
Formal verification of tamper-evident storage for e-voting

Dominique Cansell

LORIA & Université de Metz

cansell@loria.fr

J. Paul Gibson

INT Evry, Paris

paul.gibson@int-evry.fr

Dominique Méry ∗

Nancy-Université, Université Henri Poincaré Nancy1 & LORIA

mery@loria.fr

Abstract

The storage of votes is a critical component of any voting

system. In traditional systems there is a high level of trans-

parency in the mechanisms used to store votes, and thus a

reasonable degree of trustworthiness in the security of the

votes in storage. This degree of transparency is much more

difficult to attain in electronic voting systems, and so the

specific mechanisms put in place to ensure the security of

stored votes require much stronger verification in order for

them to be trusted by the public. There are many desirable

properties that one could reasonably expect a vote store to

exhibit. From the point of view of security, we argue that

tamper-evident storage is one of the most important require-

ments: the changing, or deletion of already validated and

stored votes should be detectable; as should the addition of

unauthorised votes after the election is concluded. We pro-

pose the application of formal methods (in this paper, event-

B) for guaranteeing, through construction, the correctness

of a vote store with respect to the requirement for tamper-

evident storage. We illustrate the utility of our refinement-

based approach by verifying — through the application of a

reusable formal design pattern — a store design that uses a

specific PROM technology and applies a specific encoding

mechanism.

1. Introduction

1.1. Motivation: the e-voting problem

Computer technology has the potential to modernise the

voting process and to improve upon existing systems; but

it also introduces new concerns with respect to secrecy,

∗Works of Dominique Cansell and Dominique Méry are supported by

grant No. ANR-06-SETI-015-03 awarded by the Agence Nationale de la

Recherche.

accuracy, trust and security[8]. The debate over e-voting

is not a new one — recent use of such systems in actual

elections has led to their analysis from a number of dif-

ferent viewpoints: usability[9], trustworthiness and safety

criticality[14], transparency and openness[15], and risks

and threats[19].

The potential advantages are generally accepted, for ex-

ample: faster result tabulation, elimination of human error

which occurs in manual vote tabulation, assistance to voters

with “special” needs, defence against fraudulent practices

(e.g. with postal votes[3]), and improving the “fairness” of

count systems that incorporate “unfair” non-deterministic

procedures[23].

Despite ever-increasing uncertainty over the trustworthi-

ness of these systems — which is one of the major disadvan-

tage associated with them — many countries (particularly

in Europe[22]) have recently chosen to adopt e-voting. The

main risks that have been clearly identified seem not to con-

cern those responsible for procuring the systems. In fact, it

appears that e-voting is just one, well-publicised, example

of governments wishing to adopt new technologies[20] be-

fore the risks and benefits, as perceived by the public[10],

have been properly analysed and debated.

This paper contributes to answering two important ques-

tions: firstly, whether the public’s mistrust in the security

of e-voting systems is well-founded; and secondly, whether

formal methods have a role to play in addressing the prob-

lem of mistrust. With respect to the first aspect, Kocher

and Schneier[12] state: “The threats are real, making open-

ness and verifiability critical to election security.” As to the

second aspect, expecting the public to trust the adoption of

such new technology is only possible if they can be con-

vinced that it rests on firm trustworthy foundations. The

formal methods community have an important role to play

in this respect: the use of formal notations provides a fun-

damental foundation upon which the complexities of ever-

changing technologies can be managed[7]. We argue that



without the adoption and promotion of formal methods as

the foundations of software engineering, developing trust-

worthy e-voting systems will not necessarily guarantee that

they will be trusted.

This paper proposes that, in general, already existing for-

mal techniques can help to alleviate many of the verification

problems that the adoption of new e-voting technologies can

introduce. For the specific modelling and verification in our

study we use the event-B method[1], based on the B nota-

tion. We argue that it is unreasonable to expect the public to

trust a system (or part of a system) to behave correctly just

because it is developed using a formal method (like event-

B)1. Instead, we propose that we must first establish a set of

quality standards for reliable, re-usable, trustworthy tools

and techniques that have proven themselves in the formal

development of correct systems. Then, provided the pub-

lic are properly informed, it is not unreasonable to expect

systems built in this way to be both more trustworthy and

more trusted. The correct-by-construction approach in this

paper illustrates the type of standard process to which we

are alluding.

1.2. Formal methods and vote storage

Public opinion, arising from detailed debate of the is-

sues, would suggest that for e-voting machines to be ac-

ceptable they should be developed following best practice

with regards to the engineering of critical systems. Media

reports would also suggest that the secure storage of votes

is one of the issues that is most mistrusted by the public.

We propose the use of formal methods as a means of en-

suring that a machine securely stores votes, and we propose

to demonstrate the utility of formal methods through guar-

anteeing simple safety properties of a voting machine store.

The main property that we examine is concerned with the

need for tamper-evident storage, which addresses the risk

of unauthorised tampering of vote data after it has been cor-

rectly registered and stored. In Analysis of an electronic

voting system[13], we see that such a security weakness al-

ready exists in one of the most widely procured voting sys-

tems:

“. . . an adversary could alter election results by

modifying ballot definition files, and . . . it leaves

no evidence that an attack was ever mounted”

Here, the “adversary” is most likely to be a single insider

(election official) with access to the storage device. We ar-

gue that it is the responsibility of the storage designers to

guarantee the security of the votes stored without having to

1This is analagous to the current common situation where the public

have been asked to trust the e-voting machines because they have been

independently tested by some appropriately accredited body. Experience

now shows that such trust was misplaced.

make an assumption about the behaviour or intent of such

officials.

