]. Furthermore, smart-home appliances have become
more appealing to the end-users and contributed to the emerg-
ing of a new market related to the smart-home ecosystems [2],
[15]. Physical security, healthcare/telecare applications, energy
management and entertainment are some of the most common
concepts upon which such systems are built [9].

GHOST – Safe-Guarding Home IoT Environments with
Personalised Real-time Risk Control – is an European Union
Horizon 2020 Research and Innovation funded project, aiming
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at developing a reference architecture for securing smart-
homes IoT ecosystem [3]. The multi-layer solution integrates
traditional cyber-security countermeasures, while it introduces
new mechanisms for the efficient defence of common to IoT
threats. The architecture of GHOST system is based on multi-
ple distinct concepts and modules [7], [8], [12]. The main idea
is that the network activity of the smart-home environment is
monitored and fed to the various components which in turn
notify the Risk Engine (RE) component about observed cyber-
security events. RE then takes action, if required, in order to
mitigate the identified risk.

In the paper at hand, the part of the GHOST system related
with the detection of the behavioral changes in the context
of the smart-home devices’ network activity is presented.
Specifically, two collaborating modules of the GHOST system
are described, that is the Network and Data Flow Analysis
(NDFA) and the Profile Building (PB). The first one, NDFA is
responsible for extracting useful information from the captured
network traffic of the smart-home. The latter, PB uses this
information to create graphs of normal network activity for
the installed devices, during an initial training period. Then,
PB is capable of detecting abnormal events as it compares the
current activity with that of the training period. Finally, RE is
notified whenever an abnormal behavior is detected in order
to perform specific mitigation strategies.

The remainder of the paper is organized as follows. The
next section presents briefly related work that deals with
the detection of abnormal behaviour of IoT devices. Section
III and IV details on the structure and implementation of
NDFA and PB module respectively. Finally, section V draws
a conclusion.

II. RELATED WORK

The last decade, there are numerous attempts in the liter-
ature regarding security in IoT [10] but only a small portion
of them focuses on the modelling of network behaviour of
the IoT-connected devices in order to identify patterns of
suspicious behaviour through the network activity [4]. Such
studies include several methods that can detect abnormal sen-
sor events but based on “a priori” knowledge of the behavior
of the monitored process which result to low computational
resources [13]. In [16] a similar approach for network anomaly978-1-7281-4757-4/19/$31.00 © 2019 IEEE



detection in smart-homes has been followed based on the mon-
itoring of the user behaviour and the communication between
the Gateway and the IoT devices. The major drawback of
this method is the hard threshold posed in case a network
behaviour is not exactly the same as the one stored in the
system through its learning process. Other approaches on
misbehaviour detection include statistical analysis [17] and
distributed microservice anomaly detection [11] for various
IoT attacks.

III. MONITORING SMART-HOME TRAFFIC

The GHOST project aims at protecting a smart-home instal-
lation from potential cyber-attacks. The main data source for
the system is the network traffic of the smart-home gateway.
The NDFA module is responsible for monitoring the network
traffic of all interfaces connected to the home gateway, analyz-
ing the captured traffic traces, extracting valuable information
and finally storing them to the database.

This module is designed to examine the traffic data for
all network interfaces potentially connected to the smart-
home gateway. The different communication protocols under
consideration are IP (wireless and Ethernet), PPP, Bluetooth,
RF869, ZigBee and Z-Wave. The specifications and packet
structure for each one were examined, in order to determine
an appropriate analysis approach for each case. The afore-
mentioned protocols are the ones present in hardware used in
GHOST project’s pilots.

A. Data input

According to the capturing mechanism, two different modes
have been implemented for NDFA data input, namely FIFO
pcap files and sequential pcap files. In the first mode, the input
of the system is a FIFO pcap file for each network interface,
containing a fixed number of the most recent packets captured
from this interface. Given the format of the module’s input,
there is an important issue to be solved; synchronization of the
data that the module periodically reads from the FIFO pcap
file. In practice, every time the module attempts to read the
FIFO file, there are three possible scenarios:

• The file is identical to the one read at the previous reading
attempt

• The file contains a portion of new packets with respect
to the previous reading attempt

• The file contains only new packets with respect to the
previous reading attempt

According to which of the three scenarios occurs, the
component must act in a different manner, in order to keep
the data extracted and stored to the database in sync with the
real traffic traces.

In the second mode, i.e., sequential pcap files, the traffic is
captured in sequential pcap files with no overlapping. This is a
particular case, where no synchronisation is required because
each pcap file starts at the point where the previous ends.

