
Refinement Operators and Information Flow Security∗

Annalisa Bossi, Riccardo Focardi, Carla Piazza, Sabina Rossi
Dipartimento di Informatica - Università Ca’ Foscari di Venezia

e-mail:{bossi,focardi,piazza,srossi}@dsi.unive.it

Abstract

The systematic development of complex systems usually
relies on a stepwise refinement procedure from an abstract
specification to a more concrete one, that can finally be im-
plemented. The use of refinement operators preserving sys-
tem properties is clearly essential since it avoids properties
to be re-investigated at each development step.

In this paper we formalize the notion ofrefinementfor
processes described as terms of the Security Process Alge-
bra (SPA). We consider several information flow security
properties and provide sufficient conditions under which
our refinement operators preserve such security properties.
Finally, we study how refinements can be composed still
preserving the security of the system.

1. Introduction

In the recent years, security has gained more and more
importance. As a matter of fact, many critical applications
like, e.g., e-commerce, require high degrees of reliability
and protection against external attacks. In a stepwise devel-
opment process, it is important to consider security related
issues from the very beginning. Indeed, considering secu-
rity only at the implementation phase could lead to a poor
protection or, even worst, could make it necessary to restart
the development process from scratch. On the other hand,
taking into account security from the abstract specification
level, better integrates it in the whole development process,
possibly driving some of the development choices.

A security-aware stepwise development, of course, re-
quires that the security properties of interest are preserved
during the development steps, until a concrete (i.e., imple-
mentable) specification is obtained. Thus, thisrefinement
task should be carefully designed so that (also) security
properties are preserved from the very abstract initial spec-
ification to the final one.

∗This work has been partially supported by the MURST project “Mo-
delli formali per la sicurezza” and the EU project IST-2001-32617 “Models
and Types for Security in Mobile Distributed Systems” (MyThS).

In this paper we focus oninformation flowproperties
(see, e.g., [8, 4, 5, 7, 13, 22]), i.e., security properties that
allow to express constraints on how information should flow
among different groups of entities. These properties are
usually formalized by considering only two groups of en-
tities labelled with two security levels:high (H) and low
(L). The only constraint is that no information should flow
from H to L. For example, this security model can be ap-
plied to guarantee confidentiality in a system: it is sufficient
to label every confidential (i.e., secret) information withH

and then partition each system user asH andL, depend-
ing on whether such a user is or is not authorized to access
confidential information. The constraint of no information
flow from H to L guarantees that no access to confidential
information is possible byL-labelled users.

Unfortunately, as noticed in [14], most information flow
properties are not preserved by usual refinement operators.
This can be understood by noticing that the absence of in-
formation flow is usually formalized as anon-interference
constraint [8]. The absence of information flow fromH to
L is achieved by requiring something intuitively stronger:
what is done by entities operating at levelH should never
be observable by entities operating at levelL. More suc-
cinctly, levelH should neverinterferewith level L. This
non-observability of high level events cannot be expressed
as a property of single execution sequences. Instead, it is
captured by requiring that each high level event moves the
system into a state that behaves the same as before from a
low level point of view. It is clear that if we refine the sys-
tem by modifying the low level behaviour of some of such
system states, we could invalidate this low level behavioural
invariant, thus invalidating the non-interference constraint.

In this work, we propose a new notion of refinement for
processes described through theSecurity Process Algebra
(SPA). For this new notion we prove some interesting prop-
erties:(i) it is incremental, i.e., subsequent refinements are
still a refinement;(ii) it is compositional with respect to
SPA operators, i.e., it is possible to refine a process by re-
fining its subcomponents.

Then, we consider a number of information flow proper-
ties proposed in literature and we express them through the

following generalized unwinding condition:

∀ stateS if S
h
→ S′ thenS 99K S′′ andS′

∽
l S′′ (1)

Intuitively, when a high level actionh is performed mov-
ing from S to S′, thenS should be able to simulate such a
move by moving to a stateS′′ which is equivalent toS′ from
a low level point of view. Condition (1) is parametric with
respect to the simulating transition relation99K and the low
level behavioural equivalence∽l. We show that, by plug-
ging different relations and equivalences, we capture many
different existing information flow properties.

This general form for expressing non-interference allows
us to state a general refinement theorem: every refinement
that preserves both99K and∽

l preserves also condition (1).
This theorem proves that every non-interference property
expressed using (1) is invariant with respect to any refine-
ment that preserves the two specific relations99K and∽

l

used to express the property.
The paper is organized as follows: in Section 2 we

present the SPA calculus; in Section 3 we introduce the
new refinement notion and we prove some general re-
sults on it; in Section 4 we give the generalized un-
winding condition, together with the main refinement re-
sult, and we instantiate it to many existing information
flow security properties; finally, in Section 5 we com-
pare our work with existing literature and we give some
concluding remarks. Along the paper, a simple run-
ning example of a binary memory cell is used to show
how the refinement and security notions work. All the
proofs can be found in the Technical Report available at
http://www.dsi.unive.it/∼bossi/sefm03TR.ps.

2. The SPA Language

In this section we report the syntax and semantics of the
Security Process Algebra(SPA, for short) [5].