In order to illustrate how a guarantee could be made,

we use event-B and apply an incremental refinement ap-

proach to verifying a sequence of designs for the storage of

votes, which we prove to be correct-through-construction

with respect to the simple requirement that the vote storage

is tamper-evident.

1.3. Refinement and genericity: a formal
design pattern

>From a technological viewpoint we know that sys-

tem design has an important role in security assurance.

Mercuri[17] addresses the theme of quality in the process

of engineering security:

“By encouraging artistry and applying craftsman-

ship to our security problems, viable solutions

will emerge.”

This supports our view that one must start with a simple

model of the vote store requirements and refine that model,

during design, towards a correct implementation. For this

reason we chose a simple security requirement — that only

valid votes can be found in the vote store and that these can-

not be tampered with without detection — and start our for-

mal development from there. The use of formal methods to

guarantee that only valid votes are passed from the machine

interface to the store has already been presented[5]. The

work presented in this paper, which addresses the tamper-

evident requirement, is complementary in nature: event-B is

the common modelling language, and correctness through

construction is the common formal design approach.

As one of the long-term goals of the formal meth-

ods community is to simplify the verification process for

engineers[4, 11], we support the view that re-usable veri-

fication design patterns, similar in nature to the work by

Mehlitz and Penix[16], as a potential solution to this prob-

lem. This paper identifies a good candidate for such a re-

usable pattern, combining genericity and refinement to pro-

vide a correct-by-construction pattern (see Section 4).

2. Manchester Encoding: formalising the de-

sign of a secure vote PROM

The main design that is modelled and verified in this pa-

per is taken directly from the work by Molnar, Kohno, Sas-

try and Wagner[18]. Their proposed solution to providing

tamper-evident storage involves the application of Manch-

ester codes[21] and a write-once data PROM store. The

encoding simply represents a 0 as a 01 and a 1 as a 10.

Thus, when validating votes stored as pairs of bits there are



2 additional pair cases to be considered, where (because our

memory allows only 1s to be overwritten as 0s): 11 corre-

sponds to unwritten memory and 00 corresponds to an in-

valid memory that has been tampered with.

Before we formally specify and verify the proposed so-

lution, we briefly note that there is a real pragmatic need for

tamper-evident rather than tamper-proof writeable storage.

The tamper-proof requirement can be met only by some se-

curity mechanism ensuring authorised-only update of the

vote store. This security mechanism would probably be im-

plemented as some combination of physical constraints, to-

gether with hardware and software checks. It would most

likely involve some complex encryption technique and it is

not clear whether one could, or should, expect voters to trust

such a complex system. Contrastingly, guaranteeing the

tamper-evident requirement is a much simpler problem that

— if done well — could be both trustworthy and trusted.

Implementing storage using a write-once data store has

many obvious advantages when we consider tampering: ob-

viously, any vote that has already been written cannot be

overwritten? In fact, without a more formal model of the

store, this is not guaranteed to be true. For example, one

form of write-once storage could allow the flipping of an

initial bit state to be done once and once only. This does not

necessarily guarantee that a recorded vote cannot be over-

written as individual bits of a vote will not have been flipped

when a vote is recorded. In fact, as with all storage mech-

anisms, the (encoding) protocol used for writing informa-

tion to such a store will be the deciding factor in whether

the tampering requirements are met. Furthermore, there are

many reasonable variations of the tampering requirement.

Without a precise statement, it is not clear whether we will

be able to verify whether a given system (the store proper-

ties, together with the encoding protocol) is correct.

The key property of the encoding that we shall model is

that if any (sub)set of 1 bits in a stored codeword are flipped

to 0s then the result is no longer a valid code word. We then

wish to establish that anyone with read access to the vot-

ing store can detect an invalid memory state, where at least

one codeword is invalid, and consequently any tampering

after2 the election has been completed. The verification of

this safety property requires modelling of the write-once be-

haviour in the chosen PROM implementation (checking that

1s can be re-written as 0s but that 0s cannot be changed) in

conjunction with the encoding mechanism. It also requires

the use of a special election over bit (bit pair in PROM) to

signify that the election is over, and which must be unset

and untampered with for new votes to be recorded (other-

wise anyone with access to the voting machine could add

unauthorised votes after the election, an attack known as

2It is trivial to extend our model to dynamically detect tampering during

an election but for simplicity and conciseness we do not present details of

this variation of tamper-evidence in this paper.

ballot stuffing). We chose not to include the election-over

behaviour in the model presented in this paper.

We note that this system is not tamper proof: attackers

with write access to the vote store can still invalidate the

election by overwriting vote data. However, this attacks

would be easily identified by procedures for validating the

storage state during and after the vote.

The main advantages of doing this design formally, in

event-B, are development oriented:

• an abstract model can be easily validated as correctly

expressing the requirement,

• the actual design model can be constructed incremen-

tally through refinement of the abstraction,

• the refinement process can continue through to mod-

elling at very fine grain levels of detail that correspond

to the chosen low-level implementation architecture,

• we can more easily reason about different variations

and combinations of encodings and storage media, and

• we can analyse possible problems of integrating this

requirement with other requirements of the e-voting

system, in general, and the vote storage, in particular.

