Refinement Operators and Information Flow Security*

Annalisa Bossi, Riccardo Focardi, Carla Piazza, Sabina Rossi
Dipartimento di Informatica - UniversitCa’ Foscari di Venezia
e-mail{bossi,focardi,piazza,sro$g€pdsi.unive.it

Abstract In this paper we focus oimformation flowproperties
(see, e.g9., [8, 4, 5, 7, 13, 22]), i.e., security propertez t
The systematic development of complex systems usuallgllow to express constraints on how information should flow
relies on a stepwise refinement procedure from an abstractamong different groups of entities. These properties are
specification to a more concrete one, that can finally be im- usually formalized by considering only two groups of en-
plemented. The use of refinement operators preserving systities labelled with two security levelshigh (H) andlow
tem properties is clearly essential since it avoids projgert (L). The only constraint is that no information should flow
to be re-investigated at each development step. from H to L. For example, this security model can be ap-
In this paper we formalize the notion o&finementfor plied to guarantee confidentiality in a system: it is suffitie
processes described as terms of the Security Process Algeto label every confidential (i.e., secret) information with
bra (SPA). We consider several information flow security and then partition each system userfasand L, depend-
properties and provide sufficient conditions under which ing on whether such a user is or is not authorized to access
our refinement operators preserve such security properties confidential information. The constraint of no information
Finally, we study how refinements can be composed stillflow from H to L guarantees that no access to confidential
preserving the security of the system. information is possible by.-labelled users.

Unfortunately, as noticed in [14], most information flow
properties are not preserved by usual refinement operators.
1. Introduction This can be understood by noticing that the absence of in-
formation flow is usually formalized asrson-interference

In the recent years, security has gained more and moreconstralnt [8]. The absence of information flow frathto

importance. As a matter of fact, many critical applications va }':Ste}Chclie\r/]edbby fnelﬂililflng S:‘)Tiﬁthmtgl |\r}glj|t|r\]/el3l/ds:]ro\:\grer:
like, e.g., e-commerce, require high degrees of religbilit at s done by entities operating at [EVe1Snould neve

and protection against external attacks. In a stepwisd-deve 2; ;FS(TQ\//ae?E Zﬁfur}gtfjvgﬁiﬁ?gi@tit:ﬁ:\llgf%re ?EICS
opment process, it is important to consider security rellate non—oyt,)servabilit of high level events cannot be.ex ressed
issues from the very beginning. Indeed, considering secu- Y 9 P

rity only at the implementation phase could lead to a poor as a property of .si.ngle execution.sequences. Instead, it is
protection or, even worst, could make it necessary to restar capturec_j by requiring that each high level event moves the
the development process from scratch. On the other handsystem into a state that behaves the same as before from a

taking into account security from the abstract specificatio szx]lgverlng(;'i?;igf \;fgvioi}vlfesgatgéngflilgLvu\:eo;esﬂonri;hoi zﬁsch
level, better integrates it in the whole development preces Y 9

possibly driving some of the development choices system states, we could invalidate this low level behaabur

A security-aware stepwise development, of course, re.Invariant, thus invalidating the non-interference coais
quires that the security properties of interest are preserv In this work, we propose a new notion of refinement for
during the development steps, until a concrete (i.e., imple Processes described through thecurity Process Algebra
mentable) specification is obtained. Thus, tiinement (SPA). For this new notion we prove some interesting prop-
task should be carefully designed so that (also) SeCurityerties:(i) it is incremental, i.e., subsequent refinements are

properties are preserved from the very abstract initiatspe Still @ refinement;(ii) it is compositional with respect to
ification to the final one. SPA operators, i.e., it is possible to refine a process by re-

fining its subcomponents.
*This work has been partially supported by the MURST projéo- . . .
delli formali per la sicurezza” and the EU project IST-2002637 “Models Then, we consider a number of information flow proper-

and Types for Security in Mobile Distributed Systems” (MyThS ties proposed in literature and we express them through the

following generalized unwinding condition wherea € Act, v C L, f : Act — Act is such that
o fl@) = f(a), f(r) = 7, f(h) € HU{r} forh € H,
v stateS if § = 5’ thenS --» §” andS’ ' " (1) andf(l) € LU{r}forl € L, andZ is a constant that must

. . o def
Intuitively, when a high level action is performed mov- ~ P€ @ssociated with a definition = E.