The Security Process Algebra[5] is a variation of Mil-
ner’s CCS [19], where the set of visible actions is parti-
tioned into high level actions and low level ones in order
to specify multilevel systems. SPA syntax is based on the
same elements as CCS that is: a setL of visibleactions such
thatL = I∪O whereI = {a, b, . . .} is a set ofinputactions
andO = {ā, b̄, . . .} is a set ofoutputactions; a special ac-
tion τ which models internal computations, i.e., not visible
outside the system; a complementary function·̄ : L → L,
such that̄̄a = a, for all a ∈ L. Act = L ∪ {τ} is the set of
all actions. The set of visible actions is partitioned into two
sets,H andL, of high and low actions such thatH = H

andL = L. We will useh to denote a generic high level ac-
tion, andl to denote a generic low level action. The syntax
of SPAprocesses(or systems) is defined as follows:

E ::= 0 | a.E | E + E | E|E | E \ v | E[f] | Z

wherea ∈ Act , v ⊆ L, f : Act → Act is such that
f(ᾱ) = f(α), f(τ) = τ , f(h) ∈ H ∪ {τ} for h ∈ H,
andf(l) ∈ L∪ {τ} for l ∈ L, andZ is a constant that must

be associated with a definitionZ
def
= E.

Intuitively, 0 is the empty process that does nothing;a.E

is a process that can perform an actiona and then behaves as
E; E1 +E2 represents the nondeterministic choice between
the two processesE1 andE2; E1|E2 is the parallel compo-
sition ofE1 andE2, where executions are interleaved, pos-
sibly synchronized on complementary input/output actions,
producing an internal actionτ ; E \ v is a processE pre-
vented from performing actions inv; E[f] is the processE
whose actions are renamedvia the relabelling functionf .

We denote byE the set of all SPA processes and byEH

the set of all high level processes, i.e., those constructed
only using actions inH ∪ {τ}.

The operational semantics of SPA processes is given in
terms of aLabelled Transition System(LTS, for short). A
LTS is a triple (S,A,→) whereS is a set of states,A is
a set of labels (actions),→⊆ S × A × S is a set of la-
belled transitions. The notation(S1, a, S2) ∈→ (or equiv-
alently S1

a
→ S2) means that the process can move from

the stateS1 to the stateS2 through the actiona. The oper-
ational semantics of SPA is theLTS(E ,Act ,→), where the
states are the terms of the algebra and the transition relation
→⊆ E × Act × E is defined by structural induction as the
least relation generated by the inference rules depicted in
Figure 1. The operational semantics for a processE is the
subpart of the SPALTSreachable from the initial state.

The transition relation→ is generalized to many steps as
expected: Ift = a1 · · · an ∈ Act

∗ andE
a1→ · · ·

an→ E′,

then we say thatE′ is reachable fromE and writeE
t
→ E′.

Reach(E) denotes the set of processes reachable fromE.
We say thatE is a finite state process ifReach(E) is finite.

Example 2.1 We consider an abstract specificationM x of
a binary memory cell.M x contains the binary valuex and
is accessible, by high and low users, through the four oper-
ationsrh, wh, rl, wl representing a high read, a high write,
a low read and a low write, respectively. Each operation
is implemented through two different actions, one for each
binary value. For example we writewh 0 andwh 1 to indi-
cate a high level user writing value0 and1, respectively.1

M x
def
= rh x . M x + wh 0 . M 0 + wh 1 . M 1

+ rl x . M x + wl 0 . M 0 + wl 1 . M 1

Notice that read (write) operations are modelled as outputs
(inputs). In particular, processM x can send the stored

1The following expression forM x is indeed a definition scheme: the
actual processesM 0 andM 1 are obtained by replacingx with 0 and1,
respectively.

−

a.E
a
→ E

E1
a
→ E′

1

E1 + E2
a
→ E′

1

E2
a
→ E′

2

E1 + E2
a
→ E′

2

E1
a
→ E′

1

E1|E2
a
→ E′

1|E2

E2
a
→ E′

2

E1|E2
a
→ E1|E

′
2

E1
a
→ E′

1 E2
ā
→ E′

2

E1|E2
τ
→ E′

1|E
′
2

a ∈ L
E

a
→ E′

E \ v
a
→ E′ \ v

if a 6∈ v
E

a
→ E′

E[f]
f(a)
→ E′[f]

E
a
→ E′

Z
a
→ E′

if Z
def
= E

Figure 1. The operational rules for SPA

valuex through the two output actionsrh x andrl x. More-
over, write operations are performed by accepting an input
wh y andwl y (with y ∈ {0, 1}) and moving toM y, i.e.,
storingy into the memory cell. The operational semantics
of processesM 0 andM 1 is depicted in Figure 2.

Notice thatM 0 andM 1 are totally insecure processes.
As a matter of fact, no access control is implemented and
a high level malicious entity (e.g., a Trojan Horse program)
may write confidential information into the memory cell,
throughwh 0, wh 1. This information can be then read
by any low level user throughrl 0, rl 1. Information flow
properties in Section 4 will aim at detecting this kind of
flaws, even in more subtle and interesting situations.

The concept ofbehavioural equivalenceis used to establish
equalities among processes and it is based on the idea that
two processes have the same semantics if and only if their
behavior cannot be distinguished by an external observers.
We report here a largely used equivalence, named (strong)
bisimulation[19], which equates two processes when they
are able to mutually simulate their behavior step by step.

Definition 2.2 (Strong Bisimulation) A binary relation
R ⊆ E × E over processes is astrong bisimulationif
(E,F) ∈ R implies, for alla ∈ Act ,
- if E

a
→ E′, then∃F ′ such thatF

a
→ F ′ and(E′, F ′) ∈ R;

- if F
a
→ F ′, then∃E′ such thatE

a
→ E′ and(E′, F ′) ∈ R.

Two processesE andF arestrongly bisimilar, denoted by
E ∼B F , if there exists a strong bisimulationR containing
the pair(E,F).

In Section 4 we will give other (weaker) notions of be-
havioural equivalence that will be useful for defining secu-
rity properties.

