
1

Filtering Retrenchments into Refinements

Abstract

Retrenchment is a weakening of model based refinement
that enables many development steps not expressible by
refinement to be formally described nevertheless. The
greater flexibility of retrenchment comes at the price of
much feebler guarantees as compared with refinement,
and so the interplay between retrenchment and refinement
can hope to offer the best of both worlds. The paper
explores the strategy of filtering the information in a
retrenchment to yield a refinement under a suitable notion
of observation. A general construction is given that ena-
bles a retrenchment, with its intrinsic notion of observabil-
ity, to be filtered to produce a refinement with its intrinsic
notion of observability. A simple running example illus-
trates the theory.

1. Introduction

Model based refinement has long been a highly respected
method for developing executable code from (not neces-
sarily executable) specifications [1, 12, 11]. The idea is
that the system requirements are captured in as abstract a
way as is possible, using mathematical modeling tech-
niques that need not bear any close relation to the capabil-
ities of any realistic computing device. Thence, using tech-
niques proved reliable by the theory of refinement, the ab-
stract model is transformed into code in a manner that can
be depended on. This constitutes the traditional view of re-
finement as software development approach, and the math-
ematical integrity of the approach is unimpeachable. How-
ever it imposes a strict relationship between those models
that can be related by refinement, and the strictness of this
relationship can prove to be overly constraining in practical
situations; these can often feature matters of detail in the
models to be related by the prospective refinement that pre-
vent an actual refinement from obtaining. This is a well
known state of affairs, and is usually dealt with by ad hoc
means that depend on the example at hand. (Typical re-
posts range from changing the abstract model to fit the ex-
igencies of refinement, to making the ‘mathematical’ con-

crete model subtly inconsistent with the actual executable
code, to simply neglecting certain low level details in all the
mathematical development.)

To overcome the above difficulty, retrenchment was in-
troduced as a formal technique less demanding than refine-
ment, see eg. [5, 6, 15, 8, 4, 13, 7]. The intention was that
if two models (abstract and concrete), embodied a useful
step in the development of a system, but could not be relat-
ed by a refinement for some technical reason, they might
nevertheless be productively related by retrenchment.

In the light of the difficulties with refinement, retrench-
ment was deliberately designed as a very liberal notion in
order to avoid simply encountering more subtle difficulties
with the new technique further down the line. In fact it can
be proved that subject to minimal constraints, any two sys-
tems can be related by a retrenchment of some sort [4].
This gives extreme descriptive flexibility to the technique,
at the price of offering weak predictive power to a generic
retrenchment. One way of improving the latter, less desir-
able, aspect, is to search for ways in which retrenchment
and refinement can complement one another. There are in
fact various ways of attempting to formulate such a compli-
mentarity, some of which have already been discussed in
the literature [2, 13, 14]. This paper is concerned with one
hithero unexplored possibility.

We exploit the extreme descriptive flexibility of re-
trenchment to give a faithful description of a development
step, but then stand back in order to stipulate a perspective
from which the retrenchment ought to be viewed. The ob-
jective is to find a perspective from which the retrenchment
relationship appears to be a refinement. In order that this
programme can be carried through, some leeway may be
required from the refinement side, which comes via the
flexibility of defining what is regarded as observable within
a given refinement.

To paraphrase this, one can view refinement as being
concerned with consistent observations between abstract
and concrete systems. To whatever extent constitutes an
observation of the required system, the user ought not to be
able to tell if it is the abstract model or concrete model do-
ing the work. While this on the one hand leads to the strict-
ness of the refinement relationships already pointed out, on
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the other it allows some flexibility, as that which is regarded
as observable is to a degree dependent on the context in
which the required system is intended to be used. Taking
the same attitude to retrenchments, suggests that a re-
trenchment too ought to be viewed from an appropriate per-
spective, one moreover, that if possible, lends itself to a re-
interpretation of the observations as having been obtained
via a refinement. So our desire in this paper is to see re-
trenchments emerging as consistent with refinements, thus
helping to validate the sometimes cited slogan that re-
trenchment is ‘like refinement except round the edges’ [5,
8]. It will turn out that the restricted observations in ques-
tion can be viewed as filters on the abstract and concrete
systems, and in this paper we set up a framework in which
the relevant filters are investigated, and the appropriate re-
finements are extracted.

In order that suitable relationships may be set up be-
tween them, retrenchment and refinement need to be placed
on the same semantic footing. Retrenchment is usually in-
vestigated in a pure transition system framework (see cited
references); refinement is usually investigated in some var-
iant of total correctness, the contract semantics and behav-
ioural semantics of [11] being typical. For simplicity, we
explore our problem using a partial correctness formulation
of refinement, which is semantically compatible with the
usual transition setup for retrenchment.

The rest of the paper is structured as follows. Section 2
sets up our notation for system models. Section 3 covers
refinement and Section 4 summarises retrenchment. Sec-
tion 5 examines the retrenchment notions of fragments and
multifragments, while Section 6 gives a technical outline of
the goal of the filtering construction. Section 7 contains the
main technical results of the paper, filtering an arbitrary re-
trenchment into a particular type of refinement. Section 8
gives an example; Section 9 concludes.

2. System Models

We will be dealing with several system models that par-
ticipate in a development process to be described below.
There will be an abstract system Abs and a concrete one
Conc (that will be related by retrenchment), and a filtered
abstract system FAbs and a filtered concrete one FConc
(that will be related by refinement). We give our notational
conventions for the Abs system in detail, the others being
similar.

