
Configurable Proof Obligations in the Frog Toolkit

Simon Fraser, Richard Banach
School of Computer Science, University of Manchester,

Manchester M13 9PL, UK.
{sfraser,banach}@cs.man.ac.uk

Abstract

In model based formal methods, incompatible tools for dif-
ferent techniques is the norm. However, greater applica-
bility to industrial scale systems increasingly requires com-
bining the strengths of different techniques, in line with the
Verification Grand Challenge. The Frog tool embodies a
construct-based specification syntax, and its meta-language
Frog-CCL allows the generic configuration of both a con-
struct’s syntax and its proof obligations. For a specific sys-
tem, Frog generates the system’s verification conditions me-
chanically from the generic ones. Relationships between
systems such as refinement and retrenchment can be config-
ured. An example retrenchment between two simple systems
illustrates the technique.

1. Introduction

In 2003 Hoare propounded a grand challenge for verifi-
cation [13]. Since that time, the initial idea has evolved
[16, 26] into a long-term research program with three prin-
cipal objectives, one of them being the creation of a tool
set that provides support for the verification process. The
aim of such a tool set would be to produce compatible and
comprehensive tools that are able to tackle all of the activi-
ties involved, since typically, each of the many verification
tools that exist today tend to utilize a single technique, and
in most cases they are unable to interact easily with tools be-
longing to other kits. This more dynamic approach to tools
is slowly finding increasing support within the formal devel-
opment community, with tools such as RODIN [10, 25] and
Overture [18, 21] pursuing a more configurable approach.

The creation of the Frog toolkit, the subject of this paper,
was principally motivated by the need to mechanically sup-
port retrenchment [7, 22, 23]. Retrenchment is an emerging
formal technique that can fruitfully be used alongside re-
finement [2, 11] in the development of systems. The need
for Frog to combine retrenchment and refinement meant
that a highly configurable approach to the internal struc-

ture of the tool was desirable from the outset. Thus Frog ’s
need for flexibility neatly meets the contemporary trend for
configurability and interworking, though it was conceived
independently.

Frog is a toolkit supporting the rigorous development
of model based specifications, generating proof obligations
whose discharge would verify the associated development.
Tools exist to support such proof driven model based pro-
cesses, but they are typically monolithic, resisting the in-
troduction and integration of techniques other than the one
they were originally conceived to support. See [3] for an at-
tempt to integrate retrenchment into the B-Toolkit1 [17, 28].

So we decided to create a new toolkit that was capable
of using a variety of techniques within a single development
environment — and which moreover would keep the theory
of those techniques distinct from the internals of the tool it-
self. Thus Frog was intended to be capable of supporting
not just techniques like refinement and retrenchment as cur-
rently conceived, but to be fully configurable and extend-
able, so that it would support experimentation in the nature
of the relationship between models. We sought therefore
to produce a mechanizable framework where the shape of
the models in a specification, and the relationships between
those model, were fully manipulable. This paper describes
such a framework.

2. A Construct-based Specification Syntax

Frog uses the notion of a construct to refer to an entity that
specifies either a machine or a relationship between ma-
chines. We define a state transition machine to be a rep-
resentation of some part of a system’s behaviour that can be
combined with other machines to specify a complete sys-
tem (similar to that of an abstract machine in the B-Method
[1]). We define a relationship to be a formal description of
the way in which two machines’ behaviour relates.

We use a simple syntax (which we will discuss in
more detail below) to describe our constructs and leverage

1Developed by B-Core Ltd. (http://www.b-core.com/).

the Z notation [24, 27] to specify the behaviour of those
constructs. An example of a machine with a single state
variable and an operation to increment that variable is
shown below.

MACHINE myNumberMachine

TYPE simpleMachine

SECTIONstandard toolkit

STATE

a : N

INITIALIZATION

| a = 0

OPERATIONincrement =̂
POST

| a′ = a + 1

END increment

END myNumberMachine

As our system stipulates that constructs must be config-
urable, we need to specify that we are using a machine and
also the particular configuration used in this instance. The
‘TYPE’ clause is used to indicate a construct’s configura-
tion; in this instancesimpleMachine. The only other clause
of notable interest is the ‘SECTION’ clause that allows us
to take advantage of Z’s section structuring, and declare one
or more parent sections for our construct. As with standard
Z this permits us to use the variables defined in that section;
here we use the standard mathematical toolkit as described
in Appendix A of [14].

3. Frog-CCL

We now present a meta-language, Frog-CCL, for describ-
ing the configuration of a machine or a relationship. We
decided that the first generation of our language should be
as simple as possible, whilst providing a great deal of flexi-
bility. We restricted the options so that the configuration for
a construct would involve a declaration of its contents and
instructions on how to use those contents to create its proof
obligations. In the future we may desire to incorporate more
intricate options in configurations. For example, we may
wish to configure a machine similar to the implementation
machine of the B-Method and enforce a restriction that the
machine must be a refinement of another and cannot be fur-
ther refined. We did not feel that this level of detail would
be required in our first iteration, but have attempted to make
the definition as extensible as possible.

3.1. Syntax

In the syntax of Frog-CCL (the grammar for this language
can be found in [12]), a construct’s configuration has three
constituents. Firstly, we define the clauses that belong to the
construct. These clauses will hold the content of the con-
struct and may, for example, represent its state or its initial-
ization. Secondly, we define the operation environments be-
longing to the construct. Each environment will contain re-
lated clauses that define behaviour at a sub-construct level.
For instance, we may have an operation environment that
describes the operations of a machine or the ramifications
of a retrenchment. The final part of a construct’s configura-
tion is the generic proof obligations that instruct a tool how
to generate the specific proof obligations for an instance of
that construct. An example of the configuration for a simple
machine is given below.

