
On Bisimilarities Induced by Relations on Actions

S. Arun-Kumar
Department of Computer Science and Engineering

Indian Institute of Technology, Delhi
Hauz Khas, New Delhi 110 016,India

sak@cse.iitd.ernet.in

Abstract

In this paper, we give a straightforward generalization
of bisimulations to "bisimulations induced by a pair of rela-
tions" on the underlying action set. We establish that many
of the nice properties of bisimulations and bisimilarities
may be thought of as actually being inherited from prop-
erties of the underlying relations on actions. We show that
many bisimulation-based orderings (including strong and
weak bisimilarity) defined in the literature are instances of
this generalization. We also show by an example that there
are instances where the equivalence of two systems (which
intuitively have the same functionality), cannot be estab-
lished directly by observational equivalence, but requires a
more general notion. We finally give an adaptation of the
“on-the-fly algorithm” of Fernandez and Mounier for com-
puting generalized bisimilarities.

1. Introduction

The concept of bisimulation [12] is one of the simplest
examples of a behavioural relation for the equivalence of
concurrent systems. Bisimilarity (the largest bisimulation)
relations have been used since in various aspects of model-
checking, verification and programming language theory.
Bisimulation also possesses and yields some very nice al-
gebraic properties. It is tractable and there exist efficient
algorithms to compute bisimulations and also to determine
whether two systems are inequivalent.

In this paper we generalize the notion of bisimulations
[12] (and bisimilarity) by parametrizing the notion on a pair
of binary relations imposed on the set of actions. We show
that the resulting notion is both useful and necessary. It also
enjoys a rich collection of elegant algebraic properties that
are very easy to prove. The usual notion of bisimulation
is obtained as a special case when both binary relations are
the identity relation on actions. Similarly the notion of weak
bisimilarity is obtained by an equivalence relation on action

sequences.
With a minimal number of assumptions we show that

some of the nice properties of bisimulations and bisimila-
rity relations may be viewed as being induced by the corre-
sponding properties of the underlying relations on actions.
In particular, we may view the properties of reflexivity,
symmetry and transitivity of both strong and weak bisimi-
larity as being inherited from the underlying equivalence
relations on the set of actions.

Finally, we adapt the algorithm of Fernandez and
Mounier [5], to obtain a fairly efficient on-the fly verifi-
cation method for finite state systems. Since we have not
assumed any particular structure for the parametrizing rela-
tions, we assume that that there is a constant time look up
available to determine whether a pair of actions is related.

This paper is organized as follows. In section 2 we de-
scribe a real-life example and the problems of locally veri-
fying solutions to it. In sections 3 and 4 we explore the basic
properties of the generalization that we propose. In particu-
lar, we show how relational properties on the parametrizing
relations are inherited by the induced bisimilarity relations.
We also show that Park’s induction principle holds almost
without change for generalized bisimilarities. We also es-
tablish that various bisimilarities defined in the literature
are special cases of our generalization. With the theory in
place, we revisit the example of section 2 and prove cer-
tain correctness properties between rival implementations
in section 5. In section 6 we describe our algorithm for “on-
the-fly” verification of finite-state systems. Section 7 is the
conclusion.

Notation. Even though our proofs are not specific to any
particular process calculus, we often use the syntax of CCS
[10] for defining processes of particular interest. In par-
ticular, 0 denotes the process which can perform no action
whatsoever. Other notational conventions we use are:

• ≡ for the identity relation on a set. It may be used in
the context of actions, processes and also sets of pro-
cesses,

• ◦ to denote relational composition,

• ℘(U) to denote the powerset of a set U , and

• R−1 to denote the converse of a relation R

2. Motivating Example: A caching proxy
server

In most computing environments, it is fairly common to
find a caching proxy server in operation. Caching proxy
servers improve the performance of web-access within the
network by caching most frequently accessed pages of a
web-server with predominantly static content and serving
them to the clients in the network. The main communi-
cation overhead is restricted to receiving header informa-
tion from the web-site being accessed. This is to determine
whether the cached copy in the proxy is the latest or needs
to be updated. Caching proxies also improve the perfor-
mance of the web-server by reducing the number of direct
accesses to the web-site from distant clients for its content.
In the absence of a proxy, all clients in the network would
directly access the web-site.

We model greatly simplified versions of the clients and
the proxy server, to show that the use of the proxy server
reduces the volume of traffic between the network and the
web-server while still serving the latest information to each
client.

Assume all the clients in a local area network are identi-
cal in design. Intuitively, it suffices to model a single client
which repeatedly accesses either directly or indirectly (via
a proxy server) a single distant web-server with state of the
form (h, a) where h is the header (timestamp) and a the
content. In general, the volume of data a is much greater
than that of the header h.