ing from S to S’, thenS should be able to simulate such a Intuitively, 0 is the empty process that does nothingy
move by moving to a stat§” which is equivalent t&’ from is a process that can perform an acticend then behaves as
a low level point of view. Condition (1) is parametric with £+ E1+ E2 represents the nondeterministic choice between
respect to the simulating transition relatiors and the low ~ the two processes, andE,; E)|E is the parallel compo-
level behavioural equivalence'. We show that, by plug- ~ Sition of £y and E, where executions are interleaved, pos-
ging different relations and equivalences, we capture manyS|bly synchronized on complementary input/output actions
different existing information flow properties. producing an internal action; £ \ v is a procesg pre-
This general form for expressing non-interference allows Vented from performing actions i E[f] is the process’
us to state a general refinement theorem: every refinemeny/h0se actions are renameia the relabelling functiory.
that preserves both-» and-~! preserves also condition (1). We denote by’ the set of all SPA processes and &y
This theorem proves that every non-interference propertythe set of all high level processes, i.e., those constructed
expressed using (1) is invariant with respect to any refine-only using actions ifff U {7}.
ment that preserves the two specific relations and «~! The operational semantics of SPA processes is given in
used to express the property. terms of aLabelled Transition Systef. TS for short). A
The paper is organized as follows: in Section 2 we LTSis a triple (S, A, —) where S is a set of statesd is
present the SPA calculus; in Section 3 we introduce thea set of labels (actions)};>C S x A x S is a set of la-
new refinement notion and we prove some general re-belled transitions. The notatidib:, a, S2) €— (or equiv-
sults on it; in Section 4 we give the generalized un- alently S; % S,) means that the process can move from
winding condition, together with the main refinement re- the stateS; to the stateS, through the actiom. The oper-
sult, and we instantiate it to many existing information ational semantics of SPA is thdS(&, Act, —), where the
flow security properties; finally, in Section 5 we com- states are the terms of the algebra and the transitionaelati
pare our work with existing literature and we give some —C & x Act x & is defined by structural induction as the
concluding remarks. Along the paper, a simple run- least relation generated by the inference rules depicted in
ning example of a binary memory cell is used to show Figure 1. The operational semantics for a procgds the
how the refinement and security notions work. All the subpart of the SPATSreachable from the initial state.
proofs can be found in the Technical Report available at The transition relatior- is generalized to many steps as

http://ww. dsi . unive.it/~bossi/sef nD3TR ps. expected: Ift = a;---a, € Act* andE % ... 3 F/,
then we say thak’ is reachable fron and writeE - E'.
2. The SPA Language Reach(E) denotes the set of processes reachable ffom

We say thafF is a finite state process Reach(E) is finite.

In this section we report the syntax and semantics of the
Security Process Algebi@&PA for short) [5]. Example 2.1 We consider an abstract specificatibh. of

The Security Process Algebi®] is a variation of Mil- a binary memory cellM _z contains the binary valueand
ner’s CCS [19], where the set of visible actions is parti- is accessible, by high and low users, through the four oper-
tioned into high level actions and low level ones in order ationsry, wy, 7, w; representing a high read, a high write,
to specify multilevel systems. SPA syntax is based on thea low read and a low write, respectively. Each operation
same elements as CCS that is: asef visibleactions such is implemented through two different actions, one for each
thatL = TUO wherel = {a,b, ...} is a set ofnputactions binary value. For example we writey, 0 andw;, _1 to indi-
andO = {a,b,...} is a set ofoutputactions; a special ac- cate a high level user writing valeand1, respectively?
tion 7 which models internal computations, i.e., not visible
outside the system; a complementary function. — L, Mo © it . Ma+w, 0. M0+ wp1.M_1
such thatt = a, foralla € £. Act = LU {7} is the set of —
all actions The set of visible actions is pgrt%tioned into two + nE Matwuld MO+twl. M1
sets,H and L, of high and low actions such thaf = H
andL = L. We will useh to denote a generic high level ac-
tion, and! to denote a generic low level action. The syntax

of SPAprocessegor systempis defined as follows: 1The following expression foh/_z is indeed a definition scheme: the
actual processe’/ 0 and M _1 are obtained by replacing with 0 and1,
E:=0|aE|E+E|EE|E\v|E[f]|Z respectively.

Notice that read (write) operations are modelled as outputs
(inputs). In particular, procesa/_x can send the stored

- B, % E By % B B, % B, B, % B

a

aE S E Ey+E, % Ef Ey+ Ey % E) E\|E; % EY|E, E\|Ey; % E\|E)

Ey % E| Ey % E} ESE ELE ESE
a€Ll ifadov o) if Z=F
E\|E, 5 E!|E} E\v3% E'\v E[f] = E'[f] A i

Figure 1. The operational rules for SPA

valuezx through the two output actiong _z andr;_z. More- a refined specification should never show behaviours that
over, write operations are performed by accepting an inputwere not foreseen in the initial specification. To formalize
wyp,_y andw;_y (with y € {0,1}) and moving toM _y, i.e., this idea, we require th&t) each state of the abstract speci-
storingy into the memory cell. The operational semantics fication is refined to, at most, one state of the more concrete
of processed/ 0 andM _1 is depicted in Figure 2. (i.e., refined) specificatior(;:) the behavior of the refined

Notice thatM _0 andM _1 are totally insecure processes. states is simulated by the abstract states, i.e., it shduld a
As a matter of fact, no access control is implemented andways be possible to simulate an action performed by a re-
a high level malicious entity (e.g., a Trojan Horse program) fined state by the corresponding abstract state, and the two
may write confidential information into the memory cell, reached states should be still one the refinement of the other
throughwy, 0, w;,_1. This information can be then read Refinement is formalized as a partial function from pro-
by any low level user through, 0,7, 1. Information flow cesses. A binary relatioR is said to be artial function
properties in Section 4 will aim at detecting this kind of when if both(z,y) € R and(z,y’') € R theny andy’ are
flaws, even in more subtle and interesting situations. equal. IfR is a partial function we use the notati®(x)|

to denote the fact that there exigtsuch that{z,y) € R. In
The concept obehavioural equivalencis used to establish this case we also use the notatiBiiz) to refer toy. Sim-
equalities among processes and it is based on the idea tha[a”y we denote byR(z)1 the fact that there is ng such
two processes have the same semantics if and only if theirthat(g;,y) ¢ R. R~! indicatesthe converse relatioof R,
behavior cannot be distinguished by an external observersje R-! = {(y, z) | (z,y) € R}.
We report here a largely used equivalence, named (strong) Tq express the fact that the refined process should be sim-

bisimulation[19], which equates two processes when they yjated by the abstract one, we adopt the following notion.
are able to mutually simulate their behavior step by step.