Fig. 1. Work-flow for IP protocols

B. Storage

The output of the module should adhere to multiple schemes
according to the interface and the protocol of the monitored
network traffic. This renders the utilization of a traditional
relational database scheme a questionable choice. Instead, the
option of a NoSQL database scheme capable of storing data
without a predefined format, seems a more appropriate solu-
tion. On the other, a NoSQL database may cause performance
issues as it does not offer mechanisms present in traditional
databases.

For the needs of the GHOST project, PostgreSQL database
is employed as the database system. This decision successfully
serves all the storage requirements by either using traditional
relational schemes or utilising the JSON data type. Moreover,
it is the most efficient choice, as only one database service is
required to be installed into the GHOST’s gateway.

C. Communication

The NDFA communicates with the rest of the modules of
the GHOST system, including PB module, through ZeroMQ
messages [1]. The actual data required by the other modules
for their operation are stored to the database and should be
easily retrieved from there. However, in order to improve the
efficiency of the GHOST platform an event based commu-
nication system is implemented with the purpose to notify
the remaining components, whenever new network traffic is
captured and stored into the database. The communication
mechanism implemented on the NDFA side generates two
types of messages:

• NDFA informs other components for each new pcap file
captured

• NDFA informs other components for each new traffic
flow/batch detected

D. IP protocols work-flow

The work-flow of the data inspection subsystem is an
iterative process, as illustrated in Figure 1. The procedure
is similar for all the interfaces with respect to the packets
data extraction. However, for the extraction process of the
traffic flow, they exist significant differences between the



various interfaces. This is due to the key characteristics of
each communication protocol. The main steps taken for the
analysis of the IP traffic are:

• Read the current FIFO file with the traffic of a specific
interface.

• Identify the position in the file after which new packets
exist.

• Extract packet details from the new packets and store
them to the database.

• Add new packets to global pcap file (containing traffic
for active flows) maintained by the component.

• Process this file to extract flows and store data for
extracted flows temporarily in memory.

• Check which of the extracted flows are still active and
which have expired.

• Store the data for these flows to permanent database
storage.

• Remove packets of expired flows from the global pcap
files.

• Start over.
1) Packets analysis: The NDFA module is able to extract

useful data from each packet and store it to the database. It
processes packets one by one and stores the most important
fields extracted from the packet header along with some
metrics, like size, for each one of the examined packets. The
exact scheme of the information retrieved and stored to the
database is relevant to the protocol to which the packet adheres
to, so even for the same interface no default data structure can
be defined.

2) Updating global pcap file: The NDFA module has to
build also the traffic flows consisting of groups of packets
related to a single communication. This cannot be achieved
by processing packets in batches corresponding to different
pcap files read. Obviously, most of the traffic flows will spread
across multiple batches of packets, produced by different read
attempts. In order to successfully construct traffic flows, the
component has to maintain a global pcap file, which holds
traffic for all recent active traffic flows. The packets added
to this global pcap file are the new packets identified at each
FIFO pcap file read attempt.

3) Flows extraction: At this step, the global pcap file is
used as input to the DPI tool Libprotoident [14], which outputs
a list of traffic flows along with relevant data and statistics.
These traffic flows are the most recent flows for the interface
being monitored. Due to the iterative process of reading the
FIFO file, same traffic flows may appear in different iterations.
Additionally, these flows may either evolve from read attempt
to read attempt (some packets have been transmitted between
the two read attempts) or stay unchanged. In order for the final
results stored in the database to be valid, it is vital to handle
the flows extracted at each iteration and classify them as either
active (temporarily stored) or expired (permanently stored).

4) Detecting expired flows: In order to identify expired
traffic flows, the component monitors the elapsed time after
the last captured packet for each of the examined flows.
Afterwards, it compares this elapsed time to the expiry time

Fig. 2. Work-flow for non-IP protocols

set for the DPI tool. If the elapsed time from the last packet
of the flow is larger than the expiry time of the DPI tool, then
the flow is marked as expired and is stored to the permanent
flows collection in the database. Otherwise, it is marked as
active and is stored to the active (pending) flows collection in
memory.

5) Trimming global pcap file: In order for the component
to step into the next iteration and continue the traffic analysis
the trimming of the global pcap file is required. Specifically,
the global pcap file must be trimmed with respect to the flows
that have been identified as expired and the packets related to
these flows must be removed. Otherwise, they will trigger the
creation of the same expired flows in the next iteration. The
identification of such packets is based on the timestamp the
earliest active traffic flow has started.