In this example, written in CCS-style, Process states are
written in SMALLCAPITALS and actions (with parameters)
are written in math style. The following is the set of ac-
tions.

gp() – get page
op(a) – output page a on screen
drp() – direct request for page
dsp(h, a) – directly serve page
irp() – indirect request for page
isp(h, a) – indirectly serve page
drh() – direct request for header
dsh(h) – directly serve header

We assume that the Web server can service only one request
at a time. For a page request, it sends its current page and
for a header request, it determines whether to reply with its
current header or send the latest page. Sending back the
header is an acknowledgement that the page has not been
modified since the last request.

Initially the client remains idle till the system is triggered
by a gp() event received by the client. In the absence of a
proxy server, a typical client DCLIENT, which accesses the
web-server directly, has the following definition.

DCLIENT df= gp().drp().dsp(h, a).op(a).DCLIENT

With the introduction of a proxy server, the clients commu-
nicate only with the proxy and are indeed set up to do just
that. In such a system the clients would look as follows.
The actions involving communications of the clients with
proxy server are irp and isp.

ICLIENT df= gp().irp().isp(h, a).op(a).ICLIENT

We may model the proxy server as follows. Again we
simplify the design of the proxy server by assuming it serves
only one request at a time and that it has some initial unde-
fined content (⊥,⊥) in its cache. On the first request it
obtains the full page from the web-server. For each subse-
quent request it merely sends a request with the header h0

as parameter and waits in the state PRWAIT(h0, a0), where
(h0, a0) denotes the current content in its cache.

PROXY0(⊥,⊥) df= irp().REQPAGE(⊥,⊥)
PROXY(h0, a0) df= irp().CLWAIT(h0, a0)
REQPAGE(h0, a0) df= drp().REQSENT(h0, a0)
CLWAIT(h0, a0) df= drh(h0).PRWAIT(h0, a0)

The web-server may respond either by sending back the
same header h0 (thereby indicating that there has been no
change in the page content), or send an updated page con-
tent (h′

0, a
′
0), with h′

0 �= h0 and a′
0 possibly different from

a0. The proxy now caches this new content. It thus keeps its
cache updated with the latest content for each request and
serves it to the requesting client.

PRWAIT(h0, a0) df= dsh(h0).CACHED(h0, a0)+
dsp(h′

0, a
′
0).CACHED(h′

0, a
′
0)

REQSENT(h0, a0) df= dsp(h′′
0 , a′′

0).CACHED(h′′
0 , a′′

0)
CACHED(h, a) df= isp(h, a).PROXY(h, a)

The client-proxy system in the local area network is de-
fined as follows:

CPSYS df= (ICLIENT|PROXY0(⊥,⊥))
\{irp(_, _), isp(_, _)}

where the parameters “_” denote wildcard values.
It is clear that the two systems CPSYS and DCLIENT are

not weakly bisimilar [10], since CPSYS may perform ac-
tions such as dsh(_) which are not in the sort of DCLIENT.
However they are both “functionally equivalent” in a sense

to be made clear in section 5. Indeed, one can show that
when taken in conjunction with the web-server (and hid-
ing the communications involving it), the two systems are
in fact, weakly bisimilar. But this requires explicit mod-
elling of the web-server, which we shall not do. It should
be possible to reason about the efficacy of a design without
explicitly modelling other processes external to our design,
though it is of course necessary, to know the interface each
external process provides.

3. (ρ, σ)-Bisimulations

A labelled transition system (LTS) L is a triple
〈P, Act,−→〉, where P is a set of process states or pro-
cesses, Act is a (possibly countable) set of actions and
−→ ⊆ P × Act × P is the transition relation. We use
the notation p

a−→ q to denote (p, a, q) ∈ −→ and refer to
q as an a-derivative or an a-successor of p. q is a derivative
or successor of p if it is an a-successor for some action a.
q is reachable from p if either p = q or q is reachable from
some successor of p. Every LTS L = 〈P, Act,−→〉 may
also be imagined to be the LTS L∗ = 〈P, Act∗,−→〉 where
the transitions are over sequences of actions from Act. We
assume that for every state p, p

ε−→ p and for all s ∈ Act∗,
a ∈ Act, p

sa−→ p′ if for some p′′, p
s−→ p′′ a−→ p′.

A rooted LTS is a quadruple 〈P, Act,−→, p0〉 where
〈P, Act,−→〉 is a LTS with a distinguished initial state
p0 ∈ P. In general we will consider the set of states of
such a LTS as consisting only of those states that are reach-
able from the initial state. The term “process” will be used
to refer to a process state in a LTS, as also to the sub-LTS
rooted at that state and containing all the states and tran-
sitions reachable from that given state. Since an arbitrary
disjoint union of LTSs is also an LTS, we shall often refer
to P as the set of all processes.

Definition 3.1 Let P be the set of processes and let ρ and
σ be binary relations on Act. A binary relation R ⊆
P×P is a (ρ, σ)-induced bisimulation or simply a (ρ, σ)-
bisimulation if pRq implies the following conditions.