Definition 2.2 (Strong Bisimulation) A binary relation ~ Definition 3.1 (Simulation) A binary relationS C € x &
R C € x & over processes is strong bisimulationif over processes isamulationif (E, F') € S implies, for all
(E, F) € Rimplies, for alla € Act, a € Act,if E% E’, then there exist8” such that” % F’
-if B % E’, then3F’ suchthat” % F" and(E’, F') € R; and(E’, F) € 8.
-if F % F’, then3E' such that? % E’ and(E', F') € R. We say that the process is _simula'Fed by_he process’,
Two processe€ and F arestrongly bisimilar denoted by denotgd by < F, if there exists a simulatiof containing
E ~p F, if there exists a strong bisimulatidd containing ~ the pair(E, F).
the pair(E, F').

The relation< is a preorder, i.e., it is reflexive and transi-
In Section 4 we will give other (weaker) notions of be- tive. Notice that, if a relatios is such that botl$ andS—*
havioural equivalence that will be useful for defining secu- are simulations, the§ is a strong bisimulation.

rity properties. We now introduce our formal definition of refinement.

3. Refinement Operators Definition 3.2 (Refinement)A binary relationR C € x &
over processes israfinementf

In this section we give a new notion of refinement for
SPA processes. Intuitively, an abstract specificationefyiv
here as a SPA system) defines the set of possible (allowed) e R is a partial function fron€ to £.
behaviours of a system. Refining a specification corre-
sponds to choosing among these allowed behaviours, thaVe say thatF is a refinement of", denoted byr < F, if
ones that will be actually implemented. The idea is that there exists a refineme® such thatR (F') = E.

e R~1!is a simulation and

Figure 2. The operational semantics of the memory cell M _z.

The following example shows the difference between the
notions of simulation and refinement. The condition tRat

is a (partial) function is useful to ensure that the refined pr
cess shows behaviors that are also shown by abstract one.

df 0.0 and

Example 3.3 Consider the processes;

5 def 1.0 + a.b.0. Although bothFy < F, andF;y < Fi,

we have thatF) is a refinement offy, (Fy < F5), but
not viceversa k; A Fi). Indeed, it is easy to prove that
R = {(Fy, F1),(b.0,0.0),(0,0)} is a refinement, thus
F; < F,. On the other hand, in order to ha¥g < F;
we should consider a relatidR’ such thatR’ ' is a sim-
ulation containing the paifFz, Fy). SinceF,; moves both
to 6.0 and to0 by performinga, and F; can only simulate
this move by moving int®.0, thenR’ ™" should contain (at
least) the pair$b.0, .0) and(0, b.0). As a consequence’
cannot be a function sinde0 is mapped into two different
processes. This proves that A F;.

It is worth noticing that our notion of refinement is decid-

A standard way to protect confidential data is to apply the
multilevel security model of [1]. First, we need to assign a
security level to any information containers (caltggjects;
then the following access control rules are imposg@no
low level user can read from high level objedia;) no high
user can write into low level objects. Indeed, these are the
only two (direct) ways for leaking confidential information

M _z can be refined both into a high level céll” _z, by
eliminating any low level read operation (rulg),

Mz Tt . M" 2 +w, 0. M" 0+ w, 1. M"1

+ w 0. MO+ w. 1. M1

and into a low level cell/! _z, by eliminating any high level
write operation (rulii)):

def

Tt . M z+7mzx. M«
+ w 0. M O+w. 1. M1

Mz

e i h !
able for the class of processes we are considering. In fact)t IS €asy to see that/" = < M.z and M’z < M.z,

for finite states processes both the requirements in definiti
3.2 are decidable. Moreover, the complexity of the decision
procedure is bounded by the complexity of checking if a
processF’ simulates another procegs This can be done

in O(n x m), wheren is the total number of states of the
two LTS’s associated t& andF’, andm: is the total number

of arcs (see [10]).

The following proposition follows immediately from the

definition of refinement. It states that a sequence of actions
performed by a refined state can always be simulated by the
corresponding abstract state, and the two reached states at

(still) one the refinement of the other. This is what we ex-
pected by our definition: all the behaviours of the refined
process are simulated by the abstract process.

Proposition 3.4 Let £, F' € £, E < F andR be a refine-
ment such thaR(F) = E. If E 5 E' with t € Act*, then
there exists” such thatR(F’) = E' andF -5 F’.

Example 3.5 Consider again the memory céll _x of Ex-
ample 2.1. We noticed that such a process is not secure as
direct information flow from high to low level is possible.

for eachz € {0, 1}, by considering the following two re-
finements:R = {(M_0, M" 0), (M _0, M" 1)} andR’
{(M_0, M'.0), (M0, M'_1)}.

In Section 4, we will show how to prove that”_z and
M'_x are secure, i.e., that they do not allow any information
flow from high to low level.

The next theorem states that the composition of two re-
finements is still a refinement. We denote dyhe partial
function composition, i.e.(R1 o R2)(F) = Ra(R1(F))

f R1(F)] and(R1 o Ra)(F) 1 if R1(F)7T. This guaran-
tees that our notion of refinement can be used in a stepwise
refinement construction of a process.