DEFINE MACHINE simpleMachine
CLAUSES
(NAME= state, LEVEL= MACHINE,

REQUIREMENT= OPTIONAL, CONTENT= SCHEMA_TEXT,
RELATION= <state>),

(NAME= initialization, LEVEL= MACHINE,
REQUIREMENT= OPTIONAL, CONTENT= SCHEMA_TEXT,
RELATION= <state>),

(NAME= inputs, LEVEL= operation,
REQUIREMENT= OPTIONAL, CONTENT= SCHEMA_TEXT,
RELATION= <inputs>),

(NAME= outputs, LEVEL= operation,
REQUIREMENT= OPTIONAL, CONTENT= SCHEMA_TEXT,
RELATION= <outputs>),

(NAME= pre, LEVEL= operation,
REQUIREMENT= OPTIONAL, CONTENT= SCHEMA_TEXT,
RELATION= <state,inputs>),

(NAME= post, LEVEL= operation,
REQUIREMENT= MANDATORY, CONTENT= SCHEMA_TEXT,
RELATION= <state,state’,inputs,outputs>)

OPERATION_ENVIRONMENTS
(NAME= operation, REQUIREMENT= OPTIONAL)
PROOF_OBLIGATIONS
(CONSTRUCT_LEVEL,

(# u @ u : state & u : initialization)),
(OPERATION_LEVEL,

(# u,i
@ u : state & i : operation.inputs

& <u,i> : operation.pre)),
(OPERATION_LEVEL,

(! u,i
@ u : state & i : operation.inputs

& <u,i> : operation.pre
=>
(# u’,o

@ u’ : state & o : operation.outputs
& <u,u’,i,o> : operation.post)))

END

The first section of our configuration describes the avail-
able clauses. Each clause has a number of attributes most
of which are self-explanatory. The ‘LEVEL’ attribute in-
dicates whether a clause is used at the construct level (in
which case we use the keyword ‘MACHINE’) or is specific

to an operation environment (in which case we use the name
of the required operation environment). In our example we
have clauses to store the state of a machine and to initialize
that state at the construct level. We then define a number
of clauses to be used to form an operation, these define the
inputs and outputs of the operation and its pre and postcon-
ditions. Of interest is the ‘RELATION’ attribute. It is used
to both indicate the variables that are within the scope of
the clause and also the signature of the relation produced
when the clause is used in a proof obligation. When config-
uring a machine we can refer to the clauses of the machine,
with a relationship we can refer to the clauses of both ma-
chines involved in that relationship. If a clause name is used
within the relation attribute, and is decorated with an apos-
trophe we also decorate all of its variables likewise2. We
will discuss the use of the ‘RELATION’ attribute in gener-
ating proof obligations below.

Each construct can also have a number of operation envi-
ronments, each of which again has a number of attributes. In
our example we use an operation environment to perform an
operation on the state of a machine. The operation environ-
ment itself needs little configuration and is used principally
as a container.

Finally, each construct will also have a number of proof
obligation configurations, the first part of which specifies
the level of the proof obligation. Construct level proof obli-
gations will be instantiated once for every construct. Op-
eration level proof obligations will be instantiated once for
every valid operation environment. The second part is a
specification of the proof obligation itself. We provide a
basic, ASCII syntax for creating theorems that can express
the proof obligation. This syntax is best understood by ex-
amining how the configuration is used to create the specific
proof obligations for an instance of a construct.

3.2. Generating Proof Obligations

The first stage of instantiating the generic proof obligations
of a configuration is to create an instance of each construct
level proof obligation and one instance, per operation envi-
ronment, for every operation level proof obligation. When
generating proof obligations for relationships, we generate
an instance of each operation level proof obligation for ev-
ery matching pair of operations (a matching pair is consid-
ered to be one where the names of the operations are iden-
tical in both source and target machine). We then use the
specification of the construct instance to create relationsthat
replace the clause references in the generic proof obliga-
tions. If there are clauses that are used in the generic proof

2This is typically used to distinguish between the pre-transition and
post-transition values of variables. For example, we may have a relation
<state,state’> which allows the use of both pre-transition and post-
transition values of variables, and enables us to distinguish between them.

obligation, but are not defined in the specification of the
construct instance, we must then eliminate the references to
these clauses in our specific proof obligation.

We will illustrate this process through an example.
Consider the machinemyNumberMachine alongside the
simpleMachine configuration that we presented in section
3.1.

Construct Level Proof Obligations. Our configuration
states that we have a single construct level proof obligation
which we can present in the Z notation as follows.

⊢? ∃ u • u ∈ state ∧ u ∈ initialization

Each clause in the generic proof obligation is substituted
with its equivalent relation. Woodcock and Davies [27]
describe how we can translate between the language of
schemas and relations. The substitution process therefore,
involves two steps: creating the schema from the clause,
and creating the relation from the resultant schema.