∀a ∈ Act[p a−→ p′ ⇒ ∃b, q′[aρb ∧ q
b−→ q′ ∧ p′Rq′]] (1)

and

∀b ∈ Act[q b−→ q′ ⇒ ∃a, p′[aσb∧ p
a−→ p′ ∧ p′Rq′]] (2)

(ρ, σ)-bisimilarity, denoted �(ρ,σ), is the largest (ρ, σ) -
bisimulation (under set containment). A (≡,≡)-induced bi-
simulation will sometimes be called a natural bisimula-
tion1. B(ρ,σ) denotes the set of all (ρ, σ)-bisimulations.

1A strong bisimulation on CCS processes is an example of a natural
bisimulation.

Given binary relations ρ, ρ′, σ and σ′ on Act, ρ is at
least as fine as (or no coarser than) ρ′ if ρ ⊆ ρ′ and ρ is
finer than ρ′ if ρ ⊂ ρ′. This notion is extended pointwise
to pairs of relations on Act and by abuse of notation we
write (ρ, σ) ⊆ (ρ′, σ′) to mean that (ρ, σ) is no coarser than
(ρ′, σ′). The following facts are proven in the same way as
they are for bisimulations and the reader is referred to [10]
for their proof.

Proposition 3.1 Let ρ and σ be binary relations on Act and
let R and S be binary relations on the set P of processes.

1. The empty relation ∅ on processes and the relation
{〈0,0〉} are both (ρ, σ)-bisimulations.

2. Arbitrary unions of (ρ, σ)-bisimulations are also
(ρ, σ)-bisimulations.

3. Let B(ρ,σ) be a function on binary relations on P such
that, 〈p, q〉 ∈ B(ρ,σ)(R) iff p and q satisfy the condi-
tions (1) and (2) of definition 3.1. Then

(a) B(ρ,σ) is monotonic i.e. R ⊆ S implies
B(ρ,σ)(R) ⊆ B(ρ,σ)(S).

(b) R is a (ρ, σ)-bisimulation iff R ⊆ B(ρ,σ)(R).

(c) If R is a (ρ, σ)-bisimulation then so is
B(ρ,σ)(R).

(d) �(ρ,σ) =
⋃{R|R ⊆ B(ρ,σ)(R)} is the largest

fixpoint of B(ρ,σ) under set containment.

4. p �(ρ,σ) q iff pRq for some R ∈ B(ρ,σ).

Theorem 3.2 (Park’s Induction Principle). Let R be a
binary relation on processes satisfying the following condi-
tions for all pRq and a, b ∈ Act:

∀p′[p a−→ p′ ⇒ ∃b, q′[aρb ∧ q
b−→ q′ ∧ p′(R ∪ �(ρ,σ))q

′]]

∀q′[q b−→ q′ ⇒ ∃a, p′[aσb ∧ p
a−→ p′ ∧ p′(R ∪ �(ρ,σ))q

′]]

Then R ⊆ �(ρ,σ).

Proof: It is easy to show that R ∪ �(ρ,σ) is a
(ρ, σ)-bisimulation and since �(ρ,σ) is the largest (ρ, σ)-
bisimulation, R ⊆ �(ρ,σ). �

Following proposition 3.1.4, we introduce the notation
R : p �(ρ,σ) q to denote that R is a (ρ, σ)-bisimulation
containing the pair 〈p, q〉 for binary relations ρ, σ on the set
of actions.

Proposition 3.3 Let ρ∗ and σ∗ on Act∗ be respectively the
pointwise extensions of the relations ρ and σ on Act. Then
R : p �(ρ,σ) q iff R : p �(ρ∗,σ∗) q and hence �(ρ,σ) =
�(ρ∗,σ∗) .

We may consider (ρ, σ)-bisimulations where the rela-
tions ρ and σ are defined not on Act but on Act∗ in-
stead. The following proposition characterizes weak bi-
simulations.

Proposition 3.4 . Let Act = A ∪ {τ} be the action struc-
ture of CCS [10]. Let s =̂ t for s, t ∈ Act∗ if ŝ = t̂ where
ŝ ∈ A∗ is the word obtained by deleting all occurrences of
τ in s. Then R is a (=̂ , =̂)-bisimulation if and only if it
is a weak bisimulation.

Proof: R is a weak bisimulation iff pRq implies for every

s, t ∈ Act∗, p
s−→ p′ ⇒ ∃q′, t : ŝ = t̂ ∧ q

t−→ q′ ∧ p′Rq′,
and q

t−→ q′ ⇒ ∃p′, s : ŝ = t̂ ∧ p
s−→ p′ ∧ p′Rq′.