Theorem 3.6 Let R; and R be two refinements. Then
R o R, is still a refinement.

Hence,= is a transitive relation. Since it is immediate to
prove that< is reflexive, we get thak is a preorder.

Using Definition 3.2 we can introduce refinements which
sound counter-intuitive, e.g., a refinemétwith R(F) |,
&(F") |, and such tha#' reachesF’ but R(F') does not
reachR(F").

Example 3.7 Let F = a.b.c.0 + a.0 and E = a.0. -R'={(F'|G',E'|I")|(F',E"),(G',I') € R} is arefine-

We have thatE' is a refinement off’. A relation R ment;

which proves thatE refines F' is the following R = -R ={(F'\v,E"\v) | (F',E") € R} is arefinement;

{(F, E),(c.0,¢.0),(0,0)}. This refinement is not intuitive, - R’ = {(F'[f], E'[f]) | (F’,E’) € R} is a refinement.

since it “does not preserve the reachability on its domain”.)

A more natural refinement would B = {(F, E), (0,0)}. Corqllary 3.13 Let _F,_G, E. I € £ be such that there exists
a refinement containing bott¥, F) and(G, I). Then:

The following proposition states that if a procéssefinesa - a.E =< a.F, if a.F' ¢ Reach(F);

processF, there exists a refinememt r ;) which behaves - E+1 = F' + G, if F + G ¢ Reach(F) U Reach(G);

“correctly” with respect to the notion of reachability. - E|I X F|G,
-E\v =X F\v;

Proposition 3.8 Let £, F' € £ be two processes. B < F - E[f] = F[f).
andR is a refinement containing the pdiF, E), then the
relation R(pp = RO(Reach(F) x Reach(E)) is 4 ynwinding Based Security Properties and
arefinementsuch thak p gy (F) = Eandif R p gy (F')],) .
thenF’ € Reach(F) andE’ € Reach(E). Refinement
Let Rr be the set of processéssuch thatt < F. Since In this section we consider various information flow se-
=is a preorder o, < induces a preorder dR. curity properties which can be characterized in terms of un-

Notice that= is not a partial order since it is not anti- winding conditions and we identify sufficient conditions to
symmetric, as shown in the following example. be satisfied by our refinement operators in order to preserve

them. We consider a class of unwinding conditions. Infor-
mally, these conditions require that whenever a high level
action can be performed from a stdfeeaching a stat&’,

Example 3.9Let F = a.b.0 andF’ = a.b.0 + a.b.0. In
this case botlF” < FFandF < F'.

If F'is a finite state process aiftlis such that bott re- there exists a state” which for the low level user is indis-
finesE and vice-versa, thefl andE are strongly bisimilar. tinguishable fromZ’ and which is locally connected b,
This result does not hold for infinite state processes. given a suitable notion of connectivity. Since an unwinding
condition can be seen as a sufficient condition for many se-
Proposition 3.10 Let I, E € &, with F finite state. IfF' < cyrity properties, its preservation under refinement iesli
EandF’ 2 E, thenF ~p E. the preservation of all the security properties it guaresite

Proposition 3.10 implies that i' is a finite state process,
=< induces oR, up to strong bisimulation, a partial order
with top elemenf’ and bottom elemertt. This agrees with
our intuition thatF" is the “largest” refinement foF'.

Some natural refinements can be obtained by applying
the basic CCS operators. In particular, the operation of re-
striction can be used to build refinements.

4.1 A Generalized Unwinding Condition

We give a uniform presentation of the properties we
consider by introducing a generalized unwinding condition
which is parametric with respect to two binary relations on
processes: an equivalence relatiof, which represents the
low level indistinguishability and a transition relation;»,
Example 3.11 For all processE and for all set of actions which characterizes the local connectivity required by the
v C L, the proces&\v is arefinementoF, i.e., E\v < E. unwinding condition.

In fact, it is easy to prove that the relatiéh , = {(£, E \

v)| E € £} is a refinement. Definition 4.1 (Generalized Unwinding)Let -~ and--»

be two binary relations ofi x £. We defineV (!, --») as

The following result explicates the relations between our dof
€

notion of refinement and the basic CCS operators. Itallows W(-!,--3) = {E €& |
us to incrementally build refinements by combining refine- Y F,G € Reach(E), if F 2 G
ments of process components. It shows also how to get the then3G’ such thatF’ --» G’ andG ! G’}

refinement of a process by refining just part of it.
The generalized unwinding condition is based on two bi-

Theorem 3.12Let F,G,E,I € £. LetR be arefinement nary relations on processes. Thus in order to preserve it we

containing both(F, £') and(G, I). can just check the preservation under refinement of the low
-If a.F ¢ Reach(F'), thenR' = R(p gy U{(a.F,a.E)} is level observation and the connectivity relation. For total
a refinement; functions this means to look for a congruence with respect

-If '+ G & Reach(F)U Reach(G), thenR' = R g) U to the two relations. Since refinements are partial funstion
Ria,n U{(F+ G, E+ 1)} is arefinement; we require that also undefinep) {s preserved.