Consider first the generation of the relation for the state
clause of our example machine. We examine first the re-
lation attribute of the clause to determine the shape of the
relation we wish to produce. In this instance, we require
the variables of the state clause to be included in our rela-
tion. Hence, the relation we require is of the form described
below,

{state schema • θstate schema}

where thestate schema is the schema produced from the
state clause. To create the schema that represents the state
clause, we first need to examine the relation attribute for the
clause. As the clause is self-referencing we do not need to
import variables from any other clauses. We then determine
that the content of the state clause is itself a schema. The
schema for the state clause is as follows.

state schema == [a : N]

We can then substitute the definition ofstate schema into
our relation definition and resolve the binding construction
expression, giving us a final relation as follows.

{a : N • a}

The final a is, of course, superfluous as the set compre-
hension is characteristic. We will, therefore, omit the final
variable list in future examples. We can now substitute our
relational definition of the state clause into our proof obli-
gation, as shown below.

⊢? ∃ u • u ∈ {a : N} ∧ u ∈ initialization

Consider now the generation of the relation for the initial-
ization clause of the example machine. Again, we look first

at the relation attribute and determine that the relation re-
quires the variables of the state clause. The relation we re-
quire is described below.

{initialization schema • θstate schema}

Again, theinitialization schema is the schema produced
from the initialization clause and thestate schema is the
schema we generated previously. To create the schema for
the initialization clause we once again reference its relation
attribute, which states that we will import the variables of
the state clause. Therefore, the schema of the state clause is
incorporated into our new schema’s declaration.

initialization schema == [state schema | a = 0]
== [a : N | a = 0]

We can then substitute our schema definitions into our rela-
tion definition and resolve the binding construction, giving
a final relation definition as follows.

{a : N | a = 0}

We can now create the required proof obligation for our
specification by replacing the instance of the initialization
clause with its relational definition, as shown below.

⊢? ∃ u • u ∈ {a : N} ∧ u ∈ {a : N | a = 0}

Operation Level Proof Obligations. We only have one
operation environment in our machine specification and two
operation level proof obligations in our configuration so we
create an instance of each generic proof obligation. For the
sake of brevity we will only consider the second of these,
the functional correctnes obligation, a Z representation of
which is given below.

⊢? ∀ u, i • u ∈ state ∧ i ∈ operation.inputs

∧ 〈u, i〉 ∈ operation.pre

⇒ (∃ u ′, o • u ′ ∈ state ∧ o ∈ operation.outputs

∧ 〈u, u ′, i , o〉 ∈ operation.post)

Using the process described in the previous examples we
generate the relational definitions of the clauses from our
proof obligation. These definitions are given below.

state == {a : N}
operation.post == {a : N; a′ : N | a′ = a + 1}

When we come to replace the remaining clauses, we notice
that they have not been defined in theincrement opera-
tion environment. We therefore need to eliminate the use of
these clauses in our proof obligation. If we use the avail-
able relations to replace their respective clauses, our current
proof obligation is as follows.

⊢? ∀ u, i • u ∈ {a : N} ∧ i ∈ operation.inputs

∧ 〈u, i〉 ∈ operation.pre

⇒ (∃ u ′, o • u ′ : {a : N}
∧ o ∈ operation.outputs

∧ 〈u, u ′, i , o〉 ∈ {a : N; a′ : N | a′ = a + 1})

The first stage in the elimination of the unused clause is
the replacement of references to that clause with the special
term⊥. This term simply serves as a place marker to aid
the removal of references to the unused term and will never
remain in a proof obligation beyond the clause elimination
stage. The second stage involves the exhaustive application
of the rules in the table below.

Original term Resolved term

x ∈⊥ ⊥

P ∧⊥ P

P ∨⊥ P

∀ x •⊥ ⊥

∃ x •⊥ ⊥

∀n1, ...,ni−1,⊥, ∀n1, ...,ni−1,ni+1...,nj • P

ni+1, ...,nj • P

∃n1, ...,ni−1,⊥, ∃n1, ...,ni−1,ni+1...,nj • P

ni+1, ...,nj • P

P ⇒⊥ P

⊥⇒ P P

x =⊥ true

(n1, ...,ni−1,⊥, (n1, ...,ni−1,ni+1, ...,nj)
ni+1, ...,nj)

The application of these rules to the proof obligation of our
example gives the following result.

⊢? ∀ u • u ∈ {a : N}
⇒ (∀ u ′ • u ′ : {a : N}

∧ 〈u, u ′〉 ∈ {a : N; a′ : N | a′ = a + 1})

4. Incorporating Constructs within a Z Speci-
fication

We now describe how the Z syntax can be extended and how
this augmented syntax can be syntax checked mechanically
following the framework described in the ISO Z standard
[14].

4.1. Extending the Syntax

In order to allow our constructs to be parsed within an ex-
isting Z framework we extend the LATEX syntax presented

in [14] to allow the specification of machines and relation-
ships. In order to maintain the utmost flexibility we intro-
duce just four directives that allow us to present a machine,
relationship, clause and operation environment. Again the
grammar for this extended syntax is presented in [12]. Be-
low we present the syntax for our example machine.

\begin{machine}{myNumberMachine}{simpleMachine}
{standard_toolkit}

\clause{state}{a : \nat}
\clause{initialization}{ | a = 0 }
\begin{openv}{operation}{increment}
\clause{post}{ | a’ = a + 1}
\end{openv}
\end{machine}

4.2. Parsing the Extended Grammar

When parsing a construct we need to ensure that as well
as being grammatically correct, the construct obeys its con-
figuration rules. These rules determine how a construct is
parsed, as well as how the parsed data is interpreted, so it is
necessary to process them dynamically.