�

As an example of a bisimulation in which ρ is differ-
ent from σ, we consider elaborations [2] on CCS processes,
where a relation R on processes is an elaboration if pRq
implies for every s, t ∈ Act∗, p

s−→ p′ ⇒ ∃q′, t :
s =̂ t ∧ q

t−→ q′ ∧ p′Rq′, and q
t−→ q′ ⇒ ∃p′, s : s �

t∧ p
s−→ p′ ∧ p′Rq′. The preorder � is the partial order on

Act∗ generated by the (in)equations s � s and τs � s. We
then have

Proposition 3.5 An elaboration is exactly a (=̂ ,�)-
bisimulation.

A consequence of proposition 3.1 is the following the-
orem which yields an algebraic sufficiency condition for a
bisimilarity to be at least a preorder (reflexive and transi-
tive). The notion of a semiring is taken from [8]. The last
part of the theorem follows from the second part and the
definition of a semiring.

Theorem 3.6 . Let ℘(P × P) be the set of all binary rela-
tions on processes. Then

1. 〈B(ρ,σ),∪, ∅〉 is a commutative submonoid of
〈℘(P × P),∪, ∅〉.

2. �(ρ,σ) is a preorder if 〈B(ρ,σ), ◦,≡〉 is a submonoid of
〈℘(P × P), ◦,≡〉.

3. �(ρ,σ) is a preorder if 〈B(ρ,σ),∪, ◦, ∅,≡〉 is a sub-
semiring of the structure 〈℘(P × P),∪, ◦, ∅,≡〉.

Some more algebraic properties of bisimilarities are ob-
tained by inverting or composing bisimilarities.

Proposition 3.7 . Let ρ, ρ1, ρ2, and σ, σ1, σ2 be relations
on actions.

1. R : p �(ρ,σ) q implies R−1 : q �(σ−1,ρ−1) p, and

hence �−1
(ρ,σ) = �(σ−1,ρ−1) .

2. If R1 : p �(ρ1,σ1) q and R2 : q �(ρ2,σ2) r
then R1 ◦ R2 : p �(ρ1◦ρ2,σ1◦σ2) r. Consequently,
�(ρ1,σ1) ◦ �(ρ2,σ2) ⊆ �(ρ1◦ρ2,σ1◦σ2) .

The following simple lemma shows that binary relations
(on actions) with certain properties transmit these properties
to the bisimulations and bisimilarities they induce.

Lemma 3.1 (Transmission). Let ρ, ρ′, σ and σ′ be binary
relations on Act. Then

1. Monotonicity_1. (ρ, σ) ⊆ (ρ′, σ′) implies B(ρ,σ) ⊆
B(ρ′,σ′), i.e. every (ρ, σ)-bisimulation is also a
(ρ′, σ′)-bisimulation.

2. Monotonicity_2. (ρ, σ) ⊆ (ρ′, σ′) implies the in-
duced bisimilarities are also similarly related2, that is,
(ρ, σ) ⊆ (ρ′, σ′) implies �(ρ,σ) ⊆ �(ρ′,σ′).

3. Reflexivity. If ρ and σ are both reflexive then the iden-
tity relation ≡ on P is a (ρ, σ)-bisimulation and con-
sequently �(ρ,σ) is reflexive.

4. Symmetry. ρ and σ are both symmetric implies
the converse of each (ρ, σ)-bisimulation is a (σ, ρ)-
bisimulation. In addition, if ρ = σ then �(ρ,σ) is a
symmetric relation.

5. Transitivity. If ρ and σ are both transitive then the re-
lational composition of (ρ, σ)-bisimulations is another
(ρ, σ)-bisimulation, and �(ρ,σ) is also transitive.

6. If ρ and σ are both preorders or partial orders then
�(ρ,σ) is a preorder.

The efficiency preorder ([1]) is an example of a (ρ, ρ)-
bisimilarity induced by the partial order � on action se-
quences. Notice also that �(�,�) is not a partial order
though it is induced by the partial order � on action se-
quences.

4. Special cases: σ = ρ and σ = ρ−1

Thus far we have dealt with (ρ, σ)-bisimulations with-
out assuming any connection between ρ and σ. But it is
clear that useful bisimilarities with interesting properties
are obtained only when the two are also related in some
fashion. We consider the two obvious relationships σ = ρ
and σ = ρ−1 respectively. Both strong and weak bisimu-
lations are examples of (ρ, ρ)-bisimulations and (ρ, ρ−1)-
bisimulations.

When ρ = σ and ρ′ = σ′, the converses of the properties
1, 2, 3, 4 and 5 in lemma 3.1 hold, yielding an obvious
characterization (theorem 4.1). For any binary relation ρ on
Act let B(ρ,ρ) be the family of (ρ, ρ)-bisimulations.

2However, (ρ, σ) ⊂ (ρ′, σ′) does not imply �(ρ,σ) ⊂ �(ρ′,σ′).