Thus, we are more likely to develop a trustworthy storage.

A secondary benefit arises when we consider the issue

of how to build public trust in our formally developed trust-

worthy system. We argue that the correct-by-construction

technique, embodied in a reusable design pattern, will be-

come more and more trusted as it is used to develop more

and more systems that prove themselves to be trustworthy.

As a consequence, using such a standard technique (and as-

sociated tools) in constructing critical systems will increase

confidence in the systems’ correctness, from both the devel-

opers and the public users.

With tool support for automatically checking our verifi-

cation proof we have another advantage: if our proof tool

is trustworthy then the design is sure to be correct provided

the property that we have established, in the initial abstract

model, is an accurate statement of the high level require-

ment. To make this transparent to the users (voters) it is

essential that an initial abstract model is easy to understand

and validate, and that they have good reason not to mistrust

our proof tool and techniques. Our design approach facili-

tates this type of openness and transparency.

3. Overview of event-B development by step-

wise refinement

3.1. Event-based modelling

Our event-driven approach [1] is based on the B notation.

It extends the methodological scope of basic concepts in or-



der to take into account the idea of formal models. Roughly

speaking, a formal model is characterized by a (finite) list

x of state variables possibly modified by a (finite) list of

events; an invariant I(x) states properties that must always

be satisfied by the variables x and maintained by the activa-

tion of the events. In the following, we briefly recall defini-

tions and principles of formal models and explain how they

can be managed by tools [2, 6].

Generalized substitutions are borrowed from the B nota-

tion. They provide a means to express changes to state vari-

able values. In its simple form, x := E(x), a generalized

substitution looks like an assignment statement. In this con-

struct, x denotes a vector built on the set of state variables

of the model, and E(x) a vector of expressions. The inter-

pretation we shall give here to this statement is not however

that of an assignment statement. We interpret it as a logical

simultaneous substitution of each variable of the vector x

by the corresponding expression of the vector E(x). There

exists a more general normal form of this, denoted by the

construct x : P (x0, x). This should be read: “x is modified

in such a way that the predicate P (x0, x) holds”, where x

denotes the new value of the vector and x0 denotes its old

value. This is clearly non-deterministic in general.

In the following, the so-called before-after predicate

BA(x, x′) describes an event as a logical predicate express-

ing the relationship linking the values of the state variables

just before (x) and just after (x′) the “execution” of event

evt3. Each event has two main parts: a guard, which is a

predicate built on the state variables, and an action, which

is a generalized substitution.

Proof obligations are produced from events in order to

state that an invariant condition I(x) is preserved. Their

general form follows immediately from the definition of the

before-after predicate, BA(x, x′), of each event:

I(x) ∧ BA(x, x′) ⇒ I(x′)

Note that it follows from the two guarded forms of the

events that this obligation is trivially discharged when the

guard of the event is false.

3.2. Model Refinement

The refinement of a formal model allows us to enrich a

model in a step-by-step approach, and is the foundation of

our correct-by-construction approach. Refinement provides

a way to strengthen invariants and to add details to a model.

It is also used to transform an abstract model into a more

concrete version by modifying the state description. This

is done by extending the list of state variables, by refining

3The prime notation, where we represent the value of a variable x, say,

after an event by x′ is a fundamental part of the modelling language and is

used throughout all the models that follow.

each abstract event into a corresponding concrete version,

and by adding new events. The abstract state variables, x,

and the concrete ones, y, are linked together by means of

a, so-called, gluing invariant J(x, y). A number of proof

obligations ensure that (1) each abstract event is correctly

refined by its corresponding concrete version, (2) each new

event refines skip, (3) no new event takes control for ever,

and (4) relative deadlock-freeness is preserved. Details of

the formulation of these proofs follows.

We suppose that an abstract model AM with variables x

and invariant I(x) is refined by a concrete model CM with

variables y and gluing invariant J(x, y). If BAA(x, x′)
and BAC(y, y′) are respectively the abstract and concrete

before-after predicates of the same event, we have to prove

the following statement, corresponding to proof obligation

(1):

I(x) ∧ J(x, y) ∧ BAC(y, y′)
⇒ ∃x′ · (BAA(x, x′) ∧ J(x′, y′))

Now, proof obligation (2) states that BA(y, y′) must re-

fine skip (x′ = x), generating the following simple state-

ment to prove (2):

I(x) ∧ J(x, y) ∧ BA(y, y′) ⇒ J(x, y′)

For the third proof obligation, we formalise the notion of

the system advancing in its execution; a standard technique

is to introduce a variant V (y) that is decreased by each new

event (to guarantee that an abstract step may occur). This

leads to the following statement to prove (3):

I(x) ∧ J(x, y) ∧ BA(y, y′) ⇒ V (y′) < V (y)

Finally, to prove that the concrete model does not intro-

duce additional deadlocks, we give formalisms for reason-

ing about the event guards in the concrete and abstract mod-

els: grds(AM) represents the disjunction of the guards of

the events of the abstract model, and grds(CM) represents

the disjunction of the guards of the events of the concrete

model. Relative deadlock freeness is now easily formalised

as the following proof obligation (4):

I(x) ∧ J(x, y) ∧ grds(AM) ⇒ grds(CM)

To review, refinement guarantees that the set of traces of

the refined model contains (modulo stuttering) the traces of

the resulting model.