Underpinning all the semantics for all the system mod-
els we consider in this paper will be a transition system for
the system model in question. For the Abs system, this has
a set of operations OpsA, typical element OpA ∈ OpsA.1

The transitions / steps of OpA are written u -(i, OpA, o)-› u′

or OpA(u, i, u′, o). Here u ∈ U is the before-state, i ∈ IOpA
the input, u′ ∈ U the after-state, and o ∈ OOpA

the output.
Initialisation of Abs is given via the operation / predicate
InitA(u′).2

In this paper we adopt an ‘on the fly’ treatment of I/O
(cf. [17], Ch. 16). Inputs are consumed and outputs are pro-
duced as the operation takes place, rather than these being
concealed in sequences in some special part of the state.
This obviates the need for finalisations, and reduces the
number of formal proof obligations to be considered later.
Supplementing these system details will be notions of ob-
servation, discussed at the meta level, which delineate what
aspects of the system’s activities are actually taken note of
by the surrounding environment.

The other systems have similar notations. For the con-
crete system Conc, we have operation names OpsC, data
spaces V, JOpC

, POpC
, initialisation InitC(v′), and transitions

v -(j, OpC, p)-› v′. For FAbs we have operation names
OpsFA, data spaces FU, FIOpFA

, FPOpFA
, initialisation via

InitFA(u′F), and transitions uF -(iF, OpFA, oF)-› u′F. For
FConc we have operation names OpsFC, data spaces FV,
FJOpFC

, FPOpFC
, initialisation InitFC(v′F), and transitions

vF -(jF, OpFC, pF)-› v′F.

3. Refinement

In this section we make precise the notion of refinement we
need. In line with the previous section, we assume abstract
and concrete systems FAbs and FConc, with a bijective
correspondence between abstract operations in OpsFA and
concrete operations in OpsFC indicated informally via the
subscripts.3 We assume the state spaces of FAbs and
FConc are related by a retrieve relation GF(uF, vF) on the
states, and we furthermore assume for each Op ∈ OpsFA,
an input relation IF,Op(iF, jF), and an output relation
OF,Op(oF, pF). The relations GF(uF, vF), IF,Op(iF, jF),
OF,Op(oF, pF), are read as relations from abstract to con-
crete in each case, and we will assume that IF,Op(iF, jF) and
OF,Op(oF, pF) are total and onto.

For the transition semantics (aka partial correctness se-
mantics) of this paper, we need that the above components
satisfy the following proof obligations. Firstly there is the
initialisation PO:

InitFC(v′F) ⇒ (∃ u′F • InitFA(u′F) ∧ GF(u′F, v′F)) (3.1)

and secondly there is the operation PO which for a typical
Op reads:

GF(uF, vF) ∧ IF,Op(iF, jF) ∧ OpFC(vF, jF, v′F, pF) ⇒
(∃ u′F, oF • OpFA(uF, iF, u′F, oF) ∧

GF(u′F, v′F) ∧ OF,Op(oF, pF)) (3.2)

These are equivalent to the relational inclusions (3.3)-(3.4),
1. In most works on retrenchment, Op denotes the name of an op-
eration, which is mapped to its transition or step relation, which is
written stpOp. In most work on refinement, notation Op refers to
the transition relation itself. To avoid confusion in citing familiar
facts on refinement, we use the refinement convention in this pa-
per. The lack of explicit names for operations will not cause us
difficulties.

2. When we speak about initial states, InitA(u′) is the predicate
that characterises them; when we speak about execution sequenc-
es commencing with initialisation, InitA(u′) is the (nondetermin-
istic) assignment of the state to any value satisfying the predicate.
3. This confirms that the ‘A’, ‘C’, ‘FA’, ‘FC’, subscripts on oper-
ation names and other values are meta level tags. We will sup-
press them when appropriate and it does not cause confusion.
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in which inputs and outputs are free and related by IF,Op
and OF,Op respectively, and intermediate state values are
(existentially) bound. In the notation of [11]:

InitFC ⊆ InitFA ; GF (3.3)

(GF∧IF,Op) ; OpFC ⊆ OpFA ; (GF∧OF,Op) (3.4)

The above constitute the forward simulation conditions for
refinement, but as is well known, these are merely sufficient
conditions for a more general notion in which arbitrary
concrete programs can be simulated by corresponding ab-
stract ones. A concrete complete program can be seen as a
sequential composition of executed steps:

InitFC ; OpFC,0 ; OpFC,1 ; … ; OpFC,n (3.5)

where each OpFC,k stands for a tuple vFC,k -(jFC,k, OpFC,k,
pFC,k)-› v′FC,k from the corresponding concrete transition
relation OpFC, and for each 0 ≤ k ≤ n–1, v′FC,k = vFC,k+1,
i.e. abutting states are equal. An abstract complete pro-
gram conformal to (3.5) is given by:

InitFA ; OpFA,0 ; OpFA,1 ; … ; OpFA,n (3.6)

so that the same operations occur in the same order. The
concrete system is a refinement of the abstract one iff for all
concrete InitFC ; OpFC,0 ; OpFC,1 ; … ; OpFC,n, a confor-
mal abstract InitFA ; OpFA,0 ; OpFA,1 ; … ; OpFA,n can be
found such that:

(i) the states resulting from the InitFA and InitFC
operations are related by GF

(ii) for each 0 ≤ k ≤ n, the inputs of OpFA,k and OpFC,k
are related via IF,Op,k

(iii) for each 0 ≤ k ≤ n, the outputs of OpFA,k and OpFC,k
are related via OF,Op,k

(iv) the after-states of OpFA,n and OpFC,n are related by
GF (3.7)

which is also written:

InitFA ; OpFA,0 ; OpFA,1 ; … ; OpFA,n

InitFC ; OpFC,0 ; OpFC,1 ; … ; OpFC,n (3.8)

The refinement criteria (3.7) define the notion of observa-
bility appropriate to the transition semantics of refinement.
This turns out to be the main notion of observability for re-
finement used in this paper.