3. Refinement Operators

In this section we give a new notion of refinement for
SPA processes. Intuitively, an abstract specification (given
here as a SPA system) defines the set of possible (allowed)
behaviours of a system. Refining a specification corre-
sponds to choosing among these allowed behaviours, the
ones that will be actually implemented. The idea is that

a refined specification should never show behaviours that
were not foreseen in the initial specification. To formalize
this idea, we require that(i) each state of the abstract speci-
fication is refined to, at most, one state of the more concrete
(i.e., refined) specification;(ii) the behavior of the refined
states is simulated by the abstract states, i.e., it should al-
ways be possible to simulate an action performed by a re-
fined state by the corresponding abstract state, and the two
reached states should be still one the refinement of the other.

Refinement is formalized as a partial function from pro-
cesses. A binary relationR is said to be apartial function
when if both(x, y) ∈ R and(x, y′) ∈ R theny andy′ are
equal. IfR is a partial function we use the notationR(x)↓
to denote the fact that there existsy such that(x, y) ∈ R. In
this case we also use the notationR(x) to refer toy. Sim-
ilarly we denote byR(x)↑ the fact that there is noy such
that(x, y) ∈ R. R−1 indicatesthe converse relationof R,
i.e.,R−1 = {(y, x) | (x, y) ∈ R}.

To express the fact that the refined process should be sim-
ulated by the abstract one, we adopt the following notion.

Definition 3.1 (Simulation) A binary relationS ⊆ E × E
over processes is asimulationif (E,F) ∈ S implies, for all
a ∈ Act , if E

a
→ E′, then there existsF ′ such thatF

a
→ F ′

and(E′, F ′) ∈ S.
We say that the processE is simulated bythe processF ,
denoted byE ≤ F , if there exists a simulationS containing
the pair(E,F).

The relation≤ is a preorder, i.e., it is reflexive and transi-
tive. Notice that, if a relationS is such that bothS andS−1

are simulations, thenS is a strong bisimulation.
We now introduce our formal definition of refinement.

Definition 3.2 (Refinement)A binary relationR ⊆ E × E
over processes is arefinementif

• R−1 is a simulation and

• R is a partial function fromE to E .

We say thatE is a refinement ofF , denoted byE � F , if
there exists a refinementR such thatR(F) = E.

r _0
h

M_1M_0

r _0
l

h
r _1

w _1w _1
 h l

w _0 w _0
h l

r _1
l

Figure 2. The operational semantics of the memory cell M x.

The following example shows the difference between the
notions of simulation and refinement. The condition thatR
is a (partial) function is useful to ensure that the refined pro-
cess shows behaviors that are also shown by abstract one.

Example 3.3 Consider the processesF1
def
= a.b.0 and

F2
def
= a.0 + a.b.0. Although bothF1 ≤ F2 andF2 ≤ F1,

we have thatF1 is a refinement ofF2 (F1 � F2), but
not viceversa (F2 6� F1). Indeed, it is easy to prove that
R = {(F2, F1), (b.0, b.0), (0,0)} is a refinement, thus
F1 � F2. On the other hand, in order to haveF2 � F1

we should consider a relationR′ such thatR′−1 is a sim-
ulation containing the pair(F2, F1). SinceF2 moves both
to b.0 and to0 by performinga, andF1 can only simulate
this move by moving intob.0, thenR′−1 should contain (at
least) the pairs(b.0, b.0) and(0, b.0). As a consequenceR′

cannot be a function sinceb.0 is mapped into two different
processes. This proves thatF2 6� F1.

It is worth noticing that our notion of refinement is decid-
able for the class of processes we are considering. In fact,
for finite states processes both the requirements in definition
3.2 are decidable. Moreover, the complexity of the decision
procedure is bounded by the complexity of checking if a
processF simulates another processE. This can be done
in O(n × m), wheren is the total number of states of the
two LTS’s associated toE andF , andm is the total number
of arcs (see [10]).
The following proposition follows immediately from the
definition of refinement. It states that a sequence of actions
performed by a refined state can always be simulated by the
corresponding abstract state, and the two reached states are
(still) one the refinement of the other. This is what we ex-
pected by our definition: all the behaviours of the refined
process are simulated by the abstract process.

Proposition 3.4 Let E,F ∈ E , E � F andR be a refine-

ment such thatR(F) = E. If E
t
→ E′ with t ∈ Act

∗, then

there existsF ′ such thatR(F ′) = E′ andF
t
→ F ′.

Example 3.5 Consider again the memory cellM x of Ex-
ample 2.1. We noticed that such a process is not secure as a
direct information flow from high to low level is possible.

A standard way to protect confidential data is to apply the
multilevel security model of [1]. First, we need to assign a
security level to any information containers (calledobjects);
then the following access control rules are imposed:(i) no
low level user can read from high level objects;(ii) no high
user can write into low level objects. Indeed, these are the
only two (direct) ways for leaking confidential information.

M x can be refined both into a high level cellMh x, by
eliminating any low level read operation (rule(i)),

Mh x
def
= rh x . Mh x + wh 0 . Mh 0 + wh 1 . Mh 1

+ wl 0 . Mh 0 + wl 1 . Mh 1

and into a low level cellM l x, by eliminating any high level
write operation (rule(ii)):

M l x
def
= rh x . M l x + rl x . M l x

+ wl 0 . M l 0 + wl 1 . M l 1

It is easy to see thatMh x � M x andM l x � M x,
for eachx ∈ {0, 1}, by considering the following two re-
finements:R = {(M 0,Mh 0), (M 0,Mh 1)} andR′ =
{(M 0,M l 0), (M 0,M l 1)}.

In Section 4, we will show how to prove thatMh x and
M l x are secure, i.e., that they do not allow any information
flow from high to low level.