Lemma 4.1

1. Monotonicity. If B(ρ,ρ) ⊆ B(ρ′,ρ′) then ρ ⊆ ρ′. Simi-
larly, if �(ρ,ρ) ⊆ �(ρ′,ρ′) then ρ ⊆ ρ′.

2. Reflexivity. Let ≡ be the identity relation on pro-
cesses. Then ≡ ∈ B(ρ,ρ) implies ρ is reflexive. Also
if ≡ ⊆ �(ρ,ρ) then ρ must be reflexive.

3. Symmetry. If R ∈ B(ρ,ρ) implies R−1 ∈ B(ρ,ρ) then
ρ must be symmetric. Similarly the symmetry of �(ρ,ρ)

implies ρ must be symmetric.

4. Transitivity. If R, S ∈ B(ρ,ρ) implies R ◦ S ∈ B(ρ,ρ),
then ρ is transitive. In other words, if 〈B(ρ,ρ), ◦〉 is
a semigroup then ρ is transitive. Further, if �(ρ,ρ) is
transitive then so is ρ.

5. If ρ is an equivalence relation then so is �(ρ,ρ).

Theorem 4.1 . For any binary relation ρ on Act,

1. �(ρ,ρ) is a preorder iff ρ is a preorder.

2. �(ρ,ρ) is an equivalence iff ρ is an equivalence rela-
tion.

3. If ρ is a preorder then �(ρ,ρ−1) is an equivalence

Proof: Parts (1) and (2) follow quite trivially from appro-
priate parts in lemmata 3.1 and 4.1. As for part (3) we know
that if ρ is a preorder then so is ρ−1 and hence �(ρ,ρ−1)

is a preorder. By proposition 3.7 we have �−1
(ρ,ρ−1) =

�((ρ−1)−1,ρ−1) = �(ρ,ρ−1) . Hence �(ρ,ρ−1) is also sym-
metric. �

It is certainly true that if �(ρ,ρ−1) is an equivalence then
ρ must be reflexive, but a sharper characterization eludes us.

5. The Proxy Server Revisited

Without explicitly modelling the web-server we may still
compare the two systems CPSYS and DCLIENT. To prove
that the two systems are functionally equivalent we could
relate actions which produce “similar effects”. In other
words, define =ρ to be the smallest equivalence such that

• drh() =ρ drp() and

• dsh(h) =ρ dsp(h, a), for any (h, a)

• ε =ρ τ

We assume that any process p may perform the empty se-
quence ε, and become itself. Then we may readily see that
CPSYS �(=ρ,=ρ) DCLIENT.

However, a more interesting comparison (which goes
beyond merely a proof of functional correctness) involves

using a relation between the costs of functionally equiva-
lent communication actions. The internal action incurs “no
cost” since each internal action occurs within the local area
network and does not involve communication with any dis-
tant entity. Every visible action does carry a cost however,
but we assume all of them to be negligible in comparison
with that of receiving an entire page from the web-server.
Therefore let ≤ be the smallest preorder satisfying

• drh(h) ≤ drp() and drp() ≤ drh(h), for any
header h

• dsh(h) ≤ dsp(h, a), for any (h, a)

• ε ≤ τ , and τ ≤ ε.

It is clear then that CPSYS �(≤,≤) DCLIENT.

6. Computing (ρ, σ)-bisimulations “on the fly”

In this section we adapt the "on the fly" approach of [5] to
compare finite-state labelled transition systems for (ρ, σ)-
bisimilarity without explicitly representing them. Thus, the
verification can be done during the process of constructing
the two transition systems (verification "on the fly"). The
approach makes the decision about (ρ, σ)-bisimilarity of
two finite-state systems in O(n2|Act|) time where n is the
number of nodes of the product LTS (whose construction
we explain below) and |Act| is the size of the finite action
set actually used to label the transitions. But the approach
has its benefits in space savings since, in general, we do not
need to store the states of the two LTSs.

For finite state systems �(ρ,σ), the greatest fixpoint of the
monotonic function B(ρ,σ) (see proposition 3.1(3)), may be
obtained as the intersection of a sequence of decreasing re-
lations.

Proposition 6.1 �(ρ,σ) =
⋂
i≥0

�i
(ρ,σ) where �i

(ρ,σ) is de-

fined inductively as

• ∀p, q ∈ P : p �0
(ρ,σ) q and

• p �i+1
(ρ,σ) q if and only if

∀a ∈ Act : ∀p′[p a−→ p′ =⇒
∃b, q′ : (aρb ∧ q

b−→ q′ ∧ p′ �i
(ρ,σ) q′)]

∧
∀b ∈ Act : ∀q′.[q b−→ q′ =⇒
∃a, p′ : (aσb ∧ p

a−→ p′ ∧ p′ �i
(ρ,σ) q′)]

Let
L = 〈P, ActL,−→L, p0〉

and
M = 〈Q, ActM ,−→M , q0〉

be two rooted LTSs. Their productL×M is the rooted LTS

N = 〈R, ActN ,−→N , r0〉

with R ⊆ (P×Q)∪ {⊥}, ActN = (ActL ∩ActM)∪ {†},
where ⊥/∈ P ∪ Q and † /∈ ActL ∪ ActM . −→N and R are
defined as the smallest sets obtained by the applications of
the following rules:

