
Widening Operators for Abstract Interpretation

Agostino Cortesi
Dipartimento di Informatica

Università Ca’ Foscari di Venezia
I-30170 Venezia (Italy)

cortesi@unive.it

Abstract

Abstract Interpretation, one of the most applied tech-
niques for semantics based static analysis of software, is
based on two main key-concepts: the correspondence be-
tween concrete and abstract semantics through Galois con-
nections/insertions, and the feasibility of a fixed point com-
putation of the abstract semantics, through the fast conver-
gence of widening operators. The latter point is crucial to
ensure the scalability of the analysis to large software sys-
tems.

In this paper, we investigate which properties are neces-
sary to support a systematic design of widening operators,
by discussing and comparing different definitions in the lit-
erature, and by proposing various ways to combine them.
In particular, we prove that, for Galois insertions, widen-
ing is preserved by abstraction, and we show how widening
operators can be combined for the cartesian and reduced
product of abstract domains.

Keywords: Static Analysis, Abstract Interpretation, Ab-
stract Domains, Widening Operators.

1 Introduction

Abstract Interpretation is a general theory of approxima-
tion of mathematical structures, in particular those involved
in the semantic models of computer systems, that has been
successfully applied for the static analysis of software sys-
tems. This theory is based on two main key-concepts: the
correspondence between concrete and abstract semantics
through Galois connections/insertions, and the feasibility of
a fixed point computation of the abstract semantics, through
the fast convergence of widening operators.

While Galois connections have been widely studied,
yielding to a suite of general techniques to manage the com-
bination of abstract domains, e.g. different kind of products
[10, 20, 5], and more sophisticated notions like the quotient
[7], the complement [6], and the powerset [18] of abstract
domains, not much attention has been given to provide gen-
eral results about widening operators.

Nevertheless, widening operators play a crucial role in
particular when infinite abstract domains are considered to
ensure the scalability of the analysis to large software sys-
tems, as it has been shown in the case of the Astrée project
for analysis of absence of run-time error of avionic critical
software [8].

The first infinite abstract domain (that of intervals) was
introduced in [9]. This abstract domain was later used to
prove that, thanks to widening operators, infinite abstract
domains can lead to effective static analyses for a given
programming language that are strictly more precise and
equally efficient than any other one using a finite abstract
domain or an abstract domain satisfying chain conditions
[12].

Specific widening operators have been also designed for
type graphs [21], in domains for reordering CLP(RLin) pro-
grams [27], and in the analysis of programs containing digi-
tal filters [17], just to name a few. More recently, widenings
have been used also to infer loop invariants inside an STM
solver [22], and in trace partitioning abstract domain [28].

The main challenge for widening operators is when
considering numerical domains. For the domain of con-
vex polyhedra, the original widening operator proposed by
Cousot and Halbwachs [13] has been improved by recent
works by Bagnara et al [1], and refined for the domain of
pentagons in [23]. In [2] the authors define three generic
widening methodologies for a finite powerset abstract do-
main. The widening operators are obtained by lifting any

1



widening operator defined on the base-level abstract do-
main. The proposed techniques are instantiated on power-
sets of convex polyhedra, a domain for which no non-trivial
widening operator was previously known.

We observed that, with the noticeable exception of
[12, 2], there is still a lack of general techniques that support
the systematic construction of widening operators. This is
mainly due to the fact that the definition of widening pro-
vides extremely weak algebraic properties, while it is ex-
tremely demanding with respect to convergence and termi-
nation.

The focus of the paper is to give a comprehensive pre-
sentation of the basic theory on widening operators. We
discuss and compare different definitions introduced in the
literature, namely the notion of set-widening and the most
known notion of pair-widening, and we investigate which
properties are necessary to support a systematic design of
widening operators. In particular, we prove that, for Ga-
lois Insertions, widening is preserved by abstraction, and
we show how widening operators can be combined in the
cartesian and reduced product of abstract domains.

The rest of this paper is organized as follows. The next
section reports some preliminary notions. In Section 3, we
analyze different notions of widening, and we show their
weakness points and their mutual relations. In Section 4,
we show how widening operators behave with respect to the
combination of domains through Galois insertions. Finally,
Section 5 concludes.

2 Basic Definitions

Let us briefly recall some basic definitions on orders and
lattices [3, 14].

Definition 1 (poset) If P is a non-empty set, then by a par-
tial order on P we mean a binary relation ≤ on P which is
reflexive, anti-symmetric, and transitive. By a poset (P,≤)
we shall mean a set P on which there is defined a partial
order ≤.

Definition 2 (upper and lower bounds) Let P be a poset,
and let S be a subset of P . An element x ∈ P is an upper
bound of S if s ≤ x for all s ∈ S. If the set of the upper
bounds of S has a least element z, then z is called the least
upper bound (lub) of S, and will be denoted by z = tS.
By duality, an element x ∈ P is a lower bound of S if x ≤
s for all s ∈ S. If the set of the lower bounds of S has
a maximum element z, then z is called the greatest lower
bound (glb) of S, and will be denoted by z = uS.