4. Genericity and refinement in event-B: a for-

mal design pattern

The event-B method provides a framework for develop-

ing generic models of systems, where a problem can be de-

fined using parameters to be instantiated. Intuitively, this



means that we are able to relate the current problem to be

solved to an abstract problem solved by an already existing

generic B development (theory). Following our approcah,

in the existing generic solution we must find the mathemat-

ical framework that is common to both problems, together

with some constants which need to be instantiated. Con-

sequently, in formulating the solution to the new problem

the main work is to check that the instantiated parameters

satisfy the constraints of the generic problem theory.

4.1. Projects

The development of a fully formal generic modelling

mechanism for the B event-based method is work in

progress. In the following, we indicate how the current

framework can be used for implementing the instantiation.

The key concept is that of a validated project: a collec-

tion of models, either machine or refinement or implemen-

tation, which are completely verified through type checking

and theorem proving. For simplicity, and without loss of

generality, we assume that there is only one machine in the

current project, allowing us to focus on the re-usability of

developed models. Hence, a project G is roughly speaking

an acyclic directed graph of models related by the refine-

ment relationship: G = ({G, ..., Gn},−→).

4.2. The General Model

In the following, in order to avoid confusion among

names, we use different fonts for designating problems,

models and projects. The creation and the development

of the project G follows the event B methodology. We as-

sume that G is an existing project corresponding to a given

generic problem, denoted G. The model G (see the template

specification on the left of figure 1) is, in fact, the formal

statement of the generic problem: it incorporates relevant

aspects of the generic problem — at a high level of abstrac-

tion — in an initial model. This initial abstraction can be

thought of as defining the scope of the problem and the be-

havioural properties that require validation.

The model G provides a general framework for the

current problem; the problem is characterized by a the-

ory defined by the clauses SETS, CONSTANTS and

PROPERTIES. The unique event helps in solving the

problem by defining the problem in an abstract form: say-

ing what is required rather than how the solution is to be

implemented. Intuitively this corresponds to the problem

being viewed as pre/post-condition relation between an ini-

tial state and a final state which is arrived at after executing

the single event. Of course, refinement permits us to move

from this “magical” one-step functional view of the required

system’s behaviour to a richer multi-step view.

MODEL

G

SETS

s

CONSTANTS

c

PROPERTIES

P (s, c)
VARIABLES

x

INVARIANT

J(x)
ASSERTIONS

A(x)
INITIALISATION

S(x)
EVENTS

event = L(x)
END

MODEL

H

SETS

t

CONSTANTS

d

PROPERTIES

Q(t, d)
VARIABLES

y

INVARIANT

I(y)
ASSERTIONS

C(y)
INITIALISATION

spec_init(y)
EVENTS

spec_event = K(y)
END

Figure 1. Definition of models

The generic model G is the starting point of the devel-

opment of the project G: it solves the problem G; and the

project is formally checked by the theorem prover. Con-

stants in G can be instantiated, but proof obligations must

be established to ensure the validity of properties in the in-

stantiated model, which correspond to theorems in an in-

stantiation.

Before we introduce the instantiation and refinement

steps in our design pattern, we motivate the need for such a

pattern. In the general correct-by-construction refinement-

based development process, working with concrete mod-

els often leads to refinements generating large numbers of

proof obligations that cannot be discharged automatically.

The main goal during development is to find a good re-

finement path: a short sequence of refinement steps where

a small number of proof obligations are generated at each

step and which are discharged automatically. Finding such

a path usually requires reformulating or restructuring of in-

variants, together with changes to the degree of detail (ab-

straction) in the models, and is very challenging for non-

experts. Thus, we would like to package such expertise in a

re-usable construct, which we call a formal design pattern.

In order to manage the complexity of the refinement

path, one common approach (used by experts) is to find a

more generic representation of their initial problem where

details are hidden by constants requiring instantiation.

Then, in general, the refinement path is much simpler to es-

tablish as it requires fewer interactive proofs and leads to a

correct concrete generic solution. To prove that this generic



solution can be re-used, through instantiation, to solve the

initial concrete problem, two final steps are required. First,

one must show that the initial problem model is a correct

instantiation of the generic problem model; and secondly,

one must show that the final solution model is a correct in-

stantiation of the generic solution model.

In the best case, the generic refinement path has already

been established and can be re-used directly. In the worst

case, this path has to be developed from scratch. However,

even in this worst case, developing the path at a higher level

of abstraction (and proving 2 instantiations to be correct) is

much easier4 than developing the path at the lower level of

abstraction.

Thus, our formal design pattern is a re-usable solution to

a common design problem that can be exploited by formal

developers who are not necessarily expert. This re-use re-

quires only that the developers understand instantiation and

refinement.

4.3. Instantiation

Consider a specific problem H in project H, say. We

specify the specific requirements as a new model H (see

the template specification on the right of figure 1). In or-

der to exploit our design pattern, we wish to establish that

an instantiation of the generic project G corresponds to the

given problem H;

The instantiation of the generic project G for the generic

problem G to solve the specific problem H consists of ex-

hibiting a set term σ(t, d), defined in terms of the set t and

constant of d, and also a similar constant term γ(t, d) for in-

stantiating the constant c of G. Thus, the instantiation con-

sists of repainting G with σ(t, d) and γ(t, d) and to invoke

it as G (σ(t, d), γ(t, d)). We must also rename each vari-

able (resp. event) of G by a unique variable (resp. event) of

H5. This instantiation must resolve the specific problem H
and we propose to instantiate a development path through

the refinement of H .