(p0, q0) ∈ R

(p, q) ∈ R, p
a−→ p′, q b−→ q′, aρb

(p′, q′) ∈ R, (p, q)
(a,b)−→ (p′, q′)

(p, q) ∈ R, p
a−→ p′, q b−→ q′, aσb

(p′, q′) ∈ R, (p, q)
(a,b)−→ (p′, q′)

(p, q) ∈ R, p
a−→ p′, ∀b ∈ ρ(a) : q � b−→

⊥∈ R, (p, q)
†−→⊥

(p, q) ∈ R, q
b−→ p′, ∀a ∈ σ−1(b) : p � a−→

⊥∈ R, (p, q)
†−→⊥

Let L = 〈P, Act,−→, p0〉 be a finite rooted LTS and p
a state of P. The set of finite execution sequences from p
(denoted Ex(p)) is defined as

Ex(p) = {µ ∈ P∗| µ(0) = p ∧
∀i : 0 ≤ i ≤ |µ|, ∃ai ∈ Act :
µ(i) ai−→ µ(i + 1)}

Ex(p0) is the set of execution sequences of L. An execu-
tion sequence is called elementary if all its states are dis-
tinct. Exe(p) is the set of elementary execution sequences
of p.

Theorem 6.2 Let L ×M = N be LTSs as defined above.
Then p0 ��(ρ,σ)q0 iff there exists an elementary execution se-
quence µ = (p0, q0), (p1, q1) . . . (pk, qk),⊥ of length k + 2
such that pi ��k−i+1

(ρ,σ) qi, for all i, 0 ≤ i ≤ k.

Proof: (⇒) p0 ��(ρ,σ)q0 implies for some k ≥ 0,

p0 ��k+1
(ρ,σ)q0. If k = 0 then (p0, q0)

†−→⊥ and the theorem is
proved. So assume k ≥ 1. Let k be the least positive inte-
ger such that p0 ��k+1

(ρ,σ)q0 i.e. p0 ��k+1
(ρ,σ)q0 and p0�

k
(ρ,σ)q0.

Then it is easy to see that there exist p1, q1, a1, b1 such that

(a1, b1) ∈ ρ ∪ σ, p0
a1−→ p1, q0

b1−→ q1, p1 ��k
(ρ,σ)q1 and

p1�
k−1
(ρ,σ)q1. If k − 1 = 0 then µ = (p0, q0), (p1, q1),⊥ is

the required sequence. if k − 1 > 0 then we may repeat the
above for (p1, q1) and get (p2, q2) and so on.
(⇐) It is obvious that p0 ��k+1

(ρ,σ)q0 if such a sequence exists.

�

In order to decide if L and M are (ρ, σ)-bisimilar, it is
sufficient to check whether or not there exists an elementary
execution sequence of L × M which contains the state ⊥
and which is such that all of its states (p, q) satisfy the con-
dition p ��(ρ,σ)q. Consequently, the main problem is to be
able to decide for each state (p, q) ∈ R, whether p ��i

(ρ,σ)q
for some i > 0. We have

p ��i
(ρ,σ) q

⇐⇒ [∃a, p′ : p
a−→ p′∧

(∀b ∈ ρ(a) : q � b−→ ∨
(∀q′ : q

b−→ q′ ⇒ p′ ��i−1
(ρ,σ)q

′))] ∨
[∃b, q′ : q

b−→ q′∧
(∀a ∈ σ−1(b) : p � a−→ ∨
(∀p′ : p

a−→ p′ ⇒ p′ ��i−1
(ρ,σ)q

′))]
⇐⇒ p ��1

(ρ,σ)q ∨
[∃a, p′ : p

a−→ p′∧
(∀b ∈ ρ(a) : ∀q′ :
(q b−→ q′ ⇒ p′ ��i−1

(ρ,σ)q
′))] ∨

[∃b, q′ : q
b−→ q′∧

(∀a ∈ σ−1(b) : ∀p′ :
(p a−→ p′ ⇒ p′ ��i−1

(ρ,σ)q
′))]

Hence during a depth-first search (DFS) of the LTS N ,
for each state (pn, qn) one may check for pn ��1

(ρ,σ)qn and
update for each of its predecessors (pm, qm), the evidence
to support the truth of the assertion pm �(ρ,σ) qm. Since
attention may be restricted to elementary sequences, each
sequence in the DFS is terminated by exactly one of the
following possible states rn:

• rn =⊥. Then clearly pm ��(ρ,σ)qm, for each predeces-
sor (pm, qm).