Amongst other things, the clauses in (3.7) confirm that
u′FC,0, v′FC,0 … uFC,n, vFC,n, i.e. the intermediate states
visited by the two programs, are not observed. They are ex-
istentially quantified bound values, the intermediate values
in a sequential composition of relations. As noted above
(3.1) and (3.2) are stronger than (3.8), since they also de-
mand that these corresponding intermediate states are relat-
ed by GF, allowing (3.8) to be established by induction.

4. Retrenchment

Given the previously described context, a retrenchment
from Abs to Conc is defined by three facts. Firstly, the pre-
vious bijective correspondence between OpsA and OpsC
indicated via the subscripts, is loosened to an inclusion, i.e.

there can be concrete operations that do not correspond to
any abstract operation. We assume the state spaces of Abs
and Conc are related by a retrieve relation G(u, v), and we
further assume for each Op ∈ OpsA, a within relation
POp(i, j, u, v), an output relation OOp(o, p; u′, v′, i, j, u, v),
and a concedes relation COp(u′, v′, o, p; i, j, u, v). Note that
the latter two relations feature predominantly after-values,
but before-values can be mentioned too if this is desired
(the two kinds of values are separated by a (purely cos-
metic) semicolon). The relations are to be read from ab-
stract to concrete as before, and this time, no assumptions
are made about the totality etc. of any of POp(i, j, u, v),
OOp(o, p; u′, v′, i, j, u, v), COp(u′, v′, o, p; i, j, u, v). This as-
sembly of components is required to verify proof obliga-
tions as follows.

The initial states must satisfy:

InitC(v′) ⇒  (∃ u′ • InitA(u′) ∧ G(u′, v′)) (4.1)

as in (3.1), and for every corresponding operation pair OpA
and OpC, the abstract and concrete step relations must sat-
isfy the operation PO:

G(u, v) ∧ POp(i, j, u, v) ∧ OpC(v, j, v′, p) ⇒
(∃ u′, o • OpA(u, i, u′, o) ∧

((G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v)) ∨
COp(u′, v′, o, p; i, j, u, v))) (4.2)

At this point a subtlety emerges. Because v, j occur free in
both the antecedent and consequent of the PO, (4.2) is not
equivalent to a straightforward inclusion of compositions
of relations from (u, i) to (v′, p), as was the case for (3.2)
and (3.4). We will return to this point later. The preceding
defines the usual transition semantics for retrenchment.
Note that there was no mention of sequences of steps or of
observability, which are discussed in the next section.

5. Fragments and Multifragments

The natural counterpart for retrenchment of the complete
program for refinement is the multifragment. A fragment is
similar to a program (in (3.5) or (3.6)) but without insisting
on the initialisation at the beginning, and (crucially), with-
out hiding the intermediate state values via existential
quantification in a composition of relations. So a fragment
is genuinely a sequence, and not just a relation that arises
from a sequence of composable steps. A multifragment is
a sequence of fragments.

To understand why retrenchment requires a different no-
tion, observe that in refinement, in the simulation relation-
ship:

GF(uF, vF) ∧ IF,Op(iF, jF) ∧ OpFC(vF, jF, v′F, pF) ∧
OpFA(uF, iF, u′F, oF) ∧ GF(u′F, v′F) ∧ OF,Op(o, q) (5.1)

the fact that the same relation, G, relates both the before-
states and after-states leads to an induction that establishes
(3.8).

Lemma 5.1 Suppose that uF -(iF, OpFA, oF)-› u′F and vF -
(jF, OpFC, pF)-› v′F are in simulation, i.e. they satisfy (5.1).
Then vF -(jF, OpFC, pF)-› v′F refines uF -(iF, OpFA, oF)-›
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u′F, i.e. (3.2) is verified for vF -(jF, OpFC, pF)-› v′F.

Proof. It is clear that (5.1) supplies the existential witness-
es required by (3.2).

In retrenchment the analogue of (5.1) is the simulation re-
lationship:

G(u, v) ∧ POp(i, j, u, v) ∧ OpC(v, j, v′, p) ∧
OpA(u, i, u′, o) ∧

((G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v)) ∨
COp(u′, v′, o, p; i, j, u, v)) (5.2)

which is written (u -(i, OpA, o)-› u′) Σ1 (v -(j, OpC, p)-› v′),
and of which we say that u -(i, OpA, o)-› u′ and v -(j, OpC,
p)-› v′ are in simulation. Now, because we admit COp,
which need not guarantee G ∧ POp for the next step, there is
no induction a priori, and simulation can break down at any
point, perhaps to restart later (or even immediately from an
unrelated state); and thus simulability is in general an in-
termittent and unreliable phenomenon.

With a particular retrenchment from Abs to Conc in
mind, Σ(Abs) is the set of Abs steps for which a Conc step
exists such that (5.2) holds. Similarly Σ(Conc) is the set of
Conc steps for which an Abs step exists such that (5.2)
holds. Σ(Abs) and Σ(Conc) are the simulable steps of Abs
and Conc.

Formally, a fragment is a sequence of execution steps
and a multifragment is a sequence of fragments with all
values free4. If there is more than one fragment in a multi-
fragment, only the last one may be infinite; all its predeces-
sors must be finite. If S is a multifragment of Abs and T is
a multifragment of Conc, we write S Σ T iff there is a non-
empty ordered bijection5 between (all) the simulable steps
of S and (all) the simulable steps of T, such that for each
pair of steps in the bijection the abstract and concrete step
are in simulation; and furthermore, that each fragment in S
and in T  contains at least one such simulable step.