Hence when a construct is parsed, we must first re-
late it to an existing configuration. We immediately know
whether a construct is a machine or relationship through the
LATEX directive used; the particular configuration of a ma-
chine or relationship can be determined by taking the name
declared in the construct’s specification (the second argu-
ment to the directive) and searching for a match in the avail-
able configurations. If no match is found, the construct will
be rejected.

Once we have a valid configuration, a Z section is cre-
ated and associated with the construct. (The name of the Z
section created will be the name of the construct with either
‘ machine’ or ‘ relationship’ prefixed.3) If a machine’s
specification includes parent sections they will be declared
as the parents of the newly created section; if no parent sec-
tion is specified then the standard toolkit will be used. A
section created for a relationship will have two parent sec-
tions, corresponding to the source and target machines. The
declaration of these parent sections allows the tokens and
variables defined to be referred to within the clauses of a
child construct.

The clauses and operation environments of the construct
can then be examined. The attributes of the current clause or
operation environment are determined by finding a match-
ing section from the construct’s configuration. A clause
possesses attributes that determine the level of the clause
and its content. Should a clause be used at a level contra-
dicting the level specified in the configuration it will not be
possible to parse the construct successfully. The content

3Whilst the use of an initial double underscore character is technically
illegal in the Z notation, we use it internally within our system to prevent
unintentional name clashes.

attribute allows us to invoke a Z parser on the clause’s con-
tents (informing it whether we expect a predicate or schema
text) and determine any syntax errors within. Finally, it is
necessary to ensure that any mandatory clauses have been
declared in the construct or operation environment in which
they are expected. Similarly, all mandatory operation envi-
ronments must be present.

4.3. Syntax Transformation for the Extended Gram-
mar

Once our construct has been parsed successfully it is neces-
sary to transform it into a format suitable for type checking
and semantic processing. This process transforms our con-
struct definition into a specification that matches the gram-
mar for the annotated Z syntax described in chapter 10 of
[14].

As described above, every construct is translated into an
equivalent Z section and through the transformation process
every clause becomes a Z paragraph. We illustrate the pro-
cess using our running example. The section header is cre-
ated as described above.

section machine myNumberMachine

parentsstandard toolkit

We then consider each of the clauses within our machine.
The first is the state clause which will be transformed into an
axiomatic definition paragraph. The name of the schemas
produced from context level clauses are derived from the
names of the machine and the clause. The content of the
clause is transformed using the usual rules for schema texts
and predicates (as appropriate).

[myNumberMachine state : {[a : N]}]

The initialization clause is transformed in the same way as
the state clause. However, note that in this instance we will
use the ‘RELATION’ attribute of the machine’s configura-
tion to incorporate the state variables and we include a ref-
erence to the appropriate schema.

[myNumberMachine initialization : {
[myNumberMachine state

| a ∈ {number literal 0}]}]

The only difference between a clause defined at the con-
struct level and one at the operation level is the way in
which the produced schema’s name is derived. Here we in-
corporate the operation environment name to ensure unicity
within the section.

[myNumberMachine increment post : {
[myNumberMachine state;
myNumberMachine state ′

| a′ ∈ {⊲⊳+⊲⊳ (a,number literal 1}]}]

The process of producing a Z section from a construct spec-
ification is fully automatable and again is described in more
detail in [12]. Once the transformation process is complete
the construct is entirely in the annotated Z syntax. There-
fore, there is no necessity to alter the standard type checking
procedure described in chapter 13 of [14].

5. Configuring the Relationship

Of course the aim of our work was to be able to produce a
framework that would allow the specification and verifica-
tion of configurable relationships between machines. The
dynamic nature of these relationships allows us to use a va-
riety of formal techniques to relate the models represented
by our machines.

Refinement is currently one of the most widely used
techniques. It involves the incremental addition of proce-
dural detail to an abstract specification, until we reach a
model of the system that can be readily converted into pro-
gramming language instructions. Refinement’s key prop-
erty is that the behaviours of the model produced at each
step can be formally related, and can be shown to meet the
requirements of the most abstract. However, there are cir-
cumstances where refinement can require us to include un-
necessary complexity at the abstract level. For example,
consider the common refinement of an infinite set to a finite
sequence. Clearly, the specified and practical versions of
the model will not exhibit identical behaviour. In order to
make one a refinement of the other, the abstract model must
be extended to incorporate the procedural detail or modelled
usingskips. Neither of these solutions is particularly satis-
factory. The first adds complexity to the abstract model and
surely the point of refinement is to add this detail gradually.
The second confuses the abstract specification and could be
considered misleading [5].

Retrenchment can be seen as a more liberal version of re-
finement. A retrenchment step is not just a transition from
an abstract model to a more concrete but faithful version of
that same model, but a transparent description of the rela-
tionship between the two models. Retrenchment allows ab-
stract specifications, which provide only high-level stipula-
tions that result from the system’s high-level requirements,
to be used by those needing only such a high-level view of
the application. Meanwhile more concrete specifications,
incorporating incompatible implementation requirements,
can be used by developers. Users of both can be safe in
the knowledge that they are working with well-understood,
retrenchment-related, models that meet the system’s needs.