Looking ahead, we shall often adopt the neater notation xt
y in place of t{x, y}, and x u y in place of u{x, y}.

Definition 3 (directed set, cpo) Let S be a subset of a
poset (P,≤). Then S is said to be directed if for each pair
of elements x, y ∈ S, there exists z ∈ S such that x ≤ z
and y ≤ z.

We say that a poset (P,≤) is a cpo (complete partially
ordered set) if P has a bottom element⊥, and tD exists for
each directed subset D of P .

Definition 4 (ACC) A poset (P,≤) is said to satisfy the
ascending chain condition (ACC) if every ascending chain
x1 ≤ x2 ≤ . . . of elements of P is eventually stationary,
that is, there is some positive integer n such that xm = xn

for all m > n.

Definition 5 (lattice) Let P be a non empty poset. If x t y
and xuy exist for all x, y ∈ P , then P is a lattice. Moreover,
if tS and uS exist for every S ⊆ P , then P is a complete
lattice.

In what follows a function’s domain and range are indi-
cated by subscripts: εXY is a function from X to Y . The
ordering and the least upper bound operator defined in X
are denoted by v

X
and t

X
, respectively.

Definition 6 (Galois connection and insertion) Let C
and D be complete lattices, and consider two func-
tions: γDC : D → C and αCD : C → D. The tuple
GCD = (γDC , C, D, αCD ) is a Galois connection if

∀c∈C and ∀d∈D : α
CD

(c) ≤
D

d ⇔ c ≤
C

γ
DC

(d).

G
CD

is a Galois insertion when γ
DC

is injective or, equiva-
lently, when α

CD
is onto.

In a Galois connection or insertion G
CD

, the functions γ
DC

and α
CD

are called the concretization and the abstraction
function, respectively. The following are well-known prop-
erties of these functions, see [11].

Lemma 1 Let C and D be complete lattices, and consider
two monotone functions γ

DC
: D → C and α

CD
: C → D.

Then, G
CD

is a Galois connection if and only if

- γ
DC
◦ α

CD
is extensive: ∀c ∈ C, c ≤

C
γ

DC
(α

CD
(c));

- αCD ◦ γDC is reductive: ∀d ∈ D, αCD(γDC (d)) ≤D d.

Moreover, GCD is a Galois insertion if it is a Galois con-
nection and α

CD
◦ γ

DC
is the identity function.

2



Lemma 2 Let G
CD

be a Galois connection/insertion,

- if α
CD

and γ
DC

form a Galois connection, then one of
the two functions determines the other one. More pre-
cisely, for d ∈ D, γ

DC
(d) = t

C
{c ∈ C | α

CD
(c) v

D

d}, and similarly, for c ∈ C,α
CD

(c) = u
D
{d ∈

D | c vC γDC (d)}. Each function is called the adjoint
of the other one.

- α
CD
◦ γ

DC
◦ α

CD
= α

CD
, and γ

DC
◦ α

CD
γ

DC
= γ

DC
.

3 Widening Operators

In Abstract Interpretation, the collecting semantics of a
program is expressed as a least fix-point of a set of equa-
tions. The equations are solved over some abstract domain
that captures the property of interest to be analyzed. Typi-
cally, the equations are solved iteratively; that is, successive
approximations of the solution is computed until a fix-point
is reached. However, for many useful abstract domains,
such chains can be either infinite or too long to let the anal-
ysis be efficient. To make use of these domains, abstract in-
terpretation theory provides very powerful tools, the widen-
ing operators, that attempt to predict the fix-point based on
the sequence of approximations computed on earlier itera-
tions of the analysis on a cpo or on a (complete) lattice. The
degradation of precision of the solution obtained by widen-
ing can be partly restored by further applying a narrowing
operator [12].

3.1 Set- and Pair-Widening Operators

In the Abstract Interpretation literature, two different
general definitions of widening operator have been intro-
duced. The first one defines a widening operator as a partial
function on the powerset of a poset P , while the second one
defines it as a binary (total) function on a poset P . In both
cases, two main requirements are given: first, the widening
has to be an extrapolation operator, second, it has to guar-
antee termination when applied to increasing sequences.

Definition 7 (set-widening [10, 11]) Let (P,≤) be a poset.
A set-widening operator is a partial function ∇? : ℘(P ) 9
P such that

(i) Covering: Let S be an element of ℘(P ). If ∇?(S) is
defined, then ∀x ∈ S, x ≤ ∇?(S).

(ii) Termination: For every ascending chain {xi}i≥0, the
chain defined as

y0 = x0, yi = ∇?({xj | 0 ≤ j ≤ i})

is ascending too, and it stabilizes after a finite number
of terms.