The next theorem states that the composition of two re-
finements is still a refinement. We denote by◦ the partial
function composition, i.e.,(R1 ◦ R2)(F) = R2(R1(F))
if R1(F)↓ and(R1 ◦ R2)(F)↑ if R1(F)↑. This guaran-
tees that our notion of refinement can be used in a stepwise
refinement construction of a process.

Theorem 3.6 Let R1 andR2 be two refinements. Then
R1 ◦ R2 is still a refinement.

Hence,� is a transitive relation. Since it is immediate to
prove that� is reflexive, we get that� is a preorder.

Using Definition 3.2 we can introduce refinements which
sound counter-intuitive, e.g., a refinementR with R(F)↓,
R(F ′) ↓, and such thatF reachesF ′ but R(F) does not
reachR(F ′).

Example 3.7 Let F ≡ a.b.c.0 + a.0 and E ≡ a.0.
We have thatE is a refinement ofF . A relation R
which proves thatE refines F is the following R =
{(F,E), (c.0, c.0), (0,0)}. This refinement is not intuitive,
since it “does not preserve the reachability on its domain”.
A more natural refinement would beR′ = {(F,E), (0,0)}.

The following proposition states that if a processE refines a
processF , there exists a refinementR(F,E) which behaves
“correctly” with respect to the notion of reachability.

Proposition 3.8 Let E,F ∈ E be two processes. IfE � F

andR is a refinement containing the pair(F,E), then the
relation R(F,E) = R∩ (Reach(F) × Reach(E)) is
a refinement such that:R(F,E)(F) = E and ifR(F,E)(F

′)↓,
thenF ′∈ Reach(F) andE′∈ Reach(E).

Let RF be the set of processesE such thatE � F . Since
� is a preorder onE , � induces a preorder onRF .

Notice that� is not a partial order since it is not anti-
symmetric, as shown in the following example.

Example 3.9 Let F = a.b.0 andF ′ = a.b.0 + a.b.0. In
this case bothF ′ � F andF � F ′.

If F is a finite state process andE is such that bothF re-
finesE and vice-versa, thenF andE are strongly bisimilar.
This result does not hold for infinite state processes.

Proposition 3.10 Let F,E ∈ E , with F finite state. IfF �
E andF ′ � E, thenF ∼B E.

Proposition 3.10 implies that ifF is a finite state process,
� induces onRF , up to strong bisimulation, a partial order
with top elementF and bottom element0. This agrees with
our intuition thatF is the “largest” refinement forF .

Some natural refinements can be obtained by applying
the basic CCS operators. In particular, the operation of re-
striction can be used to build refinements.

Example 3.11 For all processE and for all set of actions
v ⊆ L, the processE\v is a refinement ofE, i.e.,E\v � E.
In fact, it is easy to prove that the relationR\v = {(E,E \
v) | E ∈ E} is a refinement.

The following result explicates the relations between our
notion of refinement and the basic CCS operators. It allows
us to incrementally build refinements by combining refine-
ments of process components. It shows also how to get the
refinement of a process by refining just part of it.

Theorem 3.12 Let F,G,E, I ∈ E . Let R be a refinement
containing both(F,E) and(G, I).
- If a.F 6∈ Reach(F), thenR′ = R(F,E) ∪ {(a.F, a.E)} is
a refinement;
- If F + G 6∈ Reach(F)∪Reach(G), thenR′ = R(F,E) ∪
R(G,I) ∪ {(F + G,E + I)} is a refinement;

- R′ = {(F ′|G′, E′|I ′) | (F ′, E′), (G′, I ′) ∈ R} is a refine-
ment;
- R′ = {(F ′ \ v,E′ \ v) | (F ′, E′) ∈ R} is a refinement;
- R′ = {(F ′[f], E′[f]) | (F ′, E′) ∈ R} is a refinement.

Corollary 3.13 LetF,G,E, I ∈ E be such that there exists
a refinement containing both(F,E) and(G, I). Then:
- a.E � a.F , if a.F 6∈ Reach(F);
- E + I � F + G, if F + G 6∈ Reach(F) ∪ Reach(G);
- E|I � F |G;
- E \ v � F \ v;
- E[f] � F [f].

4. Unwinding Based Security Properties and
Refinement

In this section we consider various information flow se-
curity properties which can be characterized in terms of un-
winding conditions and we identify sufficient conditions to
be satisfied by our refinement operators in order to preserve
them. We consider a class of unwinding conditions. Infor-
mally, these conditions require that whenever a high level
action can be performed from a stateE reaching a stateE′,
there exists a stateE′′ which for the low level user is indis-
tinguishable fromE′ and which is locally connected toE,
given a suitable notion of connectivity. Since an unwinding
condition can be seen as a sufficient condition for many se-
curity properties, its preservation under refinement implies
the preservation of all the security properties it guarantees.

4.1 A Generalized Unwinding Condition

We give a uniform presentation of the properties we
consider by introducing a generalized unwinding condition
which is parametric with respect to two binary relations on
processes: an equivalence relation,∽

l, which represents the
low level indistinguishability and a transition relation,99K,
which characterizes the local connectivity required by the
unwinding condition.

Definition 4.1 (Generalized Unwinding)Let ∽
l and99K

be two binary relations onE ×E . We defineW(∽l, 99K) as

W(∽l, 99K)
def
= {E ∈ E |

∀ F,G ∈ Reach(E), if F
h
→ G

then∃G′ such thatF 99K G′ andG ∽
l G′}

The generalized unwinding condition is based on two bi-
nary relations on processes. Thus in order to preserve it we
can just check the preservation under refinement of the low
level observation and the connectivity relation. For total
functions this means to look for a congruence with respect
to the two relations. Since refinements are partial functions
we require that also undefined (↑) is preserved.