Example 1 Fig. 1 gives some illustrations of how the
S Σ T relationship can appear globally. In each of (a)-(d),
S is shown above T, and the steps of S and T are shown as
arrows. Consecutive arrows which abut belong to the same
fragment of the multifagment. A space between consecu-
tive arrows separates consecutive fragments of the multif-
agment. In each of (a)-(d) the shaded rectangles and rhom-
bi represent occurrences of the one step simulability rela-
tion Σ1 between the steps of S and T. Arrows which are not

part of a shaded rectangle / rhombus are assumed to be non-
simulable. Note that all that is demanded is an ordered bi-
jection between the simulable steps. It is not required for
example that: (i) all steps of S or T are in simulation (eg.
(a), (b), (d)); (ii) S or T (viewed as two directed graphs) are
connected, even via the simulation (eg. (a)-(d)); (iii) the
simulable steps in S or in T are consecutive (eg. (a), (b),
(d)); (iv) S or T start in an initial state (or with an Init step).

The theory arising from simulability between multifrag-
ments is explored at length in [3]. There, system properties
are defined as sets of multifragments which must be ‘curt’
and either ‘Σ(Abs)-curt’ or ‘Σ(Conc)-curt’ as appropriate.
A multifragment is curt iff no two adjacent fragments of the
multifragment can be concatenated to make a longer frag-
ment (i.e. the last state of the former and the first state of the
latter must differ). A multifragment of Abs is Σ(Abs)-curt
iff the after-state of the last simulable step in any fragment
of the multifragment, is different from the before-state of
the first simulable step of the nearest following fragment
that contains a simulable step. Σ(Conc)-curtness is defined
similarly. The curtness conditions curtail excessive frag-
mentation within the multifragments considered, but are
not of great significance for this paper, so their subsequent
occurences may be overlooked on a first reading.

The S Σ T relation captures the notion of observability
appropriate to retrenchment. The fact that all the data oc-
curring in S Σ T is free, is in line with the idea that re-
trenchment, unlike refinement, must be used in a glass box
manner. In the exploitation of retrenchment, with its toler-
ation of the failure of simulability, it is vital that the partic-
ipants are fully aware of the claims being made via the re-
trenchment POs, and just as importantly, what is not being
claimed. In refinement, by contrast, it is at least permissi-
ble to delegate more responsibility to the guarantees that
the refinement POs deliver, i.e. to take more of a black box
approach.

Aside from the notion of simulation for retrenchment as
described above, a more exacting variant will be useful to
us in the constructions below. It is the strict simulation re-

4. All values are free as it is not a priori clear which steps may or
may not be simulable in any given fragment. Moreover, the oc-
curence both of outputs and inputs and also of state values in OOp
and COp (and POp), means that during a simulation of some steps
by others, observing the outputs and inputs and not observing the
intermediate state values, cannot be done without introducing ex-
tra, finegrained, quantification, which would need to be appropri-
ately justified.
5. The ordering on the bijection must be a total ordering on the
pairs of abstract and concrete steps whose projections on the ab-
stract and concrete components are compatible with the respec-
tive orderings of steps in the abstract and concrete
multifragments.

(a)

(b)

(d) ×

(c)

Fig. 1.  Some examples of the S Σ T  relation.
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lationship:

G(u, v) ∧ POp(i, j, u, v) ∧ OpC(v, j, v′, p) ∧
OpA(u, i,u′,o)∧G(u′,v′)∧OOp(o,p;u′,v′, i, j,u,v) (5.3)

which is written (u -(i, OpA, o)-› u′) ΣS1 (v -(j, OpC, p)-› v′).
This is much more like the simulation relationship of re-
finement, though not identical to it. It gives rise to a col-
lection of notions as above, all written with an ‘S’ super-
script thus: ΣS(Abs), ΣS(Conc), S ΣS T. Unlike (5.2), (5.3)
can give rise to an induction that establishes a result like
(3.8), which is the key to Section 7.

6. Filtering Retrenchments into Refinements

The principal objective of this paper is neatly represented
in Fig. 2. On the left is a retrenchment from Abs to Conc,
described by the relations G, POp, OOp, COp. On the right
is a refinement from FAbs to FConc, described by the re-
lations GF, IF,Op, OF,Op. Connecting the retrenchment to
the refinement are two filtering functions; AFil : CMFA →
FFA which maps CMFA (the curt and Σ(Abs)-curt multi-
fragments of Abs) to FFA (the fragments of FAbs), and
CFil : CMFC → FFC which maps CMFC (the curt and
Σ(Conc)-curt multifragments of Conc) to FFC (the frag-
ments of FConc). Some of the fragments of FAbs and
FConc are extendable to complete programs, and the fact
that intermediate states are free in (multi)fragments and
bound in complete programs works in our favour. With this
in place, any notion of observability which we now impose
on the FAbs to FConc refinement, implicitly pulls back to
a notion of observability for the Abs to Conc retrench-
ment.

Of course the diagram is intended to commute. Starting
from a given retrenchment, we want to construct the refine-
ment and filters to achieve this. Since the retrenchment de-
fines just the left hand edge of the commuting square, it is
to be expected that there will be many different ways of
completing the square: some trivial, some non-trivial, some
generic, some ad hoc, some applicable only to certain
classes of retrenchments, etc.

One trivial solution would be to define both FAbs and
FConc as systems with one state and no transitions, and
with the obvious refinement between them, and to make
AFil and CFil map all multifragments of Abs and Conc to
the empty fragment; adopting a suitably trivial notion of

observability for the refinement completes the picture. A
marginally less trivial solution adds a single (skip) transi-
tion to FAbs and FConc, mapping all multifragments Abs
and Conc to the one-step fragment. Obviously we want to
do better than this. For example, a solution which insofar
as possible preserves the extent to which the retrenchment
is already a refinement in appropriate parts of its domain of
definition, would be preferable. The remainder of this pa-
per is concerned with describing one particular construc-
tion, but as mentioned above, it will be just one among
many.