Definition 4.2 (Refinement preserving®) Let ® be a bi- consequence 4 E' stands forE =% E'if a € £, and
nary relation or€ x £ andR be a refinement. We say that for E(L)*E’ if a = 7 (note that== requires at least one
R is arefinement preserving if for all G, G’ such that g
G ® G’ then either botfR (G)T andR(G’)T or bothR(G)|
andR(G")| andR(G) © R(G’).

T transition while== means zero or moretransitions).
Given this notation, weak bisimulation is obtained from
strong bisimulation by allowing a transition of the form

The preservation under refinement of the two relations — to be simulated by a transitio-. Two processes are
! and --» is sufficient for guaranteeing the preservation weakly bisimilar on low actions when they are weakly
under refinement of thig)(«~!, --+) property. bisimilar if we consider only low actions.

Theorem 4.3 Let -~/ and --» be two binary relations on Definition 4.5 (Weak Bisimulation on Low Actions) A

ExEandF € W(!, --»). If Ris arefinement preserving binary relationR C & x £ over processes isweak bisim-

both~! and--» andR(F)], thenR(F) € W(A!, --»). ulation on low actionsif (E,F) € R implies, for all
N a€e€ LU{r},

The next lemma _shows _that t_he composition of two re- Lif E% B’ then3d F’ such thatf =% F and(E', F')€R:

finements preserving a given binary relation still preserve a

the same relation. That offers us a condition to preserve”If £'— F”, thend E’ such that? = E’ and(E", F') € R.

W(!, --») under subsequent refinements. Two processe& andF' areweakly bisimilar on low actions
denoted byF ~!, F, if there exists a weak bisimulation on

Lemma 4.4 Let ® be a binary relation o& andR; and low actionsR containing the paifE, F).

R4 be two refinements preservirg ThenR; o R is still

a refinement preserving. Definition 4.6 (BNDC)LetE € £. E € BNDC if VII €

Em, E ~Y (E).
4.2. Properties based on Unwinding Conditions
The propertie$®_ BNDC, SBNDCandCP_BNDC are all

Many security properties can be characterized as suitableSufficient conditions foBNDC. Moreover, differently from
instances of our generalized unwinding condition as shownBNDG, they arepersistentn the sense that if a process
in [2] Here we Consider both properties based on bisimu_ satisfies one of them then all states rechable fEBﬁ“Sfy
lation (named P_BNDC, SBNDC, and CP_BNDC') and it. Here we define the three security properties as instances
properties based on trace equiva|ence (narﬂH@C) The of our generalized UnWinding condition. Clearly, since we

first three properties implies the well-knoBNDC prop- ~ are considering processes which are weakly bisimilar on
erty [4] while the last one implieDC [4] (or, equivalently, ~ low actions the relation-' is instantiated by~};. As re-
NF [20]) and, in the deterministic caseSP[23]. gards--», it varies according to the different requirements.

The security property calledPersistentBNDC [7]
(P_BNDC, for short), which is suitable for analyzing sys-
tems in dynamic execution environments, requires that
Each of the three properties based on bisimulation we con-whenever a staté of a P.BNDC process may execute a
sider in this section implyBisimulation based Non De- high level action moving to a stat&, thenF" should be also
ducibility on Composition(BNDC, for short), a security able to simulate such high move through a sequence of zero
property introduced in [4] which aims at guaranteeing that or morer moving to a stat€’ which is equivalent td. for
no information flow from the high to the low level is possi- a low level user. Thus,
ble, even in the presence of malicious processes. It is based

4.2.1 Bisimulation based Security Properties

7

on the idea of checking the system against all high level po- E € P.BNDC <= FE cW(x4,=)
tential interactions, representing every possible higlelle
malicious program. In particular, a systefhis BNDC if As stated Igy Theorem 4.3, any refinement preserving

for every high level procesH a low level user cannot dis- poth le and== preserves alsB_BNDC.
tinguish E from (E|1I).

The low level observation of a process is formalized in Corollary 4.7 Let F' € £ be aP_.BNDC process. IfR is a
terms ofweak bisimulation on low actionsVeak bisimu- refinement preserving botkl, and == andR(F) |, then
lation is similar to strong bisimulation, but it does not&ar R (F)is P.BNDC,
about internal actions. It is useful to introduce some no-

tation: we writeE == E’ if B(5)* & (D) ... (5)* 2 Example 4.8 We consider again the memory céll_z de-
(Z)*E’, where(=)* denotes a (possibly empty) sequence fined in Example 2.1. We noticed that such a process is
of 7 labelled transitions. If € Act*, thent € £* is the se- insecure because of a direct information flow. This fact is

guence gained by deleting all occurrences fom+¢. As a correctly revealed bi?>_BNDC.

In Example 3.5, we observed that this flaw can be re-

paired by refining the memory cell into a high and a low
memory cell, defined as processkg’ = and M'_z, re-
spectively. It is easy to see that" .0 € P_BNDC. First,
notice thatM"_0 ~! M"_1, since there is no way for a

low level user to distinguish between the two states. As
a matter of fact, the only possible low level actions are the

two write operationsy; -0, w; 1 which, both in}M/"_0 and in

M"_1, move the system into the same states. The fact tha

M'.0 € P_.BNDC is even easier to prove: the only high
level actionsy, 0, 7, -1 do not change the system state.

We have proved that high and low level cells are secure.