E. Non-IP protocols work-flow

The traffic processing workflow for non-IP protocols is
similar to that of the IP traffic, as depicted in fig. 2. Although,
the packet analysis procedure is the same as the one described
previously, the grouping of packets into higher level entities
is implemented differently due to the nature of the protocols.
Specifically as explained subsequently, the connection flows
have been substituted with batches of packets.

1) Packet analysis: The sub-components for reading FIFO
pcap file, finding the last captured packet in the file, extracting
data for new packets and storing them to the database are
similar to the corresponding sub-components of the IP traffic
case, which functionality has been already described in sub-
section III-D1. In the technical level, the packets’ processing
is carried out by the tshark [5] software.

2) Packet batches analysis: Regarding the non-IP inter-
faces, it is not suitable to follow the flows’ approach used
in the case of IP traffic, this is due to the:

• Reduced number of packets
• Sparse number of concurrent connections
• Less packets with actual payload
• More packets carrying events or commands (management

packets)

The approach followed was to structure the packets for non-
IP interfaces to packet batches. Therefore, packets exchanged
between a specific pair of communicating devices that seem
to form a cluster with regard to time are assumed to belong to
the same high level action or event. Examining this approach
in practice demonstrated that the majority of the generated



Fig. 3. Building packet batches

batches are short identical series of packets related to specific
recurring actions.

By studying real–world traffic files, it is deduced that a fixed
time window can be configured to determine the duration of a
batch. A time threshold is used in the case, if no new packet is
observed, the packet batch is assumed to be completed. This
approach is illustrated in Fig. 3.

IV. BUILDING NORMAL PROFILES

PB is the component responsible for the creation of the
behavioral profiles for each connected IoT devices in the
gateway. This way, it is able to detect not only the abnormal
behaviors but also any new device trying to establish connec-
tion within the smart-home installation.

PB module builds and maintains a Graph (Multi-DiGraph)
to capture the sequence of observed communications per
interface type. In this context, a node refers to a packet or a
flow between a pair of devices. Therefore, a node represents an
communication exchange between a pair of devices. The graph
represents the probability of the next node given the current
node based on historical observations. Furthermore, the graph
captures the time gap between the observation between pairs
of sequential nodes.

The node structure is built on a per–protocol basis, due
to the fact that they exist disparities amongst the different
flows. An edge in the graph represents the state transition in
the communication between devices ordered according to their
timestamp. Due to the fact that each edge does not carry any
actual information about the communication, only the nodes
can be used to further evaluate whether this communication
sequence is valid or not.

A. Building behavior graphs
The PB module utilizes all the captured flows (or batches)

fed from the NDFA module, which are stored in the Shared
Data Storage (SDS). For each device, at least one graph
is generated that illustrates the sequence and the frequency
of flows or batches. The graphs are subsequently stored in
the SDS. Bear in mind that in the case a device has more
than one interface enabling it to communicate with different
communication protocols (for instance, IP, Bluetooth and Z-
Wave), a distinct graph per communication protocol is created.

PB module has two distinct modes of operation, the Training
phase, where the module creates graphs according to the
device behaviour and the Execution phase, where graphs rep-
resenting the real-time activity of the devices are generated and
compared with those of the training phase. Figure 4 depicts
the flowchart diagram of the PB module, which describes the
transition from training to execution phase.

Fig. 4. Profile Builder start-up diagram

1) Training phase: At the initialization, the existing graphs
are deleted from the database and the flag is set as “running” to
indicate that the training phase is starting. In case of failure, the
module will resume to the training phase once it is relaunched.
Only after the training phase is completed successfully, the
status will be updated to “finished”. PB then retrieves all
available nodes from the database; in the case start and end
timestamps are provided as input, only the nodes with activity
between these timestamps are considered, otherwise all nodes
are considered. Based on the retrieved nodes, the graphs are
created based on the provided (configurable) time delta. This
parameter is used as the condition for defining when a graph
completes and a new one begins.

The PB creates graphs for each device interface as follows:

• Reads all nodes from the database
• Groups nodes by device. For this purpose, the Profile

Builder determines a unique device-identifier (in our case,
we utilize the MAC address)

• The nodes are ordered based on their timestamp
• The start/end points of a graph are applied based on the

pre-configured time delta

The PB will then iterate over each created graph. If the
graph under consideration is not already in memory or in
the internal Graph Database, it is stored there. However, it
is possible that some duplicate graphs could be created during
the training phase. This situation is not desired, since the
duplicated graphs will affect the performance during execution
phase. Therefore, only unique graphs are stored in the database
during the training phase. For this reason, a comparison of
normalized graphs to filter out duplicates is performed. When
this final iteration is completed, the training status flag is
updated to “finished”. The next time PB launches, it will
directly run in execution phase.