A desirable though not indispensable criterion for the
filters AFil and CFil is that they should be homomorphisms
of the multifragment structure, i.e. to respect concatenation
of (multi)fragments to the extent permitted by the curt and
Σ(…)-curt restrictions. One way of ensuring this is to de-
fine them pointwise, i.e. to be (multi)fragment extensions
of (perhaps partial) functions defined on individual steps.
The no-transition solution above meets this criterion
though the one-transition solution does not.

7. Retrenchment and Strictly Simulable
Refinement

We take as given the retrenchment from Abs to Conc, and
present a simple way of completing the construction of Fig.
2, based on the notion of strict simulation, (5.3).

The elements of the state spaces FU and FV of the sys-
tems FAbs and FConc are equivalence classes [u] ∈ FU
and [v] ∈ FV of Abs and Conc states, given by the finest
equivalence relations on U and V which satisfy the follow-
ing collection of coupled properties:

u0 -(i0,OpA,0,o1)-› u1 -(i1,OpA,1,o2)-› u2 -(i2,OpA,2,o3)-›
u3 … … … um–1 -(im–1,OpA,m–1,om)-› um
-(im,OpA,m,om+1)-› um+1 is an Abs fragment such that
u0 -(i0,OpA,0,o1)-› u1 is strictly simulable and
um -(im,OpA,m,om+1)-› um+1 is strictly simulable, but
all intervening steps (if any) are not strictly simulable

⇒  [u1] = [um] (7.1)

ub -(ib,OpA,b,ob)-› u′b is strictly simulable and there are
ua, va, vb such that [va] = [vb] and G(ua, va) and
G(ub, vb) both hold

⇒  [ua] = [ub] (7.2)

v0 -(j0,OpC,0,p1)-› v1 -(j1,OpC,1,p2)-› v2 -(j2,OpC,2,p3)-› v3
… … … vm–1 -(jm–1,OpC,m–1,pm)-› vm
-(jm,OpC,m,pm+1)-› vm+1 is a Conc fragment such that
v0 -(j1,OpC,0,p1)-› v1 is strictly simulable and
vm -(jm,OpC,m,pm+1)-› vm+1 is strictly simulable, but
all intervening steps (if any) are not strictly simulable

⇒  [v1] = [vm] (7.3)

va -(ja,OpC,a,pa)-› v′a and vb -(jb,OpC,b,pb)-› v′b are strictly
simulable and there are ua and ub such that [ua] = [ub]
and G(ua, v′a) and G(ub, vb) both hold

⇒  [v′a] = [vb] (7.4)

The provisions of (7.1)-(7.4) are illustrated in Fig. 3. Fig.
3.(a) shows (7.1) and (7.3), while Fig. 3.(b) shows (7.2) and

Fig. 2. Filtering refinements from retrenchments.

Abs

Conc

Ret(G,POp,OOp,COp)

FAbs

FConc

Ref(GF,IF,Op,OF,Op)

AFil : CMFA → FFA

CFil : CMFC → FFC
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Fig. 3.(c) shows (7.4). The ss annotations on the transitions
indicate strict simulability, and the heavy dashed arrows
show the equivalences that are forced.

Given (7.1)-(7.4) we can define GF(uF, vF) as:

GF(uF, vF)  =  (∃ ua, vb •
ua ∈ [u] = uF ∧ vb ∈ [v] = vF ∧ G(ua, vb)) (7.5)

Let I+
Op be the relation on IOpA

× JOpC
given by:

I+
Op(i, j)  =  (∃ u, v • POp(i, j, u, v)) (7.6)

Let O+
Op be the relation on OOpA

× POpC
given by:

O+
Op(o, p)  =  (∃ u′, v′, i, j, u, v •

OOp(o, p; u′, v′, i, j, u, v)) (7.7)

and let FOOpFA
= dom(O+

Op) and FPOpFC
= rng(O+

Op);
then we define OF,Op on FOOpFA

× FPOpFC
by:

OF,Op(oF, pF)  =  (∃ o, p •
oF = o ∧ pF = p ∧ O+

Op(o, p)) (7.8)

The above are the ingredients of what will become a re-
finement between the FAbs and FConc systems whose
transitions are given as follows:

uF -(iF, OpFA, oF)-› u′F  iff u -(i, OpA, o)-› u′
and where:

uF = [u], iF = i ∈ FIOpFA
, OpFA = OpA,

oF = o ∈ FOOpFA
, u′F = [u′] (7.9)

vF -(jF, OpFC, pF)-› v′F  iff v -(j, OpC, p)-› v′
is strictly simulable, and where:

vF = [v], jF = j ∈ FJOpFC
, OpFC = OpC,

pF = p ∈ FPOpFC
, v′F = [v′] (7.10)

Finally InitFA([u′]) ⇔ (∃ u ∈ [u′] • InitA(u)), and
InitFC([v′]) ⇔ (∃ v ∈ [v′] • InitC(v)).

Lemma 7.1 If the Abs and Conc steps u -(i, OpA, o)-› u′
and v -(j, OpC, p)-› v′ are in strict simulation, i.e. they sat-
isfy (5.3), then there are associated FAbs and FConc steps
uF -(iF, OpFA, oF)-› u′F and vF -(jF, OpFC, pF)-› v′F, given
by (7.9)-(7.10), and they are in simulation, i.e. they satisfy
(5.1).

Proof. It is sufficient to check that each of the criteria listed
in (7.9)-(7.10) is valid, thus giving uF -(iF, OpFA, oF)-› u′F
and vF -(jF, OpFC, pF)-› v′F, and that these FAbs and
FConc transitions satisfy all the conjuncts of (5.1).