4.4. Proof Obligation of an Instantiation

Now, proof obligations of any subsequent refinement as-

sume that the instantiated development solves the specific

problem H. The next refinement step captures the seman-

tics of how the specific problem H is solved in the same

way as the problem G, after a suitable instantiation. When

the instantiation is proved to be correct, we freely obtain a

complete instantiated development for the new problem H.

4We have no formal metric for the complexity of a refinement path;

however, intuitively a path is simpler if there are fewer proof obligations

that require interactive proof as they cannot be discharged automatically.
5We can assume that H and G have no common parameters: x is dif-

ferent from y and events names are different.

An instantiation requires one only to prove that the proper-

ties of the system G are theorems with respect to the prop-

erties of H . We do this in two steps:

• (1) The properties of the system G, i.e. axioms defin-

ing the theory of G, are theorems in the new theory

defined by the problem H:

Q(t, d) ⇒ P (σ(t, d), γ(t, d))

• (2) both models are solving the same problem and the

event spec_event of H is refined by the instance of the

event event of G for the problem H:

Q(t, d) ∧ P (σ(t, d), γ(t, d)) ∧ I(y) ∧ [s, c :=
σ(t, d), γ(t, d)]J(y1) ∧ y = y1 ∧ R(L)(y1, y1′)
⇒
∃y′.(I(y′) ∧ R(K)(y, y′))

Once we establish these two steps, we have a formal ver-

ification of the correctness of our concrete solution with re-

spect to the already existing generic project:

Property 1 When the given (previous) proof obligations

are proved, the new problem H is solved by the develop-

ment of the problem G, up to renaming and instantiation.

4.5. A formal design pattern

When the refinement is proved, the new problem H is

solved by the development of the problem G, upto renam-

ing and instantiation. A new project H is created from the

project G of the problem G: events are renamed, variables

are renamed, instantiations are done. Parameters are not

necessarily completely instantiated or renamed: if a param-

eter is not instantiated then it keeps properties stated in the

general model and no new proof obligation is generated.

We illustrate this formal design pattern in the following di-

agram:

H

H

G ◮ H.G

H F

G1 ⊲ H.G1

H F

⊲

H F

Gn ◮ H.Gn

H

H.Gn+1

The diagram tells us where proof obligations must be

proved: filled (triangular arrow) symbols show that new



proof obligations are generated and require proving; non-

filled symbols show that proof obligations have been gener-

ated but their proofs are inherited from the previous project

(G). Horizontal arrows represent instantiation. Vertical ar-

rows represent refinement. The proof that model H.Gn+1 is

a correct solution to the problem H is simplified by re-use

of the refinement path in project G.

5. The formal development in B

For conciseness, we choose to instantiate our formal de-

sign pattern in its simplest form, where the generic refine-

ment path is a single refinement step.

5.1. Applying the design pattern

We have two generic models (m1 is a solution to prob-

lem m0) and a specific model (MCH) which is an instan-

tiation from both generic models; then both specific model

(M0 and M1) are obtained by this instantiation. Finally,

we refine M1 to a final implementation model M2. This is

illustrated in the diagram, below:

MCH

H

m0 ◮ M0
H F

m1 ◮ M1
H

M2

In the following, we do not have space to include com-

plete code for all models and so we include snippets of B

code which illustrate the main aspects of the application of

the design pattern to the e-voting tamper-evident storage re-

quirement. (Complete code for these projects is available

from the authors on request.)

5.2. Project G

5.2.1 The generic problem model m0

The most abstract generic model must capture the essence

of the problem: a vote (v) in storage can be tampered with

(be corrupted) but we can detect this as a bad vote. Storage

that has not been tam-

pered with contains only

good votes. A bad vote

cannot be tampered with

in order for it to be

made good. This sug-

gests modelling a single

abstract corrupt event.

corrupt =̂
any v where

v ∈ good

then

good := good − {v}
bad := bad ∪ {v}

end

The invariant property specifies that good and bad are

subsets of an abstract V OTE set and that they have no el-

ements in common (so that a concrete vote cannot be both

good and bad at the same time). We note that, in order to

establish the invariant, m0 generated 5 simple proof obliga-

tions6 that were automatically discharged.

At this point, one may ask what happens when a vote that

is corrupt is corrupted again. The implicit skip operation

models the abstract event where the state of the model is

not changed. This is precisely what we require: when we

corrupt a vote that is bad we require that it stays bad. Thus,

re-corruption may appear in more concrete refinements of

m0 provided they refine skip of the abstract model m0. This

is precisely what we intend to do in our next model m1.

5.2.2 The generic problem model m1

The refinement in model m1 introduces an abstract mech-

anism for encoding votes. Constants G_C (for GoodCode)

and B_C (for BadCode) are two subsets of the set CODE.

These sets are disjoint but don’t neccessary cover the set

CODE. The constant code is a bijection between V OTES

and G_C.
The last constant chg

is a relation between

CODEs. The most

important property of

the relation chg is that

a good or bad code

can only be changed

to a bad one. In B

we specify these as

PROPERTIES of the

model.