As there are many tools that support refinement, and the
mechnical support for retrenchment was one of the motiva-
tors for the creation of our tool, we will demonstrate how
Frog-CCL can be used to configure the proof obligations
for retrenchment. There are a number of forms of retrench-

ment [4, 6]. Here we will describe the most used one, output
retrenchment (nowadays usually refered to as just retrench-
ment [4]). In our example we will configure a relationship
between abstract and concrete machines possessing the con-
figuration that we introduced in section 3.1. The retrench-
ment relationship allows us to augment the retrieve relation
of the refinement relationship, with within, concedes and
output relations. We will use the clauses that define these
relations to construct appropriate proof obligations for the
retrenchment relationship.

It is in the construction of these proof obligations that the
power of the configuration language can be seen. We use
the first proof obligation to show that wherever the more
concrete machine can be initialized, there is an equivalent
initialization of the more abstract machine. This obliga-
tion simply describes the relationship between the construct
level, initialization clauses of the machines and the retrieve
clause of the retrenchment.

The second, applicability proof obligation is more in-
teresting. In the simple system we have described in this
paper we have considered our machine’s operations to be
partial relations (in the same way as Z’s operations). We
have also named the domain of those operations as precon-
ditions indicating that we do not guarantee behaviour when
those preconditions are not met. However, the advantage of
our configuration-based framework is that we are not con-
strained to such an approach. Should a theory require it,
Frog-CCL is perfectly capable of handling a guarded ap-
proach or even a non-standard, three valued interpretation
[20]. As our machines have used preconditions to restrict
the domain, we use the proof obligation described in [15].
That is, if there is a valid initial relationship between the
machines and the within relation holds, then the operation
of both abstract and concrete machines is applicable.

Similarly we obtain our final proof obligation from the
same source and use it to show, that for each corresponding
pair of operations in the machines involved, and for every
pair of pre-transition states that belong to the retrieve and
within relations: where a state transition is possible in the
more concrete machine, there is a corresponding state tran-
sition in the more abstract machine, that will give a pair of
post-transition states that belong, either to both the retrieve
relation and output relation, or to the concedes relation.

DEFINE RELATIONSHIP retrenchment
CLAUSES
(NAME= retrieve, LEVEL= RELATIONSHIP,

REQUIREMENT= OPTIONAL, CONTENT= PREDICATE,
RELATION=

<FROM_MACHINE(state), TO_MACHINE(state)>),
(NAME= within, LEVEL= ramifications,

REQUIREMENT= OPTIONAL, CONTENT= PREDICATE,
RELATION=

<FROM_MACHINE(state), TO_MACHINE(state),
FROM_MACHINE(inputs), TO_MACHINE(inputs)>),

(NAME= concedes, LEVEL= ramifications,

REQUIREMENT= OPTIONAL, CONTENT= PREDICATE,
RELATION=

<FROM_MACHINE(state),TO_MACHINE(state),
FROM_MACHINE(state’),TO_MACHINE(state’),
FROM_MACHINE(inputs),TO_MACHINE(inputs),
FROM_MACHINE(outputs),TO_MACHINE(outputs)>),

(NAME= output, LEVEL= ramifications,
REQUIREMENT= OPTIONAL, CONTENT= PREDICATE,
RELATION=

<FROM_MACHINE(state),TO_MACHINE(state),
FROM_MACHINE(state’),TO_MACHINE(state’),
FROM_MACHINE(inputs),TO_MACHINE(inputs),
FROM_MACHINE(outputs),TO_MACHINE(outputs)>)

OPERATION_ENVIRONMENTS
(NAME= ramifications, REQUIREMENT= OPTIONAL)
PROOF_OBLIGATIONS
(CONSTRUCT_LEVEL,

(! v @ v : TO_MACHINE(initialization)
=> (# u @ <u,v> : retrieve &

u : FROM_MACHINE(initialization))),
(OPERATION_LEVEL,

(! u, v, i, j
@ <u,v> : retrieve
& <u,v,i,j> : ramifications.within
=>
<u,i> : FROM_MACHINE(operation.pre)
& <v,j> : TO_MACHINE(operation.pre))),

(OPERATION_LEVEL,
(! u, v, v’, i, j, p

@ <v,v’,j,p> : TO_MACHINE(operation.post)
& <u,v> : ramifications.retrieve
& <u,v,i,j> : ramifications.within
& <u,i> : FROM_MACHINE(operation.pre)
=> (# u’,o @ <u,u’,i,o> :

FROM_MACHINE(operation.post)
& ((<u’,v’> : ramifications.retrieve

& <u,v,u’,v’,i,j,o,p> :
ramifications.output)

| <u,v,u’,v’,i,j,o,p> :
ramifications.concedes)

)))
END

We define our relationship to be of relationship-type ‘re-
trenchment’; it should be noted, however, that we do not (in
our configuration) indicate the types of the machines that
will be involved in the retrenchment. This is intentional as
it ensures maximum flexibility in the relation of machines.
For example, a relationship could correctly be used between
machines of machine-typesimpleMachine, an as yet unde-
fined configurationcomplexMachine or a mix of the two.
Obviously the validity of relating two machines is theory-
dependent, the only enforced restriction being the syntac-
tic compatibility of the machines with the relationship, and
with each other. For example, a clause used in the proof
obligation of a relationship that is derived from a source
machine must be present in a machine specified as a source.
The semantic compatibility of the machines is left to the
specifier of the relationship to ensure4.

4We could have chosen to make the configuration tighter, and inthe
future perhaps we will give the option to do so. At present, however, we
have opted for the configuration that gives us most flexibility.