Regarding the former, for the abstract case, given u -(i,
OpA, o)-› u′, it is clear that uF = [u], OpFA = OpA and u′F =
[u′] are all trivial, while to check iF = i ∈ FIOpFA

it is enough
to see that if u -(i, OpA, o)-› u′ and v -(j, OpC, p)-› v′ are in
strict simulation, i.e. they satisfy (5.3), then POp(i, j, u, v) is
valid, and so (∃ u, v • POp(i, j, u, v)) is valid, leading to i ∈
dom(I+

Op) = FIOpFA
; a similar derivation works for o ∈

dom(O+
Op) = FOOpFA

. Hence uF -(iF, OpFA, oF)-› u′F is a
transition of FAbs. We proceed similarly for the concrete
vF -(jF, OpFC, pF)-› v′F.

Regarding the latter, we note that all the component re-
lations of the FAbs and FConc refinement are derived by
existential quantification from the component relations of
the Abs and Conc retrenchment ones. Thus, for the FAbs
and FConc steps just established, and in the manner just
noted, from G(u, v) we derive GF(uF, vF), from POp(i, j, u,
v) we derive IF,Op(iF, jF), from G(u′, v′) we derive GF(u′F,
v′F), and from OOp(o, p; u′, v′, i, j, u, v) we derive OF,Op(oF,
pF).  This is enough for (5.1).

Proposition 7.2 There is a refinement from FAbs to
FConc given by (7.5), (7.7), (7.9). Moreover, for every
complete FConc program, there is a complete FAbs pro-
gram such that (3.8) holds.

Proof. First of all IF,Op and OF,Op are total and onto by con-
struction of FIOpA

and FJOpFC
, and of FOOpA

and FPOpFC
.

It remains to consider the various POs.
For initialisation, if InitFC([v′]) holds, there is a v ∈ [v′]

such that InitC(v) holds. From the retrenchment initialisa-
tion PO, there is a u such that InitA(u) and G(u, v) hold, so
therefore we can derive InitFA([u′]) and GF(uF, vF), where
u ∈ [u′] = uF.

For the operation PO, let GF(uF, vF) ∧ IF,Op(iF, jF) ∧
OpFC(vF, jF, v′F, pF) hold. From OpFC(vF, jF, v′F, pF) we
infer a strictly simulable step v -(j, OpC, p)-› v′ with vF =
[v], jF = j, etc. From strict simulability we deduce that there
is some u -(i, OpA, o)-› u′ such that (u -(i, OpA, o)-› u′) ΣS1

(v -(j, OpC, p)-› v′). By Lemma 7.1, the corresponding
FAbs step uF -(iF, OpFA, oF)-› u′F given by (7.9), is in sim-
ulation with vF -(jF, OpFC, pF)-› v′F. Evidently u′F and oF
provide the existential witness required for the refinement
operation PO.

The claim about complete FConc and FAbs programs
now follows by observing that the retrenchment initialisa-
tion PO is sufficient to prove the refinement initialisation
PO, and then employing a simple induction.

It remains to construct the filters AFil : CMFA → FFA and
CFil : CMFC → FFC and to prove that Fig. 2 commutes.

Procedure 7.3 Let S be a mulifragment of Abs. We define
AFil(S) as the output of the following steps:

[1] Let S1 be the result of removing all not-strictly-simu-
lable execution steps from S (keeping the remaining

• •
ss ssnot ss

•
ss

[ •  • ]

•

G G

•

ss

[ •  • ]

•

G
G

ss

(a)

(b)

(c)

Fig. 3. Illustration of conditions (7.1)-(7.4).
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ones in their original order). (N.B. This may increase
the number of fragments in the multifragment by split-
ting some of the original fragments; other fragments
may become empty.)

[2] Let S2 be the result of mapping all execution steps of
S1 to the system FAbs. (Since only strictly simulable
steps are left, all can be mapped, by Lemma 7.1.)

[3] Let S3 be the result of concatenating all consecutive
concatenable fragments in S2, (so that S3 is curt).

[4] Let S4 be the first nonempty fragment of S3 if any,
otherwise the empty one.

[5] Output S4.

The filter CFil on Conc mulifragments is defined by an
identical procedure.

Example 7.4 Fig. 4 shows the effect of Procedure 7.3 on
an example pair S and T which satisfy S Σ T. Fig. 4.(a)
shows S0 and T0 with strictly simulable steps shown heav-
ier, and with simulable but not strictly simulable steps, and
nonsimulable steps shown light. The strict simulations are
highlighted by shading. Fig. 4.(b) shows the result of eras-
ing not-strictly-simulable steps from both S0 and T0. Fig.
4.(c) shows the result of concatenating the strictly simula-
ble steps as far as possible (assuming in both abstract and
concrete cases that the first four steps are concatenable).

The next proposition verifies that the concatenated strictly
simulable steps always form up into equal length fragments
in the two systems as in Fig. 4.(c).

Proposition 7.5 With the components defined, let S and T
be abstract and concrete multifragments such that S Σ T or
S ΣS T. Then Fig. 2 commutes in the sense that CFil(T ) is
a refinement of AFil(S). If S ΣS T then CFil(T ) and
AFil(S) are both non-empty. If CFil(T ) is extendable to a
complete program CFil(T )CP by adding an initialisation,
then AFil(S) is similarly extendable to a complete program
AFil(S)CP, and CFil(T )CP is a refinement of AFil(S)CP.

Proof. If S ΣS T then we have a non-empty bijection be-
tween the strictly simulable steps of S and T, and if S Σ T
we have a bijection between the simulable steps of S and T,

which contains a (possibly empty) bijection between the
strictly simulable steps of S and T. When mapped to the
systems FAbs and FConc, every pair of steps in strict sim-
ulation survives the filtering by Lemma 7.1 (hence verify-
ing that S ΣS T implies CFil(T ) and AFil(S) are both non-
empty), and verifies the refinement simulation property
(5.1), also by Lemma 7.1. It thus remains to check that the
filters AFil and CFil agree on which pairs are to be retained
in their entirety, and which are to be completely discarded;
in particular that there are no dangling pairs, one element of
which is discarded by AFil with its partner being retained
by CFil, or vice versa.