• rn = (pn, qn) is a sink node. There are no more transi-
tions to analyze. Then pn�(ρ,σ)qn and for each prede-
cessor (pm, qm), it is assumed that pm�(ρ,σ)qm, pend-
ing further evidence to the contrary.

• rn = (pi, qi) for some i < n. The assumption
pm�(ρ,σ)qm continues to hold and the algorithm back-
tracks after updating the books of the predecessors re-
garding their current successors in this sequence.

With each pair (p, q) are associated bit arrays
RHO(p, q) and SIGMA(p, q) each of size |T (p)|+ |T (q)|
where T (p) = {(a, p′)|p a−→ p′}. For any successor

(p′, q′) with (p, q)
(a,b)−→ (p′, q′), if p′�(ρ,σ)q

′ gets estab-
lished then RHO(p, q)[a, p′] is set true if aρb. Similarly

SIGMA(p, q)[b, q′] is set true if aσb. Once all the suc-
cessors of (p, q) have been so analyzed, p�(ρ,σ)q gets es-
tablished only if every bit in the arrays RHO(p, q) and
SIGMA(p, q) has been set true.

As in the approach of [5], it is necessary to assume
p�(ρ,σ)q to facilitate an analysis of its successors. However
p�(ρ,σ)q gets established only after all its successors have
been analyzed and no elementary execution sequence is
found to contradict it. To reduce the exponential complexity
(due to backtracking) of a DFS algorithm the states visited
along with their status would have to be stored. Since states
are visited in a prefixed order but analyzed in a postfixed
order, visited states in this case may not have been fully
analyzed and hence their status would be unreliable unless
they have been found to be unrelated under the �(ρ,σ).

Hence the data structures for this partial DFS algorithm
includes three sets

• R, to store the set of states that are visited more than
once in the current sequence,

• V , to store all visited states, and

• W , containing all states (p, q), whose status is p ��ρ,σq

and three stacks

• St1, which contains tuples of the form
((a, b, δ, p1, q1), l) where (p1, q1) is a (a, b)-successor
of the preceding state on St1, with aδb where
δ ∈ {ρ, σ}; l is the list of successors of the state
(p1, q1) containing similar tuples.

• St2 and St3 respectively contain the bit arrays RHO
and SIGMA for the corresponding states of St1.

A top-down rendering of the algorithm is shown in Al-
gorithm 6.1, Function 6.2, Procedure 6.3, Procedure 6.4 and
Procedure 6.5.

W := ∅;
repeat

result := partial_DFS
until result ∈ {TRUE, FALSE}
return result

6.1: Algorithm

The reasoning involved in the proofs of correctness and
termination of the algorithm follow the pattern of those in
[5] and have been omitted. We only mention that the set W
can only increase in size with each iteration. Consequently
the main algorithm will eventually return either TRUE or
FALSE.

Let n be the number of states of N . The time require-
ment for the function partial_DFS is O(n). In the worst
case, W may contain all the states in R, thus the number

Initialize;
while St1 �= ∅ do

stable := true;
((a, b, δ, p, q), l) := top(St1);
rho := top(St2); sigma := top(St3);
if l �= ∅ then

MoveForward
else

backtrack
end if

end while
rho := top(St2); sigma := top(St3);
if rho[p] �= 1 ∨ sigma[q] �= 1 then

return FALSE {p ��(ρ,σ)q}
else if stable then

return TRUE {p�(ρ,σ)q}
else

return UNRELIABLE
end if

6.2: Function partial_DFS

V := ∅; R := ∅; stable := false;
St1 := {(ε, ε, ∅, p0, q0), succ(p0, q0)};
push onto St2 a bit array of size 1;
push onto St3 a bit array of size 1;
push onto St2 a bit array of size |T (p0)| + |T (q0)|;
push onto St3 a bit array of size |T (p0)| + |T (q0)|;

6.3: Procedure Initialize

of calls of this function may be n. Consequently, the theo-
retical time requirement for this algorithm is O(n2|Act|2).
We assume that looking up the relations ρ and σ takes con-
stant time. The memory requirement for the algorithm is
O(n + |Act|2).

7. Conclusion

In the foregoing we have generalized the notion of a
bisimulation to one parametrized by a pair of relations.
We have shown that the commonly accepted properties of
bisimilarities are in fact inherited from the underlying rela-
tions on actions.