It is now interesting to study how this property is preserved

by further refining the processes. To this aim we apply The-

orem 4.7. Notice that neitheéw/”_0 nor M'_0 perform any

T transitions, thus the only condition that we should care

about is that the refinement preserve. As a conse-

Corollary 4.9 Let F' € £ be aSBNDCprocess. IfR is a
refinement preserving; andR(F) |, thenR(F) is SB-
NDC.

Both P_.BNDC and SBNDCare compositional with re-
spect to almost all the SPA operators but they are not com-
positional with respect to the nondeterministic choice op-
erator. This is not much surprising since security prop-

terties are, in general, not preserved under composition

[16]. However, compositionality results are crucial forkna
ing the development of large and complex systems feasi-
ble [17, 18, 15]. The interest in the class Gbmposi-
tional P.BNDC processesGP_-BNDC, for short) derives
from the fact that it is fully compositional (i.e., it is com-
positional also with respect to the nondeterministic capic
CP_BNDC can be defined as follows (see [2]):

E € CP_.BNDC <= FE c W(x%,==)

guence, removing high level actions does not affect the se-

curity of the two systems. For example, if we allow the high

level user to only reset the cell valuedby removing the

wy,_1 . M"_1 branch), the resulting process is still secure.
On the other hand, modifications of low behavior should

be performed coherently in all equivalent states. For exam-

ple, the refinement

def N" 04w, 0. N" 04w, 1.N"1

N1+ w, 0. N".0+w,1.N"1
.N"0

N"0
NP1

rh_O

def ——=
= rh-1

+ w0
in which the low level user can reset@dhe high level cell,
only when the cell contains valuk (notice that inN"_0

no low level write operations are allowed) is not preserving
~L,. Itis easy to see that" 0 ¢ P_BNDC. The fact that
N"_0 is notP_.BNDC reveals a slightly subtle information
flow due to the fact that a low level user may track the con-
tent of the high level cell by trying to reset it: every timeth

Corollary 4.10 Let I’ € £ be aCP-.BNDCprocess. IfR is
a refinement preserving bot, and== andR(F)|, then
R(F) is CP.BNDC,

Example 4.11 As mentioned above, the P_.BNDC prop-

erty has been proposed to obtain full compositionality with
respect to SPA operators. We show this feature by consid-
ering a non-deterministic composition of the high and low
memory cells of Example 3.5. In particular we consider
memory cellM" _0 that, after the first computational step,
behaves as eithéd"_0 or M'_0.

MM 0% Mo+ Mo

Intuitively, this process should be secure since we have
proved that both\/"_0 and M'_0 are secure but, quite sur-
prisingly, this is not the case. Consider the execution of a
high level write actionw;, 0. This moves the wholé/"_0

system talM " _0 (notice that)/!_0 does not accept the high

reset succeeds the low level user can conclude that the Ce|I|eveI inputwy, 0). The problem is that a low level user can

contained valué. A correct refinement achieving the same
low level reset behavior described above, should include th
branchw,;_0 . N"*_0 also inN"_0.

The propertyStrong BNDQSBNDGC for short) has been
introduced in [4] as a sufficient condition for verifying
BNDC. It just requires that before and after every high step,

observe this move by trying to write some value into the
memory cell. As a matter of fact, sinde”_0 does not
accept low level inputs, the low level user can deduce that
some high level action has been performed.

This indirect information flow can be exploited to build
a so calledcovert-channelsee, e.g., [5] for more detail).

Formally, the movelZ 0 “25° A" 0 cannot be simulated

the system appears to be the same, from a low level per-by M"_0 thus proving thaf\/"_0 is neitherP_BNDC, SB-

spective. It is stronger thad.BNDC and it can be defined
through unwinding conditions as follows (see [2]).

=)

where= is the identity relation on processes.

E € SBNDC <= E c W(~,

NDC nor CP_.BNDC.

This problem can be corrected by making"_0 and
M'_0 CP_BNDC, since CP_BNDC is compositional with
respect tot+ operator. To correct the processes it is enough
to add ar-loop in the initial state, i.e., & . M"_0 and
ar . M'.0 branch inM"_0 and M'_0, respectively. It

If a refinement preserves the low level observation of a is easy to prove that these modifidd”_0 and M'_0 are

process, it preserves tiEBNDCsecurity property.

CP_BNDC. By compositionality results we thus obtain that

M" _0 is now CP_.BNDC. Notice that the problem of sim- Definition 4.13 (NDC)LetE € £. E € NDC if VII ¢

ulating the moveM™ 0 “5° M"_0 is now solved by per- £, E =~ (E[TD).

forming ther of the added- . M"_0 branch. In particular

we have tha/" .0 5 M" 0. By instantiating our generalized unwinding condition
Finally, by Corollary 4.10, we obtain that every refine- with the trace equivalence on low actions and the identity,

ment of these newk/"_0 and M' 0, that preserves’,;, as ~ We obtain the following propertyStrong NDC(SNDG for

already discussed in Example 4.8, and that also preserve§hort). It provides a sufficient condition f&DC.

ther-loops, always give€P_BNDC processes.
SNDC = W(~4, =)

4.2.2 Traces based Security Properties Proposition 4.14 Let E € €. If Eis SNDCthenE isNDC.

qu_JivaIence gnder bisimulation is too dem_anding whgn se- As for the other properties it is easy to identify a suffi-
curity properties related to protocol analysis are conside cjent condition to be satisfied by our refinement operators in