G_C ⊆ CODE

B_C ⊆ CODE

G_C ∩ B_C = ∅
code ∈ V OTE ։ G_C

chg ∈ CODE ↔ CODE

chg[G_C ∪ B_C] ⊆ B_C

We refine the corrupt event to ensure that any encoded

vote that has been changed can be recognised as being bad.

Furthermore, we refine the skip event to say that if we now

allow encoded votes to be changed then a bad vote is guar-

anteed to stay bad.

corrupt =̂
any v, c, b where

v ∈ vt

c ∈ G_C

b ∈ CODE

v 7→ c ∈ Cv

c 7→ b ∈ chg

then

Cv(v) := b

end

corrupt_again =̂
any v, c, b where

v ∈ vt

c ∈ B_C

b ∈ CODE

v 7→ c ∈ Cv

c 7→ b ∈ chg

then

Cv(v) := b

end

6An example proof obligation is v ∈ good ∧ good ∩ bad = ∅ =⇒
(good − {v}) ∩ (bad ∪ {v}) = ∅.



5.2.3 m1 refines m0

There is some additional work in proving that m1 refines

m0 as we need to “glue

together” the abstract

and concrete models

using a gluing invariant.

Cv ∈ vt → G_C ∪ B_C

good = dom(Cv � G_C)
bad = dom(Cv � B_C)

To glue together the actual set of votes (vt) with the

CODE we introduce Cv. Then, the abstract variables good

and bad can be defined in the concrete model using Cv.

We note that m1 generated 11 proof obligations and

all but one were automatically discharged, with the single

remaining obligation easily discharged through interaction

with the theorem prover.

5.3. Project H

In project G we have abstracted away from how a vote is

represented. In project H we work with concrete represen-

tations of the votes (within the generic structure of project

G) by instantiating parameters of the models in G.

5.3.1 The problem to be solved — MCH

In our pattern, the new problem to be solved is expressed

by the model called MCH; which contains all specific

constants, and with identical variables and identical event

names as can be found in m0. M0 (resp. M1) is the

model m0 (resp. m1) instantiated using the new constants

of MCH and our new project is MCH. MCH is the basis

for our iterative refinement development process. The main

point of interest is that the refinement between the model

MCH and the model M0, an instance of m0, allows us to

guarantee that our specific problem MCH is solved or re-

fined by our intantiated model M0. For convenience (and

space) we present all specific constants in two steps when

presenting M0 and M1.

5.3.2 M0 refines MCH and instantiates m0

We start the development with an abstract model where a

vote is represented by k bits. In fact, the abstract V OTE set

in model m0 is replaced (instantiated) by our more concrete

V OTES:

k ∈ N

V OTES = 1..k → 0..1

We have nothing to prove to verify that this instantiation

is correct (there are no additional properties on abstract set

V OTE). The proof obligation that M0 refines MCH is

obvious (with the same abstract and concrete events) and

done automatically.

5.3.3 M1 — an intermediate design step

For this step we enrich the representation of a vote by dou-

bling the number of bits. Each bit in the original vote rep-

resentation is paired with its inverse value. For example, a

vote that was represented as 10010 will now be represented

by (10010, 01101)

inv ∈ V OTES → V OTES

∀(v, i) ·




v ∈ V OTES ∧ i ∈ 1..k

=⇒
inv(v)(i) = 1 − v(i)





CODE = V OTES × V OTES

code ∈ V OTES → CODE

∀v · (v ∈ V OTES =⇒ code(v) = v 7→ inv(v))

For the new model, we instantiate the constants of the

generic model m0: GC instantiates G_C and BC instanti-

ates B_C and chgv ∪ chgi instantiates chg.

GC and BC are specified as follows:

GC = {v 7→ w|v 7→ w ∈ CODE ∧ w = inv(v)}
BC = {c|c ∈ CODE ∧ PC(c)} − GC

Note: in the definition of BC we use a predicate over codes,

PC, that is defined to identify all “possible” codes. This predicate

is true except in the case where a pair of bits in an encoded vote

are both 1. This encoding is not possible because we allow only

bits to change from 1 to 0 (and not from 0 to 1) and because all

votes are initially coded as good codes (with pairs 01 or 10). PC

is defined as follows:

PC(c) = ∃(v, w) ·

0

B

B

B

B

@

c = v 7→ w ∧

∀i ·

0

B

B

@

i ∈ 1..k ∧
v(i) = 1

=⇒
w(i) = 0

1

C

C

A

1

C

C

C

C

A

Now we wish to specify that when a change is made to a single

bit of a vote’s representation (in either of the pair elements) then

only a bit 1 can change to the bit 0. We do this by defining chgv to

specify how the vote part of the pair can change, and chgi to spec-

ify how (symmetrically) the inverse part of the pair can change.

The specification of chgi is given below:

0

B

B

B

B

B

B

B

B

B

B

@

(v1 7→ w1) 7→ (v2 7→ w2) ∈ chgi

⇔
v1 = v2 ∧

∃i ·

0

B

B

B

B

@

i ∈ 1..k ∧
w1(i) = 1 ∧ w2(i) = 0 ∧

∀j ·

0

@

j ∈ 1..k ∧ i 6= j

=⇒
w1(j) = w2(j)

1

A

1

C

C

C

C

A

1

C

C

C

C

C

C

C

C

C

C

A

The specification of chgv is symmetrically defined.



5.4. M1 instantiates m1

We have instantiated7 our previous generic model replacing:

G_C with GC, BC with BC and chg with chgv ∪ chgi. Then

we need to prove the instantiation to be correct by establishing the

following proof obligation (from the invariant of model m1).