For a contradiction, suppose that there was such a dan-
gling pair. Let um–1 -(im–1, OpA,m–1, om)-› um and un -(in,
OpA,n, on+1)-› un+1 be abstract steps such that the former is
the last strictly simulable abstract step retained by AFil and
the latter is the first strictly simulable abstract step to be dis-
carded by AFil. Then there can be no intervening strictly
simulable abstract step between them. Let the correspond-
ing concrete steps be vm–1 -(jm–1, OpC,m–1, pm)-› vm and
vn -(jn, OpC,n, pn+1)-› vn+1, both retained by CFil by as-
sumption; these can have no intervening strictly simulable
step between them either. Now, because the two concrete
steps are retained, and CFil discards all but the first frag-
ment of the FConc-mapped multifragment, the FConc-
mapped steps corresponding to vm–1 -(jm–1, OpC,m–1, pm)-›
vm and vn -(jn, OpC,n, pn+1)-› vn+1 must be concatenable,
i.e. vF,m = [vm] = [vn] = vF,n. Therefore by (7.2), uF,m = [um]
= [un] = uF,n, so the FAbs-mapped abstract steps are con-
catenable too, and so the second of them would not have
been discarded, giving the contradiction. That CFil(T ) is
a refinement of AFil(S) now follows straightforwardly, as
does the claim about extensions of CFil(T ) and AFil(S) to
CFil(T )CP and AFil(S)CP.

Given the straightforward way that the refinement has been
extracted from the retrenchment, the appropriate notion of
observability for the refinement is just the standard one,
(3.7). Note furthermore that the above construction is in
fact a homomorphism of the multifragment structure, in
that it is defined pointwise via the strict simulability con-
dition.

Given the observability for the refinement, (3.7), and the
relevant one for the retrenchment, given by S ΣS T in this
instance, how do we map the latter onto the former? The
mechanism is a suitable existential quantification. Take S.
There must exist suitable (after- / before-) pairs of abstract
states for successive strictly simulable abstract steps,
equivalent in the relation generated by (7.1)-(7.4) and thus
defining intermediate abstract states in FAbs, such that the
following can be existentially quantified away:

• these intermediate states themselves,
• all non-strictly-simulable abstract steps,
• everything beyond the first fragment of concatenable

FAbs-mapped steps,

leaving just the data that we naturally identify with the
FAbs part of the refinement observation. Similarly for the

(a)

(b)

(c)

[]

Fig. 4. The action of AFil and CFil.
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concrete side. Clearly, expressing this in a properly formal
manner would drag more or less the whole of the preceding
material into the scope of the quantification, so we desist
from elaborating the details.

8. Example

We now illustrate the construction with a very simple ex-
ample. Consider the models Abs and Conc in Fig. 5,
which we show directly as labelled transition systems. The
states s of the abstract system Abs are subsets of NAT, in-
itiallised to the empty set ∅. There are two operations,
PutA and GetA. They can be defined by the Z schemas:

—— PutA —————————————–
s : P NAT
n? : NAT

——————————————————
n? ∉ s
s′ = s ∪ {n?}

——————————————————

—— GetA —————————————–
s : P NAT
n! : NAT

——————————————————
n! ∈ s
s′ = s \ {n!}

——————————————————

Fig. 5 shows this in essence. The rightward pointing part
of each bidirectional arrow represents a PutA going to a
larger set; the leftward pointing part represents the corre-
sponding GetA going to a smaller set. In the model Abs,
PutA and GetA are inverses of one another whenever their
sequential composition is well defined.

The Conc model is similar but differs in detail. The
states t are either subsets of NAT with cardinality at most 3,

or a distinguished error state X. The initial state is the emp-
ty set as for Abs. There are three operations, PutC, GetC
and ResetC, given by the following Z schemas:

—— PutC —————————————–
t : P NAT ∪ {X}
n? : NAT

——————————————————
(t ≠ X ∧ n? ∉ t ∧ # t < 3 ∧ t′ = t ∪ {n?}) ∨
(t ≠ X ∧ n? ∉ t ∧ # t = 3 ∧ t′ = X)

——————————————————

—— GetC —————————————–
t : P NAT ∪ {X}
n! : NAT

——————————————————
t ≠ X ∧ n! : t
t′ = t \ {n!}

——————————————————

—— ResetC ————————————––
t : P NAT ∪ {X}

——————————————————
t = X
t′ = ∅

——————————————————

Conc is clearly not a refinement of Abs. If it was, the ini-
tialisations at ∅ would have to be linked via the retrieve re-
lation, by (3.1), and by following a suitable sequence of
PutCs, state X and cardinality 4 sets would also have to be
related via the retrieve relation. Then the correctness con-
dition for ResetC, i.e. equation (3.2), breaks down, regard-
less of which abstract operation we try to view ResetC to be
a refinement of.

Conc is, however, a retrenchment of Abs. With cardi-
nality 3 sets retrieving to X this is trivially true, in that the

∅
{0}
{1}
{2}
…

{0,1}
{0,2}
{1,3}
…

{0,1,2}
{0,1,3}
{0,2,3}

…

{0,1,2,3}
{0,1,2,4}
{0,1,3,4}

…

…

…

Abs

∅
{0}
{1}
{2}
…

{0,1}
{0,2}
{1,3}
…

{0,1,2}
{0,1,3}
{0,2,3}

…

X

Conc

Fig. 5. Example Abs and Conc systems.