Fig. 5. Execution phase diagram

2) Execution phase: During the execution phase, the PB
module subscribes and listens for notifications from the NDFA
component for new flows/batches. Whenever a notification is
received, the PB retrieves the flow/batch from the database and
builds the graphs for the corresponding device. The correlation
between the flow/batch and the device is based on the device
identifier similar as in the training data. The steps followed
during the creation of a graph are:

• A new graph is created if the timestamp difference from
the previous observed node is greater than the time delta.
At that point, the previous graph is finalized and the
Graph comparison process is triggered, namely the stored
graphs of the device’s interface are compared with the
newly completed graph.

• The graph is extended with the new captured node if the
timestamp difference is less than the time delta.

• In the case, there are no pending graphs for the device’s
interface, a new graph is created.

3) Graph Comparison analysis: Before the process of the
graphs’ comparison during execution phase, there are some
pre-conditions that need to be analyzed. The training phase
must be successfully completed for the given protocol. In this
case, the graphs have to be normalized and stored in the graph
database. Also, the minimum and maximum values has to be
stored too. During the execution phase, the graphs created
during the training phase should be successfully retrieved from
the database into the memory for quick access and speedup

Fig. 6. High level analysis of Graph comparison

the comparison process. Moreover, the PB component should
capture the incoming nodes notified via ZeroMQ messages and
transform the nodes into graphs based on the pre-configured
time delta.

Two graphs are considered as equal when all the following
conditions apply:

• Depth of the graphs is the same.
• Equality between each corresponding nodes.
• In any other case, the Graphs are not considered as equal.

Regarding the similarity of two graphs, each node of the
first graph is compared with the corresponding node of the
second graph. There are some properties that are not taken
into consideration for the similarity calculation. These are the
time based and some string properties. The metric used for
the similarity calculation is the Euclidean distance:

d(x, y) =

√√√√ n∑
i=1

(xi, yi)
2

The average of differences between nodes can be considered
as an indicator of similarity between graphs.The basic rules
applied when notifying the RE component about abnormalities
are:

• When there is no available graph for a given device’s
interface, then most likely it is a new device. In this case,
the RE needs to be notified about this new device by
sending the Graph and a similarity value of 0.

• When there are available graphs for a given device’s
interface, but it does not exist a similar graph, then the
new graph is sent to the RE by including the highest
possible similarity value.

• When there are graphs available for a given device’s
interface and there exist a similar graph, then there is
no need for the PB to notify the RE.

Figure 7 depicts the detection accuracy of the PB module,
modelling the number of abnormal behaviours of the IoT-
connected devices as a function of the training sample size
used. As it can be observed, the more training data regarding
the flows between the IoT devices, the more accurate detection
of the suspicious behaviours the PB component performs. The
respective threshold set to 0.6 and 0.8 is the percentage of
similarity between the produced graphs and the ones created
during the training phase of the PB module above which the
PB notifies the RE for abnormal behaviour. An interesting



Fig. 7. PB detection accuracy as a function of the training sample size for a
given time delta of 10 min.

phenomenon observed, which is also verified through exten-
sive experiments, is the fact that PB performs independently
of the training data above a certain number of data flows for a
fixed number of connected IoT devices. In other words, more
training does not result in optimized detection rates.

B. Communication with other modules
For each type of flow handled by the PB and for which

profile is built, a structurally different message is sent to
the RE. For instance, the message to the RE regarding the
Bluetooth protocol contains the statistics of the communication
between the two devices, as well as their MAC addresses.
Upon reception, the RE evaluates if this is a valid profile for
the specific interface or not. n the case, that it is inaccurately
considered as suspicious behavior, the RE may inform back
the PB that this is a valid profile and this is how it should be
considered by the PB in the future (for the specific interface).

V. CONCLUSIONS

The functionality presented herein is one of the crucial
approaches of the GHOST system with respect to the abnormal
behavior detection within the smart-home ecosystem. Installed
IoT devices are expected to adhere to specific patterns in terms
of network activity. These behavioral patterns are modelled by
the PB module during the training phase. During execution
phase, the similarity of current activity against the modelled
behavior is calculated and the RE module is notified accord-
ingly. As the initial results indicate, the proposed approach
seems promising and efficient. However, more investigation
with real world smart-home installations should be conducted
in order to validate the functionality described. During the
GHOST project pilots, a vast amount of data is planned to
be collected and utilized with the purpose to fine tune PB’s
accuracy in terms of abnormal behavior detection.
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