We now consider an example specification. We will model
the set of known stars in the sky. We shall assume that we
have previously specified a sectiontheStarsInTheSky that
defines a carrier setstars which represents all the stars in
the universe (known or not). The first step then is to create
a simple abstract machine that maintains a set of known
stars and defines an operation that models the discovery of
a star.

MACHINE starsInTheSky

TYPE simpleMachine

SECTIONtheStarsInTheSky

STATE

starsInSky : P stars

INITIALIZATION

| starsInSky = ∅

OPERATIONdiscoverStar =̂
INPUT

newStar? : stars

PRE

| newStar? 6∈ starsInSky

POST

| starsInSky ′ = starsInSky ∪ {newStar?}

END discoverStar

END starsInTheSky

We then define a concrete machine that must handle the
situation in which the space holding our list of stars is full.
Note that, retrenchment allows us to have different sets of
inputs and outputs in the operations of abstract and con-
crete machine. (Assume also that we defined the free type
MESSAGES in our parent sectiontheStarsInTheSky.)

MACHINE starsInTheSkyC

TYPE simpleMachine

SECTIONtheStarsInTheSky

STATE

starsInSky : P stars

INITIALIZATION

| starsInSky = ∅

OPERATIONdiscoverStar =̂
INPUT

newStar? : stars

OUTPUT

message! : MESSAGES

PRE

| newStar? 6∈ starsInSky

POST

#starsInSky < upperlimit

⇒ starsInSky ′ = starsInSky ∪ {newStar?}
∧ message! = starAdded

#starsInSky ≥ upperlimit

⇒ starsInSky ′ = starsInSky

∧ message! = starArrayFull

END discoverStar

END starsInTheSkyC

Finally we consider the specification of the retrenchment
relationship between the two machines. Note that, we can
abbreviate our machine names (so thatstarsInTheSky be-
comess) and that we can differentiate between identically
named variables belonging to different machines using the
≫ syntax (for example,s≫starsInSky refers to the set of
known stars in our abstract model). The relationship below
describes an appropriate retrenchment.

RELATIONSHIPstarsInTheSky to starsInTheSkyC

TYPE retrenchment

FROM starsInTheSky ASs

TO starsInTheSkyC ASsC

RETRIEVE

s≫starsInSky = sC≫starsInSky

RAMIFICATIONS discoverStar =̂
WITHIN

s≫newStar? = sC≫newStar?

OUTPUT

sC≫message! = starAdded

CONCEDES

#sC≫starsInSky ≥ upperlimit

sC≫starsInSky ′

= s≫starsInSky ′ \ {sC≫newStar?}
sC≫message! = starArrayFull

END discoverStar

END starsInTheSky to starsInTheSkyC

The ramifications for thediscoverStar operation allow us
to see retrenchment in action. The within clause is used
to tighten the precondition by stating that not only must
the retrieve relation hold prior to a transition, but the new
star discovered in each case must be the same. We then
use the output clause to handle the operation-specific aug-
mentation of the retrieve clause, here clarifying the correct
output when the retrieve clause holds. Finally, we define the
concedes relation that allows us to loosen the postcondition.
This states that the retrieve clause (and output clause) will
not be true when the maximum number of stars that can be
stored has been exceeded, but that the set of stars in the con-
crete model will still be equal to that in the abstract model
minus the new star (and also that an error message will be
generated).

We can now show how our proof obligations can be ex-
trapolated from the above specification and configuration.
Consider first the generic initialization obligation contained
in our configuration.

⊢? ∀ v • v ∈ TO MACHINE(initialization)
⇒ (∃ u • u ∈ FROM MACHINE(initialization)

∧ (u, v) ∈ retrieve)

The details of our specifications can be used to substitute
the clauses with their corresponding relations, resultingin
the following theorem.

⊢? ∀ v • v ∈ {starsInSky ∈ P stars | starsInSky = ∅}
⇒ (∃ u •

u ∈ {starsInSky ∈ P sky | starsInSky = ∅}
∧ (u, v) ∈ {s≫starsInSky ∈ P stars ;

sC≫starsInSky ∈ P stars

| s≫starsInSky = sC≫starsInSky})

The proof obligation can be discharged easily enough, but
the point here is to illustrate that it is possible to take a re-
trenchment specification, alongside a Frog-CCL configura-
tion and use the framework we have described to generate
the proof obligation mechanically without any notion of re-
trenchment hardwired in the underlying system.

Similarly, we consider the second, applicability proof
obligation, which is the first to examine the relationship
between our machine’s operations. This proof obligation
establishes that whenever we are in a state in which the re-
trieve and within clauses hold, the precondition of both ab-
stract and concrete machines’ operation will be met. The
generic obligation from our configuration is shown below.

⊢? ∀ u, v , i , j •
(u, v) ∈ retrieve ∧ (u, v , i , j) ∈ within

⇒ (u, i) ∈ FROM MACHINE(operation.pre)
∧ (v , j) ∈ TO MACHINE(operation.pre)

Once again we use the rules that we have defined in previous
sections, along with the specifications of the machines and
relationship, to successfully instantiate the proof obligation
as follows.