Definition 4.2 (Refinement preserving⊙) Let ⊙ be a bi-
nary relation onE × E andR be a refinement. We say that
R is a refinement preserving⊙ if for all G,G′ such that
G⊙G′ then either bothR(G)↑ andR(G′)↑ or bothR(G)↓
andR(G′)↓ andR(G) ⊙R(G′).

The preservation under refinement of the two relations
∽

l and99K is sufficient for guaranteeing the preservation
under refinement of theW(∽l, 99K) property.

Theorem 4.3 Let ∽
l and 99K be two binary relations on

E×E andF ∈ W(∽l, 99K). If R is a refinement preserving
both∽

l and99K andR(F)↓, thenR(F) ∈ W(∽l, 99K).

The next lemma shows that the composition of two re-
finements preserving a given binary relation still preserves
the same relation. That offers us a condition to preserve
W(∽l, 99K) under subsequent refinements.

Lemma 4.4 Let ⊙ be a binary relation onE andR1 and
R2 be two refinements preserving⊙. ThenR1 ◦ R2 is still
a refinement preserving⊙.

4.2. Properties based on Unwinding Conditions

Many security properties can be characterized as suitable
instances of our generalized unwinding condition as shown
in [2]. Here we consider both properties based on bisimu-
lation (named,P BNDC , SBNDC , andCP BNDC) and
properties based on trace equivalence (named,SNDC). The
first three properties implies the well-knownBNDC prop-
erty [4] while the last one impliesNDC [4] (or, equivalently,
NF [20]) and, in the deterministic case,PSP[23].

4.2.1 Bisimulation based Security Properties

Each of the three properties based on bisimulation we con-
sider in this section implyBisimulation based Non De-
ducibility on Composition(BNDC, for short), a security
property introduced in [4] which aims at guaranteeing that
no information flow from the high to the low level is possi-
ble, even in the presence of malicious processes. It is based
on the idea of checking the system against all high level po-
tential interactions, representing every possible high level
malicious program. In particular, a systemE is BNDC if
for every high level processΠ a low level user cannot dis-
tinguishE from (E|Π).

The low level observation of a process is formalized in
terms ofweak bisimulation on low actions. Weak bisimu-
lation is similar to strong bisimulation, but it does not care
about internalτ actions. It is useful to introduce some no-
tation: we writeE

t
=⇒ E′ if E(

τ
→)∗

a1→ (
τ
→)∗ · · · (

τ
→)∗

an→

(
τ
→)∗E′, where(

τ
→)∗ denotes a (possibly empty) sequence

of τ labelled transitions. Ift ∈ Act
∗, thent̂ ∈ L∗ is the se-

quence gained by deleting all occurrences ofτ from t. As a

consequence,E
â

=⇒ E′ stands forE
a

=⇒ E′ if a ∈ L, and
for E(

τ
→)∗E′ if a = τ (note that

τ
=⇒ requires at least one

τ transition while
τ̂

=⇒ means zero or moreτ transitions).
Given this notation, weak bisimulation is obtained from

strong bisimulation by allowing a transition of the form
a
→ to be simulated by a transition

â
⇒. Two processes are

weakly bisimilar on low actions when they are weakly
bisimilar if we consider only low actions.

Definition 4.5 (Weak Bisimulation on Low Actions) A
binary relationR ⊆ E × E over processes is aweak bisim-
ulation on low actionsif (E,F) ∈ R implies, for all
a ∈ L ∪ {τ},

- if E
a
→ E′, then∃F ′ such thatF

â
=⇒F ′ and(E′, F ′)∈R;

- if F
a
→F ′, then∃E′ such thatE

â
=⇒ E′ and(E′, F ′)∈R.

Two processesE andF areweakly bisimilar on low actions,
denoted byE ≈l

B F , if there exists a weak bisimulation on
low actionsR containing the pair(E,F).

Definition 4.6 (BNDC) Let E ∈ E . E ∈ BNDC if ∀ Π ∈
EH , E ≈l

B (E|Π).

The propertiesP BNDC, SBNDCandCP BNDCare all
sufficient conditions forBNDC. Moreover, differently from
BNDC, they arepersistentin the sense that if a processE

satisfies one of them then all states rechable fromE satisfy
it. Here we define the three security properties as instances
of our generalized unwinding condition. Clearly, since we
are considering processes which are weakly bisimilar on
low actions the relation∽l is instantiated by≈l

B . As re-
gards99K, it varies according to the different requirements.

The security property calledPersistentBNDC [7]
(P BNDC, for short), which is suitable for analyzing sys-
tems in dynamic execution environments, requires that
whenever a stateF of a P BNDC process may execute a
high level action moving to a stateG, thenF should be also
able to simulate such high move through a sequence of zero
or moreτ moving to a stateG′ which is equivalent toG for
a low level user. Thus,

E ∈ P BNDC ⇐⇒ E ∈ W(≈l
B ,

τ̂
=⇒)

As stated by Theorem 4.3, any refinement preserving

both≈l
B and

τ̂
=⇒ preserves alsoP BNDC.

Corollary 4.7 Let F ∈ E be aP BNDCprocess. IfR is a

refinement preserving both≈l
B and

τ̂
=⇒ andR(F)↓, then

R(F) is P BNDC.

Example 4.8 We consider again the memory cellM x de-
fined in Example 2.1. We noticed that such a process is
insecure because of a direct information flow. This fact is
correctly revealed byP BNDC.