[6]. Actually, most of the security properties that haverbee order to preserve the persistent traces based security prop
proposed for the analysis of security protocols are based orerty SNDC

the notion of trace equivalence: two processes are equiv-

alent if they exactly show the same execution SequenceSCorollary4 15 Let F € £ be aSNDCprocess. IfR be a

(called traces). In this gection we recall the definitiorved t refinement preserving’,., thenR (F) is aSNDCprocess.
information flow security propertief\\DC ([4]) and PSP

([23]), defined in terms of the set of traces of processes.
We introduce the security properSNDChby means of an
unwinding condition. Similarly toSBNDCfor BNDC it
provides a sufficient condition fadDC. We show how to
preserveNDC under refinement. Finally, we derive a suffi-
cient condition forPSPand provide a condition to preserve ~ NOW we turn our attention to theerfect Security Prop-
it under refinement. erty (PSR for short) which has been proved [23] to be the
Thetrace equivalenceelation, denoted by, equates weakest property to ensure no information can flow from

two processes if they have the same sets of traces withouf!i9h level users to low level users. In [14] this property is

considering the- actions, where the set of traces associated d€fined as follows.

with a proces¥ is Tr(E) = {t € £* | 3E' : E == E'}. o _

Trace equivalence is less demanding than weak bisimula-P€finition 4.17 (PSP)Let E € £. I € PSP if

tion since it does not require a step by step mutual simu--forallt € Tr(E) ¢, € Tr(E); and .

lation. For example.0 anda.0 + 7.0 are trace equivalent - for all Sa € Tr(E) with a € L, and for allh € H, if

(the only trace i%) but they are neither weakly nor strongly 57 € Tr(E), thenfha € Tr(E);

bisimilar. The first process cannot simulate the deadlock Wheret|, denotes the sequence obtained fridny deleting

state reached through the intermaction. Itis instead easy ~ all the occurrences of high level actions.

to see that if two processes are weakly bisimilar, then they

are also trace equivalent. We can always associate to any procEssdeterministic
The Non Deducibility on CompositiofNDC, for short) ~ Processiet(E) having the same set of traces. Requiring the

property has been introduced in [4] as the property corre- conditionSNDCon det(E) we get a sufficient condition for

sponding toBNDC when trace equivalence is used instead £ being inPSP

of bisimulation. It has been proved to be equivalemaon-

interference (NFYefined in [20]. In particular, the notion Proposition 4.18 Let E € . If det(E) is SNDC, thenE

of low observation of a process with respect to trace equiv-is PSP

alence is the following.

Example 4.16 Letv € £ andR,, be the refinement such
thatR\,(E) = E \ v. ThenR is a refinement preserving
the low observations for trace equivalence, k&,

Thus, by applying Corollary 4.15 we obtain a sufficient
Definition 4.12 (Trace Equivalence on Low Actions}or condition for the preservation &fSPunder refinement.
any processt € &, we denote byT'r!(E) the set of
low traces associated with which is defined as follows: Corollary 4.19 Let F' € £ be a process satisfyirgSPand
TrY(E) = {t € L* |3E' : E SN E'}. Two processes such thatdet(F) € SNDC Moreover, letR be a refine-
E and F aretrace equivalent on low actionslenoted by ~ ment preserving-}. and commuting withiet (i.e. such that
E~L F,if TrY(E) = Tr'(F). R(det(F)) = det(R(F))). ThenR(F) satisfiesPSP

5. Conclusion and Related Works and [14], requires that refinement preserves some relations
between processes. However, differently from what we do,

In this paper we presented a new notion of refinement for only traces are considered.

processes described as terms in the Security Process Alge-
bra (SPA). We proved some basic important properties like References
incrementality of the refinement process and composition-
ality with respect to SPA operators. Moreover, we showed [1] D. E. Belland L. J. L. Padula. Secure computer systems:
how to check preservation under refinement for a variety of Unifiéggxggfi;igngggdﬁg?,\i;ﬁp;gtga;iofgg?cr'nica' Re-
: ; ; P or -TR-75- - .
information f'OYV properties proposed in literature. [2] K Bossi, R. Focardi, ‘C. Piazza, and S. R’ossi. Bisimulation
Paper [14] is undoub'_[edly very relate.d. to our work. I.n and Unwinding for Verifying Possibilistic Security Proper-
such a paper, Mantel gives some conditions under which ties. InL. D. Zuck, P. C. Attie, A. Cortesi, and S. Mukhopad-
refinement preserves information flow properties. There hyay, editorsProc. of Int. Conference on Verification, Model
are, however, appreciable differences with our work: First Checking, and Abstract Interpretation (VMCAI'Q3plume
we consider systems expressed in a process calculus, while 2575 ofLNCS pages 223-237. Springer-Verlag, 2003.
Mantel consider event systems; more importantly, we focus [3] R. Focardi. Comparing Two Information Flow Security
our attention to bisimulation-based properties while Man- Properties. InProceedings of CSFW'9fpages 116-122.
tel only considers trace-based models; more specifically, IEEE press, June 1996.

i 1141 it i d that h det inisti [4] R. Focardi and R. Gorrieri. A Classification of Security
in [14] it is assume al processes have a aeterministic Properties for Process Algebradournal of Computer Se-

transition system while here processes may show any non- curity, 3(1):5-33, 1994/1995.