⊢? ∀ u, v , i , j •
(u, v) ∈ {s≫starsInSky : P stars ;

sC≫starsInSky : P stars

| s≫starsInSky = sC≫starsInSkyC}
∧ (u, v , i , j) ∈ {s≫starsInSky : P stars ;

sC≫starsInSky : P stars ;
s≫newStar? : stars ; sC≫newStar? : stars

| s≫newStar? = sC≫newStar?}
⇒ (u, i) ∈ {starsInSky : P stars ;

newStar? : stars | newStar? 6∈ starsInSky}
∧ (v , j) ∈ {starsInSky : P stars ;

newStar? : stars | newStar? 6∈ starsInSky}

Again, the proof obligation is generated easily enough and
could be discharged fairly easily. It is when we examine
the functional correctness proof obligation that we begin to
see the complexity of a proof obligation for even a toy ex-
ample such as this. With this complexity the benefits of a
mechanized, and configurable framework are highlighted.
As before, we begin with the generic proof obligation.

⊢? ∀ u, v , v ′, i , j , p •
(v , v ′, j , p) ∈ TO MACHINE(operation.post)
∧ (u, v) ∈ retrieve ∧ (u, v , i , j) ∈ within

∧ (u, i) ∈ FROM MACHINE(operation.pre))
⇒ (∃ u ′, o •

(u, u ′, i , o)
∈ FROM MACHINE(operation.post)

∧ (((u ′, v ′) ∈ retrieve

∧ (u, v , u ′, v ′, i , j , o, p) ∈ output)
∨ (u, v , u ′, v ′, i , j , o, p) ∈ concedes)

The clauses are then substituted with their relations in ac-
cordance with our rules and specifications.

⊢? ∀ u, v , v ′, i , j , p •
(u, i) ∈ {starsInSky : P stars ; newStar? : stars

| newStar? 6∈ starsInSky}
∧ (u, v) ∈ {s≫starsInSky, sC≫starsInSky

: P stars | s≫starsInSky = sC≫starsInSky}
∧ (v , v ′, j , p) ∈ {starsInSky, starsInSky ′ : P stars ;

newStar? : stars | (#starsInSky < upperlimit

⇒ starsInSky ′ = starsInSky ∪ {newStar?}
∧ message! = starAdded) ∧ (#starsInSky ≥
upperlimit ⇒ starsInSky ′ = starsInSky

∧ message! = starArrayFull)}
∧ (u, v , i , j) ∈ {s≫starsInSky : P stars ;

sC≫starsInSky : P stars ; s≫newStar?
: stars ; sC≫newStar? : stars

| s≫newStar? = sC≫newStar?}

⇒ (∃ u ′ •
(u, u ′, i) ∈ {starsInSky, starsInSky ′ : P stars ;

newStar? : stars

| starsInSky ′ = starsInSky ∪ {newStar?}}
∧ (((u ′, v ′) ∈ {s≫starsInSky, sC≫starsInSky

: P stars | s≫starsInSky = sC≫starsInSky}
∧ (u, u ′, v , v ′, i , j , p) ∈
{s≫starsInSky, s≫starsInSky ′ : P stars ;
sC≫starsInSky, sC≫starsInSky ′ : P stars ;
s≫newStar? : stars ; sC≫newStar? : stars ;
sC≫message! : MESSAGES

| message! = starArrayFull})
∨ (u, u ′, v , v ′, i , j , p) ∈
{s≫starsInSky, s≫starsInSky ′ : P stars ;
sC≫starsInSky, sC≫starsInSky ′ : P stars ;
s≫newStar? : stars ; sC≫newStar? : stars ;
sc≫message! : MESSAGES

| #sC≫starsInSky ≥ upperlimit

∧ sC≫starsInSky ′ = s≫starsInSky ′

\{sC≫newStar?}
∧ sC≫message! = starArrayFull}))

6. Conclusion

In this paper we introduced Frog-CCL, a language that we
devised for use in expressing the syntax and semantics of a
construct. This language offered much flexibility, allowing
users to significantly alter the structure of their constructs
and specify the proof obligations that would need to be dis-
charged to verify those constructs. We showed how the
LATEX representation of the Z notation could be extended
to incorporate these generic constructs and described how a
tool could use the configuration of a construct to transform
a specification in this extended syntax into a Z section that
satisfied the annotated grammar of the ISO standard. We
illustrated the flexibility of Frog-CCL by providing sam-
ple configurations and specifications for machines and re-
trenchment relationships.

This fully configurable approach to constructs allows
users to experiment with the nature of models and the rela-
tionships between them, and we believe it would be a major
asset to any tool. Not only does it allow the specifier to use
any existing or future formal relationship, it also permitsthe
optimization of the relationship in a particular instance and
all without any change to the underlying system.

The framework described in this tool has already been
implemented as part of the Frog tool described in [12]
and has been used to describe not only some of the many
flavours of retrenchment, but also to dynamically create re-
lationships that are able to provide additional rigour in spe-
cific examples.

In the future there are many possibilities for extend-
ing the power of the configuration language. Some in-

teresting examples would be: introducing the ability to
specifically deny or allow interaction between specific ma-
chine and relationship types, or introducing inheritance
between configurations (for example, having a retrench-
ment ‘super-configuration’ from which the configurations
of other flavours of retrenchment could inherit behaviour).

Other tool developers have taken a different approach to
allowing configuration within their tools. An increasingly
popular approach is to extend the Eclipse [8, 19] platform.
Eclipse relies extensively on plug-ins [9] to augment the
core functionality with support for many languages and no-
tations. RODIN and Overture are projects involving the cre-
ation of toolkits supporting formal methods in this way (B
and VDM respectively). For example, RODIN uses sepa-
rate plug-ins for type checking, model checking and verifi-
cation. Hence it is possible to create support for techniques
such as retrenchment through the development of custom
plug-ins. Of course, this approach still requires effort to
implement these custom plug-ins. While these toolkits are
a step in the right direction, we feel that Frog’s configura-
tion framework offers much the same flexibility, but with a
significantly greater ease-of-use.