GC ⊆ CODE

BC ⊆ CODE

GC ∩ BC = ∅
code ∈ V OTE ։ GC

chgv ∪ chgi ∈ CODE ↔ CODE

(chgv ∪ chgi)[GC ∪ BC] ⊆ BC

For convenience we structure the proof based on the two sym-

metric cases, depending on whether a change is made using chgi

or chgv. To do this, we split both events corrupt and cor-

rupt_again into corruptv and corruptv_again, and corrupti and

corrupti_again.

For brevity, we give the definition of only one half of the sym-

metric pair, the chgv case:

corruptv b=
any v, c, b where

v ∈ vt

c ∈ G_C

b ∈ CODE

v 7→ c ∈ Cv

c 7→ b ∈ chgv

then

Cv(v) := b

end

corruptv_again b=
any v, c, b where

v ∈ vt

c ∈ B_C

b ∈ CODE

v 7→ c ∈ Cv

c 7→ b ∈ chgv

then

Cv(v) := b

end

We note that for this step we had 7 proof obligations (for the

instantiation), 3 of which required interactive proofs.

5.5. A final implementation model — M2

A manchester code is a sequences of 2×k bits where the oddly

ranked bits give the representation of the original k bits of an un-

encoded vote, and the even rank gives the bit-wise inverse. This is

defined by MNCH , below:

MNCH = 1..2 × k → 0..1
mcode ∈ V OTES → MNCH

∀(v, i) ·

0

B

B

@

v ∈ V OTES ∧ i ∈ 1..k

=⇒
mcode(v)(2 × i − 1) = v(i) ∧
mcode(v)(2 × i) = 1 − v(i)

1

C

C

A

We also define two constants, mv and mi, to extract a vote and

its inverse from the manchester encoded (2 × k) bits:

7In our design pattern, M1 is shown as simply an instantiation of m1.

In fact, in this paper, M1 is constructed as a refinement of the instantiation.

For the sake of brevity, we have combined a horizontal instantiation with a

vertical refinement in a single development step.

mv ∈ MNCH → V OTES

mi ∈ MNCH → V OTES

∀(c, i) ·

0

B

B

@

c ∈ MNCH ∧ i ∈ 1..k

=⇒
mv(c)(i) = c(2 × i) − 1 ∧
mi(c)(i) = c(2 × i))

1

C

C

A

5.5.1 M2 refines M1

It should be obvious that the Manchester code is a correct imple-

mentation of our requirements since it is clearly a correct imple-

mentation of M1. Intuitively, M2 refines M1 by changing the

way in which the votes are encoded. In M1 they are encoded as

a pair of bitsequences; in M2 they are single bit sequences where

the original pair values have been interleaved. For example, the

vote 101 is encoded as (101, 010) in M1 but as 100110 in M2.

In order to formally proof this, we establish that the invariant

in M1 is true in the refinement M2. In order to do this, we replace

(instantiate) Cv with Mchv.

Mchv ∈ vt → MCH

∀(v, m) ·

0

B

B

B

B

@

v ∈ vt ∧
m ∈ MNCH ∧
v 7→ m ∈ Mchv

=⇒
v 7→ (mv(m) 7→ mi(m) ∈ Cv

1

C

C

C

C

A

Then we introduce two more constants:

corruptx b=
any v, c, a where

v ∈ vt

v 7→ c ∈ Mchv

GD

a ∈ 1..2 × k

x(a)
c(a) = 1

then

Mchv(v)(a) := 0
end

corruptx_again b=
any v, c, a where

v ∈ vt

v 7→ c ∈ Mchv

¬GD

a ∈ 1..2 × k

x(a)
c(a) = 1

then

Mchv(v)(a) := 0
end

where:

GD = ∀i ·

0

@

i ∈ 1..k

=⇒
c(2 × i − 1) 6= c(2 × i)

1

A, and

v(a) = odd(a) and i(a) = even(a).

Without going into details, we note that in this step there are 15

proof obligations, 5 of which required interactive proofs as they

could not be discharged automatically by the tool.

6. Conclusions

We have argued that without the adoption and promotion of

formal methods, as the foundations of software engineering, devel-

oping trustworthy e-voting systems will not necessarily guarantee

that they will be trusted. We have demonstrated the application of

the formal methods event-B for guaranteeing, through construc-

tion, the correctness of a vote store with respect to the require-

ment for tamper-evident storage. We illustrated the utility of our



refinement-based approach by verifying — through the applica-

tion of a reusable formal design pattern — a store design that uses

a specific PROM technology and applies a specific Manchester

encoding mechanism. The formal design pattern is a reusable so-

lution to a common design problem — of how genericity can help

to structure the refinement proof process — that can be exploited

by formal developers who are not necessarily expert.

Future work is mainly concerned with maintainability and ex-

tensibility, for example:

• Strongly tamper-evident storage — The design that we

have presented in this paper guarantees that the store is

weakly tamper evident. It is said to be weak because tam-

pering can be detected once an election is complete. In fact,

with minor modifications to the design we can meet the re-

quirement for a store that is strongly tamper evident: so that

tampering can be detected during the voting process.

• Election closed bit — There is a separate requirement that

no more votes can be recorded once an election is closed.