∅
{0}
{1}
{2}
…

{0,1}
{0,2}
{1,3}
…

Athree
{0,1,2,3}
{0,1,2,4}
{0,1,3,4}

…

…

…

FAbs

∅
{0}
{1}
{2}
…

{0,1}
{0,2}
{1,3}
…

XCthree

FConc

Fig. 6. Example FAbs and FConc systems.
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within, output and concedes relations for Put and Get can
be given by the predicates true, true and false respectively,
and we no longer need to relate ResetC to any abstract op-
eration.  The required POs are then easy to discharge.

The equivalence class construction can be seen as the
least fixed point of the conditions (7.1)-(7.4). Since (7.1)-
(7.4) are clearly monotonic, they can be interpreted as as-
signments that insist that certain proto-equivalence classes
be merged when the one of the antecedents of (7.1)-(7.4) is
true. The merging stops when there is no further change to
the classes, and the least fixed point has been reached.

Viewed in this light, roughly speaking, (7.1) asks that
two abstract states are made equivalent if one is reachable
from the other via a non-simulable path between them, and
they are in correspondence with concrete states. In our ex-
ample, abstract state s = {0,1,2} is non-trivially reachable
from itself via a path consisting of bigger sets (eg.
{0,1,2,3}); such a path is non-simulable. Furthermore
{0,1,2} can also reach {4,5,6} via such a path. Therefore
all abstract sets of cardinality 3 must be merged into the
same class, called Athree in Fig. 6.

Moreover (7.4) forces a equivalence to be made between
concrete states if they are both related to equivalent abstract
states and there is a simulable transition from both of them.
In our example this forces concrete sets of cardinality 3 to
merge; the class is called Cthree in Fig. 6. Finally, (7.2)
and (7.3) have no further effect.

The net result of the above is the transition systems
FAbs and FConc illustrated in Fig. 6. In Fig. 6, for clarity,
we have not shown the extra structure that turns an individ-
ual state from Abs or Conc into a singleton equivalence
class state in FAbs and FConc, where this would be appli-
cable. The transitions of FAbs and FConc are inherited in
the expected way. Note that the transitions into and out of
X have disappeared in FConc, as they are not strictly simu-
lable. So X is unreachable in FConc. As we can see, the
resulting diagrams represent the portions of the original be-
haviour which were in correspondence with one another.
This was the desired effect of the filtering mechanism.

9. Conclusions

In this paper we have briefly sketched how retrenchments
can be viewed as refinements. The approach to this has
been to define a filtering mechanism, whereby two speci-
fications which are related by retrenchment but not refine-
ment are projected to specifications which are related by re-
finement. The projection forms equivalence classes of
states based upon which portions of the specifications are
in correspondence. The notion of correspondence is that
provided by strictly simulable steps in the transition sys-
tems. Essentially the filtering mechanism tries to identify
which portions of the two specifications have to be in cor-
respondence with one another, and the resulting construc-
tion can then be related by inclusion of behaviour. We used
a simple example to illustrate the process.

As indicated briefly in Section 6, a single retrenchment
fixes only the left hand edge of Fig. 2. This leaves the other

three sides of the square free to be constructed in many oth-
er ways. Let us mention some potential technical ingredi-
ents that could figure in such alternative constructions.
• The orientation of the horizontal arrows of Fig. 2 could
be reversed. Thus instead of altering the retrenchment in
order to reveal a refinement, as we did in this paper, one
could look for the biggest refinement contained (in a suita-
ble sense) inside the retrenchment. An interesting issue
here is the extent to which the two approaches were dual (or
perhaps adjoint) to one another.
• In connection with the preceding, one could explore
more sensitive techniques than used in this paper, for ensur-
ing refinability of individual steps extended to refinability
of runs in their entirety.
• Instead of combining states into equivalence classes in
order to mask inappropriate aspects of one or other state in
the class, one could remove troublesome aspects of the sys-
tems involved, whether these were states or transitions, un-
til a refinement was arrived at. Alternatively, one could
consider adding sufficient new structure in a disciplined
way so that a refinement emerged. Again there is an issue
of duality or adjointness to explore.
• One could explore the possibility of broadening the no-
tion of simulation employed in the basic construction. In-
stead of simply basing the construction on strict
simulability, as above, the more general version could be
used. This would entail paying attention to when primitive
simulation elements (i.e. pairs of steps validating (5.2))
abutted, necessitating the use of the strict version, and
when they didn’t, opening the door to a modified version of
the retrieve relation in the manufactured refinement.
• One could consider combinations of the above ap-
proaches, and the conditions needed in order that they may
coexist in the same construction without conflicting with
one another.

Possibilities such as the above are suggestive as regards
the many possible ways that systems which are ‘close’, but
not technically in a refinement, may be brought into a re-
finememt relationship — or to put it another way, how rig-
our might be brought to the informal slogan noted in the In-
troduction, that ‘retrenchment is like refinement except
round the edges’. The details of these will be explored in
further papers.

Besides the preceding, a number of other authors have
looked at issues related to those occurring here. In addition
to retrenchment, work on approximations to refinement in-
cludes that on metric space approaches [9]. Work on deal-
ing with extensions of behaviour includes alternative re-
finement orders as well as behavioural subtyping. For ex-
ample, in a process algebraic context, the implementation
relation EXT [10] has been defined to deal with situations
whereby the behaviour of a specification has been extended
(but is consistent on the unextended portion). This involves
a quantification over the traces of the original specification
in the consistency check (in fact, failures inclusion), allow-
ing for additional traces to be present. Work on behaviour-
al subtyping includes [16]. Here the concern is to define
checks which allowed the behaviour to be extended with
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new operations or actions, for example by allowing a buffer
specification to be augmented with a delete operation. The
concern is thus slightly different, in that our retrenchments
can permit the concrete system to have behaviour which is
an extension of abstract behaviour not only in new opera-
tions, but in the original operations as well. Our example
bears this out.
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