In summary, it is hard to argue that hard coding the gen-
eration of proof obligations can be favoured over a more
generic framework such as that demonstrated here. We hope
that other tool developers will take note and incorporate
a more flexible approach in the implementation of future
tools.

References

[1] J. Abrial. The B Book. Cambridge University Press, 1996.
[2] R. Back and J. von Wright.Refinement Calculus, A System-

atic Introduction. Springer, 1998.
[3] R. Banach and S. Fraser. Retrenchment and the B-Toolkit.

In H. Treharne, S. King, M. C. Henson, and S. Schneider,
editors,ZB, volume 3455 ofLecture Notes in Computer Sci-
ence, pages 203–221. Springer, 2005.

[4] R. Banach and C. Jeske. Stronger compositions for re-
trenchments, and feature engineering. 2002. Avail-
able online athttp://www.cs.man.ac.uk/ ˜ banach/Recent.

publications.html .
[5] R. Banach and M. Poppleton. Retrenchment: An engineer-

ing variation on refinement.Lecture Notes In Computer Sci-
ence, 1393:129–147, 1998.

[6] R. Banach and M. Poppleton. Sharp retrenchment, modu-
lated refinement and simulation.Formal Aspects of Com-
puter Science, 11(5):498–540, 1999.

[7] R. Banach, M. Poppleton, C. Jeske, and S. Stepney. En-
gineering and theoretical underpinnings of retrenchment.
2005. Available online athttp://www.cs.man.ac.uk/

˜ banach/Recent.publications.html .
[8] D. Carlson.Eclipse Distilled. Addison Wesley, 2005.
[9] E. Clayberg and D. Rubel.Eclipse: Building Commercial-

Quality Plug-Ins. Addison Wesley, 2006.

[10] J. Coleman, C. Jones, I. Oliver, A. Romanovsky, and
E. Troubitsyna. RODIN (rigorous open development envi-
ronment for complex systems). InFifth European Depend-
able Computing Conference: EDCC-5 supplementary vol-
ume, pages 23–26, Budapest, Hungary, Apr 2005. RODIN
Project (IST 2004-511599).

[11] W.-P. de Roever and K. Engelhardt.Data Refinement:
Model-Oriented Proof Methods and their Comparison.
Cambridge University Press, 1998.

[12] S. Fraser.Mechanized Support for Retrenchment. PhD the-
sis, School of Computer Science, University of Manchester,
2007.

[13] C. A. R. Hoare. The verifying compiler: A grand challenge
for computing research.J. ACM, 50(1):63–69, 2003.

[14] ISO/IEC 13568:2002. Information technology—Z formal
specification notation—syntax, type system and semantics.
International Standard.

[15] C. Jeske.Algebraic Integration of Retrenchment and Refine-
ment. PhD thesis, School of Computer Science, University
of Manchester, 2005.

[16] C. Jones, P. O’Hearn, and J. Woodcock. Verified software:
A grand challenge.Computer, 39(4):93–95, 2006.

[17] K. Lano and H. Haughton.Specification in B: An Introduc-
tion Using the B-Toolkit. Imperial College Press, 1996.

[18] P. G. Larsen and N. Plat. Introduction to Overture. InProc.
Overture Workshop at Formal Methods Symposium FM’05
in Newcastle upon Tyne, UK, July 2005.

[19] J. McAffer and J. M. Lemieux.Eclipse Rich Client Plat-
form: Designing, Coding, and Packaging Java Applications.
Addison Wesley, 2005.

[20] R. Miarka, E. A. Boiten, and J. Derrick. Guards, precondi-
tions, and refinement in z. InZB ’00: Proceedings of the
First International Conference of B and Z Users on Formal
Specification and Development in Z and B, pages 286–303,
London, UK, 2000. Springer-Verlag.

[21] J. P. Nielsen and J. K. Hansen. Designing a flexible kernel
providing VDM++ support for Eclipse. InProc. Overture
Workshop at Formal Methods Symposium FM’05 in New-
castle upon Tyne, UK, July 2005.

[22] M. Poppleton and R. Banach. Retrenchment: Extending the
reach of refinement. InProc. ASE-99, IEEE, pages 158–165,
1999.

[23] M. Poppleton and R. Banach. Controlling control sys-
tems: An application of evolving retrenchment. In Bert,
Bowen, Henson, and Robinson, editors,Proc. ZB-02, vol-
ume 2272 ofLecture Notes In Computer Science, pages 42–
61. Springer, 2002.

[24] J. M. Spivey.The Z Notation: A Reference Manual. Prentice
Hall International Series in Computer Science, 2nd edition,
1992.

[25] L. Voisin. Description of the RODIN prototype. RODIN
Project (IST 2004-511599) Deliverable D15, 2006.

[26] J. Woodcock. First steps in the verified software grand chal-
lenge.Computer, 39(10):57–64, 2006.

[27] J. Woodcock and J. Davies.Using Z: Specification, Refine-
ment, and Proof. Prentice Hall International Series in Com-
puter Science, 1996.

[28] J. Wordsworth. Software Engineering with B. Addison-
Wesley, 1996.