In Example 3.5, we observed that this flaw can be re-
paired by refining the memory cell into a high and a low
memory cell, defined as processesMh x and M l x, re-
spectively. It is easy to see thatMh 0 ∈ P BNDC . First,
notice thatMh 0 ≈l

B Mh 1, since there is no way for a
low level user to distinguish between the two states. As
a matter of fact, the only possible low level actions are the
two write operationswl 0, wl 1 which, both inMh 0 and in
Mh 1, move the system into the same states. The fact that
M l 0 ∈ P BNDC is even easier to prove: the only high
level actionsrh 0, rh 1 do not change the system state.

We have proved that high and low level cells are secure.
It is now interesting to study how this property is preserved
by further refining the processes. To this aim we apply The-
orem 4.7. Notice that neitherMh 0 nor M l 0 perform any
τ transitions, thus the only condition that we should care
about is that the refinement preserves≈l

B . As a conse-
quence, removing high level actions does not affect the se-
curity of the two systems. For example, if we allow the high
level user to only reset the cell value to0 (by removing the
wh 1 . Mh 1 branch), the resulting process is still secure.

On the other hand, modifications of low behavior should
be performed coherently in all equivalent states. For exam-
ple, the refinement

Nh 0
def
= rh 0 . Nh 0 + wh 0 . Nh 0 + wh 1 . Nh 1

Nh 1
def
= rh 1 . Nh 1 + wh 0 . Nh 0 + wh 1 . Nh 1

+ wl 0 . Nh 0

in which the low level user can reset to0 the high level cell,
only when the cell contains value1 (notice that inNh 0
no low level write operations are allowed) is not preserving
≈l

B . It is easy to see thatNh 0 6∈ P BNDC . The fact that
Nh 0 is not P BNDC reveals a slightly subtle information
flow due to the fact that a low level user may track the con-
tent of the high level cell by trying to reset it: every time the
reset succeeds the low level user can conclude that the cell
contained value1. A correct refinement achieving the same
low level reset behavior described above, should include the
branchwl 0 . Nh 0 also inNh 0.

The propertyStrong BNDC(SBNDC, for short) has been
introduced in [4] as a sufficient condition for verifying
BNDC. It just requires that before and after every high step,
the system appears to be the same, from a low level per-
spective. It is stronger thanP BNDC and it can be defined
through unwinding conditions as follows (see [2]).

E ∈ SBNDC ⇐⇒ E ∈ W(≈l
B ,≡)

where≡ is the identity relation on processes.
If a refinement preserves the low level observation of a

process, it preserves theSBNDCsecurity property.

Corollary 4.9 Let F ∈ E be aSBNDCprocess. IfR is a
refinement preserving≈l

B andR(F)↓, thenR(F) is SB-
NDC.

Both P BNDC andSBNDCare compositional with re-
spect to almost all the SPA operators but they are not com-
positional with respect to the nondeterministic choice op-
erator. This is not much surprising since security prop-
erties are, in general, not preserved under composition
[16]. However, compositionality results are crucial for mak-
ing the development of large and complex systems feasi-
ble [17, 18, 15]. The interest in the class ofComposi-
tional P BNDC processes (CP BNDC, for short) derives
from the fact that it is fully compositional (i.e., it is com-
positional also with respect to the nondeterministic choice).
CP BNDCcan be defined as follows (see [2]):

E ∈ CP BNDC ⇐⇒ E ∈ W(≈l
B ,

τ
=⇒)

Corollary 4.10 Let F ∈ E be aCP BNDCprocess. IfR is
a refinement preserving both≈l

B and
τ

=⇒ andR(F)↓, then
R(F) is CP BNDC.

Example 4.11 As mentioned above, theCP BNDC prop-
erty has been proposed to obtain full compositionality with
respect to SPA operators. We show this feature by consid-
ering a non-deterministic composition of the high and low
memory cells of Example 3.5. In particular we consider
memory cellMhl 0 that, after the first computational step,
behaves as eitherMh 0 or M l 0.

Mhl 0
def
= Mh 0 + M l 0

Intuitively, this process should be secure since we have
proved that bothMh 0 andM l 0 are secure but, quite sur-
prisingly, this is not the case. Consider the execution of a
high level write actionwh 0. This moves the wholeMhl 0
system toMh 0 (notice thatM l 0 does not accept the high
level inputwh 0). The problem is that a low level user can
observe this move by trying to write some value into the
memory cell. As a matter of fact, sinceMh 0 does not
accept low level inputs, the low level user can deduce that
some high level action has been performed.

This indirect information flow can be exploited to build
a so calledcovert-channel(see, e.g., [5] for more detail).

Formally, the moveMhl 0
wh 0
→ Mh 0 cannot be simulated

by Mhl 0 thus proving thatMhl 0 is neitherP BNDC, SB-
NDC norCP BNDC.

This problem can be corrected by makingMh 0 and
M l 0 CP BNDC, sinceCP BNDC is compositional with
respect to+ operator. To correct the processes it is enough
to add aτ -loop in the initial state, i.e., aτ . Mh 0 and
a τ . M l 0 branch inMh 0 and M l 0, respectively. It
is easy to prove that these modifiedMh 0 and M l 0 are
CP BNDC. By compositionality results we thus obtain that

Mhl 0 is now CP BNDC. Notice that the problem of sim-

ulating the moveMhl 0
wh 0
→ Mh 0 is now solved by per-

forming theτ of the addedτ . Mh 0 branch. In particular
we have thatMhl 0

τ
→ Mh 0.

Finally, by Corollary 4.10, we obtain that every refine-
ment of these newMh 0 andM l 0, that preserves≈l

B , as
already discussed in Example 4.8, and that also preserves
theτ -loops, always givesCP BNDCprocesses.