deterministic behavior. Due to these differences, theonoti [5] R. Focardi and R. Gorrieri. Classification of Security Prop-
of refinement we propose is quite different with respect to erties (Part |: Information Flow). In R. Focardi and R. Gor-
the one of [14], where refinement is simply formalized as rieri, editors,Foundations of Security Analysis and Design
trace inclusion. Our generalized unwinding condition is in volume 2171 oL NCS Springer-Verlag, 2001.

deed a generalization of the one proposed in [14] and, in [6] R. Focardi and F. Martinelli. A Uniform Approach for the
Section 4.2.2, we have shown that some of Mantel's results ~ Definition of Security Properties. In J. Wing, J. Woodcook,
T . and J. Davies, editor®roc. of World Congress on Formal
can be givenas mst_ances of our gene_ral refinement theorem. Methods (FM'99) volume 1708 olLNCS pages 794-813.
_ Another interesting related Wor!< is [12], Whe_re_ Lowe Springer-Verlag, 1999.
gives a new non-interference notion for quantifying the [7] R. Focardi and S. Rossi. Information Flow Security in Dy-

amount of information-flow in a system described as a CSP namic Contexts. IProc. of the 15th IEEE Computer Secu-
process. The proposed notion is based on the NDC prop- rity Foundations Workshqppages 307-319. IEEE Computer
erty considered here. Quite interestingly, Lowe observes Society Press, 2002.

[8] J. A. Goguen and J. Meseguer. Security Policies and Secu-

that NDC is not closed under CSP refinement, and he solves)] :
rity Models. InProc. of the IEEE Symposium on Security

th'? prob_lem by requiring, for a _System to be. secure, that al and Privacy pages 11-20. IEEE Computer Society Press,
of its refinements are secure (i.e., by closing the property 1982

under refinement). Here, we take the dual approach of im- (9] 3. Graham-Cumming and J. W. Sanders. On the Refinement

posing constraints on refinements, instead of strengtgenin of Non-Interference. IiProc. of the IEEE Computer Secu-
the security properties. It would be interesting to seedf th rity Foundations Workshgppages 35-42. IEEE Computer
notion of information-flow of [12] can be revisited by con- Society Press, 1991.

sidering only “secure” refinements, as done in this work. ~ [10] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke.
Other important works on refining non-interference are Computing simulations on finite and infinite graphs. In

[11, 21, 22, 9]. As observed in [14], in [11] it is given a IEgi;ggnpOSIum‘lgg zgtzjnfgggns of Computer Science
method for making a specification secure after it has been [11] S Jacob. ())gatﬁgsDeriv;.tionlof Secure Component&rde.
sufficiently refined. This differs by our approach where of the IEEE Symposium on Security and Priyamges 242—
we intend to prove non-interference guarantees at the be- 247. IEEE Computer Society Press, 1989.

ginning of the refinement process. In [21], instead, confi- [12] G.Lowe. Quantifying Information Flow. IRroc. of the 15th
dentiality statements are proved from scratch after refine- IEEE Computer Security Foundations Workshpages 18-
ment, i.e., there is no result of preservation of confidéntia 31. IEEE Computer Society Press, 2002.

. oo . K :« [13] H.Mantel. Possibilistic Definitions of Security - An Assebly
ity. In [22], it is given a notion of non-interference that is Kit -. In Proc. of the IEEE Symposium on Security and Pri-

preserved under C.SP refm.emem' Differently from our ap.- vacy, pages 185-199. IEEE Computer Society Press, 2000.
proach, such a notion requires that processes are determinri4) H. Mantel. Preserving Information Flow Properties under
istic from a low level point of view. A detailed comparison Refinement. IrProc. of the IEEE Symposium on Security
between NDC-like properties and the notions proposed in and Privacy pages 78-91. IEEE Computer Society Press,
[22] can be found in [3]. Paper [9], similarly to our work 2001.

[15] H. Mantel. On the Composition of Secure SystemsPioc.
of the IEEE Symposium on Security and Privgmges 88—
101. IEEE Computer Society Press, 2002.

[16] D.McCullough. Specifications for Multi-Level Security and
a Hook-Up Property. IRProc. of the IEEE Symposium on Se-
curity and Privacy pages 161-166. IEEE Computer Society
Press, 1987.

[17] J. McLean. A General Theory of Composition for Trace Sets
Closed under Selective Interleaving Functions.Phoc. of
the IEEE Symposium on Security and Privgzyges 79-93.
IEEE Computer Society Press, 1994.

[18] J. McLean. A General Theory of Composition for a Class
of “Possibilistic” Security Propertie$EEE Trabsactions on
Software Engineering22(1):53-67, 1996.

[19] R. Milner. Communication and Concurrencirentice-Hall,
1989.

[20] C. O’Halloran. A Calculus of Information Flow. IRroc. of
the European Symposium on Research in Security and Pri-
vacy, pages 180-187. AFCET, 1990.

[21] C. O’Halloran. Refinement and Confidentiality. Pmoc. of
the 5th Refinement Workshgrages 119-139, 1992.

[22] A. W. Roscoe, J. C. P. Woodcock, and L. Wulf. Non-
Interference through Determinism. Rroc. of the European
Symposium on Research in Computer Secwijume 875
of LNCS pages 33-53. Springer-Verlag, 1994.

[23] A. Zakinthinos and E. S. Lee. A General Theory of Secu-
rity Properties. IrProc. of the IEEE Symposium on Security
and Privacy pages 74-102. IEEE Computer Society Press,
1997.