Clearly, the implementation of this requirement will involve

some extension to the storage of votes so that the store is

protected against any further addition of votes after the vot-

ing process is terminated (known as vote stuffing). A pro-

posed design is to add an election closed bit to the store and

to check that this is not set as a guard for the writing of a

vote to the store. Of course, with our encoding mechanism

we can detect when this bit has been tampered with. How-

ever, without formal modelling it is difficult to reason about

the consequences of such a design with respect to a potential

denial of service attack where the bit is set before the election

has really terminated.

• History independent storage – The requirement that the

physical order of the votes recorded in the store cannot be

used to deduce any information about the vote of a particular

voter.

We will analyse the different structuring mechanisms in event-B

and the ways in which they can be used to extend our storage re-

quirements.

References

[1] J.-R. Abrial. B#: Toward a synthesis between Z and B. In

D. Bert and M. Walden, editors, 3nd International Confer-

ence of B and Z Users - ZB 2003, Turku, Finland, Lecture

Notes in Computer Science. Springer Verlag, June 2003.
[2] J.-R. Abrial and D. Cansell. Click’n’prove: Interactive

proofs within set theory. In D. Basin and B. Wolff, editors,

16th Intl. Conf. Theorem Proving in Higher Order Logics

(TPHOLs’2003), volume 2758 of Lecture Notes in Computer

Science, pages 1–24. Springer Verlag, Sept. 2003.
[3] I. Brown. Who is enfranchised by remote voting? In COMP-

SAC ’05: Proceedings of the 29th Annual International

Computer Software and Applications Conference (COMP-

SAC’05) Volume 1, page 500, Washington, DC, USA, 2005.

IEEE Computer Society.
[4] J. L. Caldwell. Formal methods technology-transfer: a view

from NASA. In S. Gnesi and D. Latella, editors, Proceedings

of the ERCIM Workshop on Formal Methods for Industrial

Critical Systems, Oxford England, March 1996.
[5] D. Cansell, J. Paul Gibson, and D. Méry. Refinement: a

constructive approach to formal software design for a secure

e-voting interface. In Proceedings, International Workshop

on Formal Methods for Interactive Systems (FMIS), Macao

SAR China, 2006.
[6] ClearSy, Aix-en-Provence (France). B4FREE, 2004.

http://www.b4free.com.
[7] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals

of software engineering. Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 1991.
[8] D. Gritzalis, editor. Secure Electronic Voting, volume 7 of

Advances in Information Security. Springer, 2003.
[9] P. S. Herrnson, B. B. Bederson, B. Lee, P. L. Francia, R. M.

Sherman, F. G. Conrad, M. Traugott, and R. G. Niemi.

Early appraisals of electronic voting. Soc. Sci. Comput. Rev.,

23(3):274–292, 2005.
[10] M. Horst, M. Kuttschreuter, and J. M. Gutteling. Perceived

usefulness, personal experiences, risk perception and trust

as determinants of adoption of e-government services in The

Netherlands. Comput. Hum. Behav., 23(4):1838–1852, 2007.
[11] J. Paul Gibson. Formal requirements engineering: Learning

from the students. In Australian Software Engineering Con-

ference, pages 171–180. IEEE Computer Society, 2000.
[12] P. Kocher and B. Schneier. Insider risks in elections. Com-

mun. ACM, 47(7):104, 2004.
[13] T. Kohno, A. Stubblefield, A. D. Rubin, and D. S. Wallach.

Analysis of an electronic voting system. In IEEE Symposium

on Security and Privacy, pages 27–40. IEEE, 2004.
[14] M. McGaley and J. Paul Gibson. E-Voting: A Safety Criti-

cal System. Technical Report NUIM-CS-TR-2003-02, NUI

Maynooth, Comp. Sci. Dept., 2003.
[15] M. McGaley and J. McCarthy. Transparency and e-Voting:

Democratic vs. Commercial Interests. In Electronic Voting

in Europe - Technology, Law, Politics and Society, pages 153

– 163. European Science Foundation, July 2004.
[16] P. Mehlitz and J. Penix. Design for verification - using de-

sign patterns to build reliable systems. In Proceedings of 6th

ICSE workshop on component based software engineering,

Portland, Oregan, May 2003.
[17] R. T. Mercuri. Computer security: quality rather than quan-

tity. Commun. ACM, 45(10):11–14, 2002.
[18] D. Molnar, T. Kohno, N. Sastry, and D. Wagner. Tamper-

evident, history-independent, subliminal-free data structures

on PROM storage —or— how to store ballots on a voting

machine. In SP ’06: Proceedings of the 2006 IEEE Sym-

posium on Security and Privacy (S&P’06), pages 365–370,

Washington, DC, USA, 2006. IEEE Computer Society.
[19] P. G. Neumann. Inside risks: risks in computerized elections.

Commun. ACM, 33(11):170, 1990.
[20] W. L. Scherlis and J. Eisenberg. IT research, innovation, and

e-government. Commun. ACM, 46(1):67–68, 2003.
[21] W. Stallings. Data and computer communications. Macmil-

lan Publishing Co., Inc., Indianapolis, IN, USA, 1985.
[22] J. Svensson and R. Leenes. E-voting in europe: Divergent

democratic practice. Information Polity, 8(1):3–15, 2003.
[23] N. Tideman and D. Richardson. Better voting methods

through technology: The refinement-manageability trade-off

in the single transferable vote. Public Choice, 103(1):13–34,

April 2000.