Using these notions we have shown that some of the
bisimilarity relations already available in the literature are
special cases of our more generalized definition. Further
our proxy example has illustrated that some times it is more
beneficial to compare (open) systems by using the relative
costs of performing functionally similar actions. This weak-
ens the usual notion of bisimilarity which demands identity
of visible actions. Our example also indicates that for open
systems, weak-bisimilarity (and indeed other extensional
equivalence notions that are coarser than it and rely on the

Choose and remove (a1, b1, δ1, p
′, q′) from l;

if (p′, q′) �∈ V ∪ W then
if (p′, q′) �∈ St1 then

if (p′, q′) � †−→⊥ then
push ((a1, b1, δ1, p

′, q′), succ(p′, q′)) on St1;
push a bit array of size |T (p′)| + |T (q′)| on St2;
push a bit array of size |T (p′)| + |T (q′)| on St3

else
W := W ∪ {(p′, q′)}

end if
else

R := R ∪ {(p′, q′)};
if (δ1 = ρ) then

rho[a1, p
′] := 1

else
sigma[b1, q

′] := 1
end if

end if
else if (p′, q′) �∈ W then

if (δ1 = ρ) then
rho[a1, p

′] := 1
else

sigma[b1, q
′] := 1

end if
end if

6.4: Procedure MoveForward

identity of names of actions) may not be useful enough.
However, some problems which have eluded obvious so-

lutions are the following:

1. Theorem 3.6 only gives a sufficient condition for a
(ρ, σ)-bisimilarity to be a preorder. A necessary condi-
tion on the semiring of (ρ, σ)-bisimulations would be
desirable, when ρ �= σ. More specifically, whereas ne-
cessity of reflexivity in the underlying pair of relations
may be proven fairly easily, transitivity eludes us.

2. From a purely verification perspective, there exist effi-
cient algorithms, notably that of Paige and Tarjan [11],
which partition the state space into equivalence classes
and enable the computation of natural bisimilarity. It
is not clear what the right generalization for the com-
putation of (ρ, σ)-bisimilarities is.

3. It is also not clear at the moment, what the right gen-
eralization would be, to capture other cost-based pre-
orders and equivalences such as those of [9, 3, 4, 6].
In [7] there is yet another kind of bisimulation which
does not fit into this framework, though one compo-
nent of the pair of relations on actions was used there
to define the bisimulation notion.

Acknowledgements. I am grateful to Pranav Singh for

pop(St1); pop(St2); pop(St3);
rho′ := top(St2); sigma′ := top(St3);
if ∀p′ : rho[p′] = 1 ∧ ∀q′ : sigma[q′] = 1 then

if (δ = ρ) then
rho′[a, p1] := 1

else
sigma′[b, q1] := 1

end if
else

W := W ∪ {(p′, q′)};
if (p′, q′) ∈ R then

stable := false
end if

end if

6.5: Procedure backtrack

pointing out part 3 of theorem 4.1. Sandeep Bharadwaj has
implemented the algorithm for “on-the-fly” verification on
the Concurrency Workbench of the New Century.

References

[1] S. Arun-Kumar and M. Hennessy. An efficiency pre-
order for processes. In Theoretical Aspects of Com-
puter Software, Sendai 1991, number 526 in Lecture
Notes in Computer Science, pages 152–175. Springer-
Verlag, 1991.

[2] S. Arun-Kumar and V. Natarajan. Conformance: A
precongruence close to bisimilarity. In STRICT, Berlin
1995, number 526 in Workshops in Computing Series,
pages 55–68. Springer-Verlag, 1995.

[3] F. Corradini, R. Gorrieri, and M. Rocetti. Performance
preorder and competitive equivalence. Acta Informat-
ica, 34:805–835, 1997.

[4] F. Corradini, W. Vogler, and L. Jenner. Comparing the
worst-case efficiency of asynchronous systems with
PAFAS. Acta Informatica, 38:735–792, 2002.

[5] J.-C. Fernandez and L. Mounier. ‘On the fly’ verifi-
cation of behavioural equivalences and preorders. In
K.G. Larsen and A. Skou, editors, Computer Aided
Verification (CAV ’91), volume 575 of Lecture Notes
in Computer Science, pages 181–191, Aalborg, Den-
mark, July 1991. Springer-Verlag.

[6] L. Jenner and W. Vogler. Comparing the efficiency
of asynchronous systems. Technical Report 1998-3,
Universitat Augsburg, December 1998.

[7] Astrid Kiehn and S. Arun-Kumar. Amortised bi-
simulations. In Proceedings Formal Techniques for

Networked and Distributed Systems - FORTE 2005,
LNCS 3731, Springer-Verlag, 2005.

[8] W. Kuich and A. Salomaa. Semirings, Automata, Lan-
guages. Volume 5: EATCS Monographs on Theoreti-
cal Computer Science. Springer-Verlag, 1986.

[9] G. Luettgen and W. Vogler. A faster then relation for
asynchronous processes. In Proceedings CONCUR
2001, LNCS 2154, Springer-Verlag, pages 262 – 276,
2001.

[10] R. Milner. Communication and Concurrency.
Prentice-Hall International, 1989.

[11] R. Paige and R.E. Tarjan. Three partition refinement
algorithms. SIAM Journal of Computing, 16(6):973–
989, December 1987.

[12] D. M. R. Park. Concurrency and automata on infinite
sequences. In Proceedings of the 5th GI Conference
on Theoretical Computer Science, volume 104, pages
167–183. Lecture Notes in Computer Science, 1981.