4.2.2 Traces based Security Properties

Equivalence under bisimulation is too demanding when se-
curity properties related to protocol analysis are considered
[6]. Actually, most of the security properties that have been
proposed for the analysis of security protocols are based on
the notion of trace equivalence: two processes are equiv-
alent if they exactly show the same execution sequences
(called traces). In this section we recall the definition of two
information flow security properties,NDC ([4]) and PSP
([23]), defined in terms of the set of traces of processes.
We introduce the security propertySNDCby means of an
unwinding condition. Similarly toSBNDC for BNDC it
provides a sufficient condition forNDC. We show how to
preserveNDC under refinement. Finally, we derive a suffi-
cient condition forPSPand provide a condition to preserve
it under refinement.

The trace equivalencerelation, denoted by≈T , equates
two processes if they have the same sets of traces without
considering theτ actions, where the set of traces associated

with a processE is Tr(E) = {t ∈ L∗ | ∃E′ : E
t

=⇒ E′}.
Trace equivalence is less demanding than weak bisimula-
tion since it does not require a step by step mutual simu-
lation. For examplea.0 anda.0 + τ.0 are trace equivalent
(the only trace isa) but they are neither weakly nor strongly
bisimilar. The first process cannot simulate the deadlock
state reached through the internalτ action. It is instead easy
to see that if two processes are weakly bisimilar, then they
are also trace equivalent.

TheNon Deducibility on Composition(NDC, for short)
property has been introduced in [4] as the property corre-
sponding toBNDC when trace equivalence is used instead
of bisimulation. It has been proved to be equivalent tonon-
interference (NF)defined in [20]. In particular, the notion
of low observation of a process with respect to trace equiv-
alence is the following.

Definition 4.12 (Trace Equivalence on Low Actions)For
any processE ∈ E , we denote byTrl(E) the set of
low traces associated withE which is defined as follows:
Trl(E) = {t ∈ L∗ | ∃E′ : E

t
=⇒ E′}. Two processes

E andF are trace equivalent on low actions, denoted by
E ≈l

T F , if Trl(E) = Trl(F).

Definition 4.13 (NDC) Let E ∈ E . E ∈ NDC if ∀ Π ∈
EH , E ≈l

T (E|Π).

By instantiating our generalized unwinding condition
with the trace equivalence on low actions and the identity,
we obtain the following property:Strong NDC(SNDC, for
short). It provides a sufficient condition forNDC.

SNDC = W(≈l
T ,≡)

Proposition 4.14 LetE ∈ E . If E is SNDCthenE is NDC.

As for the other properties it is easy to identify a suffi-
cient condition to be satisfied by our refinement operators in
order to preserve the persistent traces based security prop-
ertySNDC.

Corollary 4.15 Let F ∈ E be aSNDCprocess. IfR be a
refinement preserving≈l

T , thenR(F) is aSNDCprocess.

Example 4.16 Let v ∈ L andR\v be the refinement such
thatR\v(E) = E \ v. ThenR is a refinement preserving
the low observations for trace equivalence, i.e.,≈l

T .

Now we turn our attention to thePerfect Security Prop-
erty (PSP, for short) which has been proved [23] to be the
weakest property to ensure no information can flow from
high level users to low level users. In [14] this property is
defined as follows.

Definition 4.17 (PSP)Let E ∈ E . E ∈ PSP if
- for all t ∈ Tr(E) t|L ∈ Tr(E); and
- for all βα ∈ Tr(E) with α ∈ L∗, and for allh ∈ H, if
βh ∈ Tr(E), thenβhα ∈ Tr(E);
wheret|L denotes the sequence obtained fromt by deleting
all the occurrences of high level actions.

We can always associate to any processE a deterministic
processdet(E) having the same set of traces. Requiring the
conditionSNDCondet(E) we get a sufficient condition for
E being inPSP.

Proposition 4.18 Let E ∈ E . If det(E) is SNDC , thenE

is PSP.

Thus, by applying Corollary 4.15 we obtain a sufficient
condition for the preservation ofPSPunder refinement.

Corollary 4.19 Let F ∈ E be a process satisfyingPSPand
such thatdet(F) ∈ SNDC. Moreover, letR be a refine-
ment preserving≈l

T and commuting withdet (i.e. such that
R(det(F)) = det(R(F))). ThenR(F) satisfiesPSP.

5. Conclusion and Related Works

In this paper we presented a new notion of refinement for
processes described as terms in the Security Process Alge-
bra (SPA). We proved some basic important properties like
incrementality of the refinement process and composition-
ality with respect to SPA operators. Moreover, we showed
how to check preservation under refinement for a variety of
information flow properties proposed in literature.

Paper [14] is undoubtedly very related to our work. In
such a paper, Mantel gives some conditions under which
refinement preserves information flow properties. There
are, however, appreciable differences with our work: First,
we consider systems expressed in a process calculus, while
Mantel consider event systems; more importantly, we focus
our attention to bisimulation-based properties while Man-
tel only considers trace-based models; more specifically,
in [14] it is assumed that processes have a deterministic
transition system while here processes may show any non-
deterministic behavior. Due to these differences, the notion
of refinement we propose is quite different with respect to
the one of [14], where refinement is simply formalized as
trace inclusion. Our generalized unwinding condition is in-
deed a generalization of the one proposed in [14] and, in
Section 4.2.2, we have shown that some of Mantel’s results
can be given as instances of our general refinement theorem.

Another interesting related work is [12], where Lowe
gives a new non-interference notion for quantifying the
amount of information-flow in a system described as a CSP
process. The proposed notion is based on the NDC prop-
erty considered here. Quite interestingly, Lowe observes
that NDC is not closed under CSP refinement, and he solves
this problem by requiring, for a system to be secure, that all
of its refinements are secure (i.e., by closing the property
under refinement). Here, we take the dual approach of im-
posing constraints on refinements, instead of strengthening
the security properties. It would be interesting to see if the
notion of information-flow of [12] can be revisited by con-
sidering only “secure” refinements, as done in this work.

Other important works on refining non-interference are
[11, 21, 22, 9]. As observed in [14], in [11] it is given a
method for making a specification secure after it has been
sufficiently refined. This differs by our approach where
we intend to prove non-interference guarantees at the be-
ginning of the refinement process. In [21], instead, confi-
dentiality statements are proved from scratch after refine-
ment, i.e., there is no result of preservation of confidential-
ity. In [22], it is given a notion of non-interference that is
preserved under CSP refinement. Differently from our ap-
proach, such a notion requires that processes are determin-
istic from a low level point of view. A detailed comparison
between NDC-like properties and the notions proposed in
[22] can be found in [3]. Paper [9], similarly to our work

and [14], requires that refinement preserves some relations
between processes. However, differently from what we do,
only traces are considered.

References

[1] D. E. Bell and L. J. L. Padula. Secure computer systems:
Unified exposition and multics interpretation. Technical Re-
port ESD-TR-75-306, MITRE MTR-2997, 1976.

[2] A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Bisimulation
and Unwinding for Verifying Possibilistic Security Proper-
ties. In L. D. Zuck, P. C. Attie, A. Cortesi, and S. Mukhopad-
hyay, editors,Proc. of Int. Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI’03), volume
2575 ofLNCS, pages 223–237. Springer-Verlag, 2003.

[3] R. Focardi. Comparing Two Information Flow Security
Properties. InProceedings of CSFW’96, pages 116–122.
IEEE press, June 1996.

[4] R. Focardi and R. Gorrieri. A Classification of Security
Properties for Process Algebras.Journal of Computer Se-
curity, 3(1):5–33, 1994/1995.

[5] R. Focardi and R. Gorrieri. Classification of Security Prop-
erties (Part I: Information Flow). In R. Focardi and R. Gor-
rieri, editors,Foundations of Security Analysis and Design,
volume 2171 ofLNCS. Springer-Verlag, 2001.

[6] R. Focardi and F. Martinelli. A Uniform Approach for the
Definition of Security Properties. In J. Wing, J. Woodcook,
and J. Davies, editors,Proc. of World Congress on Formal
Methods (FM’99), volume 1708 ofLNCS, pages 794–813.
Springer-Verlag, 1999.

[7] R. Focardi and S. Rossi. Information Flow Security in Dy-
namic Contexts. InProc. of the 15th IEEE Computer Secu-
rity Foundations Workshop, pages 307–319. IEEE Computer
Society Press, 2002.

[8] J. A. Goguen and J. Meseguer. Security Policies and Secu-
rity Models. InProc. of the IEEE Symposium on Security
and Privacy, pages 11–20. IEEE Computer Society Press,
1982.

[9] J. Graham-Cumming and J. W. Sanders. On the Refinement
of Non-Interference. InProc. of the IEEE Computer Secu-
rity Foundations Workshop, pages 35–42. IEEE Computer
Society Press, 1991.

[10] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke.
Computing simulations on finite and infinite graphs. In
IEEE Symposium on Foundations of Computer Science
(FOCS’95), pages 453–462, 1995.

[11] J. Jacob. On the Derivation of Secure Components. InProc.
of the IEEE Symposium on Security and Privacy, pages 242–
247. IEEE Computer Society Press, 1989.

[12] G. Lowe. Quantifying Information Flow. InProc. of the 15th
IEEE Computer Security Foundations Workshop, pages 18–
31. IEEE Computer Society Press, 2002.

[13] H. Mantel. Possibilistic Definitions of Security - An Assebly
Kit -. In Proc. of the IEEE Symposium on Security and Pri-
vacy, pages 185–199. IEEE Computer Society Press, 2000.

[14] H. Mantel. Preserving Information Flow Properties under
Refinement. InProc. of the IEEE Symposium on Security
and Privacy, pages 78–91. IEEE Computer Society Press,
2001.

[15] H. Mantel. On the Composition of Secure Systems. InProc.
of the IEEE Symposium on Security and Privacy, pages 88–
101. IEEE Computer Society Press, 2002.

[16] D. McCullough. Specifications for Multi-Level Security and
a Hook-Up Property. InProc. of the IEEE Symposium on Se-
curity and Privacy, pages 161–166. IEEE Computer Society
Press, 1987.

[17] J. McLean. A General Theory of Composition for Trace Sets
Closed under Selective Interleaving Functions. InProc. of
the IEEE Symposium on Security and Privacy, pages 79–93.
IEEE Computer Society Press, 1994.

[18] J. McLean. A General Theory of Composition for a Class
of “Possibilistic” Security Properties.IEEE Trabsactions on
Software Engineering, 22(1):53–67, 1996.

[19] R. Milner. Communication and Concurrency. Prentice-Hall,
1989.

[20] C. O’Halloran. A Calculus of Information Flow. InProc. of
the European Symposium on Research in Security and Pri-
vacy, pages 180–187. AFCET, 1990.

[21] C. O’Halloran. Refinement and Confidentiality. InProc. of
the 5th Refinement Workshop, pages 119–139, 1992.

[22] A. W. Roscoe, J. C. P. Woodcock, and L. Wulf. Non-
Interference through Determinism. InProc. of the European
Symposium on Research in Computer Security, volume 875
of LNCS, pages 33–53. Springer-Verlag, 1994.

[23] A. Zakinthinos and E. S. Lee. A General Theory of Secu-
rity Properties. InProc. of the IEEE Symposium on Security
and Privacy, pages 74–102. IEEE Computer Society Press,
1997.