The definition above has been used recently in [15, 16], for
fix-point computations over sets represented as automata, in
a model checking approach.

Example 1 Consider the lattice of intervals L = {⊥} ∪
{[`, u] | ` ∈ Z ∪ {−∞}, u ∈ Z ∪ {+∞}, ` ≤ u},
ordered by: ∀x ∈ L,⊥ ≤ x and [`0, u0] ≤ [`1, u1] if `1 ≤
`0 and u0 ≤ u1. Let k be a fixed positive integer constant,
and I be any set of indices. Consider the threshold widening
operator defined on L by:

∇k
?({⊥}) = ⊥

∇k
?({⊥} ∪ S) = ∇k

?(S)
∇k

?({[`i, ui] : i ∈ I}) = [h1, h2]

where

h1 = min{`i : i ∈ I} if min{`i : i ∈ I} > −k, else −∞
h2 = max{ui : i ∈ I} if max{ui : i ∈ I}) < k, else +∞.

Observe that for all k, ∇k
? is associative, and mono-

tone. However, it is not reflexive. For instance, we get
∇7

?({[−8, 4]}) = [−∞, 4].

Definition 8 (pair-widening [12], [26]) Let (P,≤) be a
poset. A pair-widening operator is a binary operator ∇ :
P × P → P such that

(i) Covering: ∀x, y ∈ P : x ≤ x∇y, and y ≤ x∇y.

(ii) Termination: For every ascending chain {xi}i≥0, the
ascending chain defined as

y0 = x0, yi+1 = yi∇xi+1

stabilizes after a finite number of terms.

Definition 9 (extrapolator) Let (P,≤) be a poset. A bi-
nary operator • : P × P → P is called extrapolator if it
satisfies the covering property, i.e. ∀x, y ∈ P : x ≤ x • y,
and y ≤ x • y.

Observe that pair-widening operators are not necessarily
neither commutative neither monotone, nor associative,
while these properties are crucial for chaotic iteration fix-
point algorithms [26].

3



Example 2 Consider the binary operator introduced in [9]
on the same lattice of Intervals of Example 1:

⊥∇x = x
x∇⊥ = x

[`0, u0]∇[`1, u1] = [if `1 < `0 then −∞ else `0,
if u0 < u1 then +∞ else u0].

∇ is a pair-widening operator, as it satisfies both covering
and termination requirements of Def.8.
Observe that the operator is not commutative, as for in-
stance

[2, 3]∇[1, 4] = [−∞, +∞]
[1, 4]∇[2, 3] = [1, 4]

Moreover, in order to see that it is not monotone, consider
[0, 1] ≤ [0, 3]. We have:

[0, 1]∇[0, 2] = [0 +∞]
[0, 3]∇[0, 2] = [0, 3].

and of course [0,+∞] is not smaller or equal to [0, 3]. Fi-
nally, observe that associativity does not hold either:

[0, 2]∇([0, 1]∇[0, 2]) = [0 +∞]
([0, 2]∇[0, 1])∇[0, 2] = [0, 2].

Let us come back to the two definitions of widening opera-
tors introduced before. As a first contribution, we see how
to build a set-widening out of a pair-widening operator.

Theorem 1 Let (P,≤) be a poset, and let∇ : P ×P → P
be a pair-widening operator on P . Define ∇? : ℘(P ) 9 P
such that:

- dom(∇?) = R1 ∪R2, where
R1 = {{x, y} | x, y ∈ P}, and
R2 = {S ⊆ P | S is a finite ascending chain}.

- ∀{x, y} ∈ R1,
∇?({x, y}) =def{

x∇y if x ≤ y
z ∈ {x∇y, y∇x} randomly, otherwise.

- ∀S = {xi | x0 ≤ x1 ≤ · · · ≤ xj} ∈ R2,
∇?(S) =def (((x0∇x1)∇x2 . . . )∇xj).

Then ∇? is a set-widening operator.

Proof: We have to show that both covering and termination
requirements hold for ∇?.

- Covering. Let S ⊆ P such that ∇?(S) is defined. We
have to show that ∀s ∈ S : s ≤ ∇?(S).
Case S ∈ R1: it follows from the definition of ∇.
Case S ∈ R2: it follows by induction on the length
of the ascending chain, and by the transitivity of the
partial order.

- Termination. Consider the ascending chain {xi}i≥0.
Consider the corresponding ascending chain {ŷi}i≥0

obtained by ∇ (see Def. 8), and the ascending chain
{yi}i≥0 obtained using∇? (see Def. 7). We can prove
by induction that for each index i, yi = ŷi.
The basis is true, as y0 = x0 = ŷ0.
Consider the inductive step:

yi+1 = ∇?({xj | 0 ≤ j ≤ i + 1})
by (ii) of Def. 7

= (((x0∇x1)∇x2 . . . )∇xi+1)
by definition of ∇?

= ∇?({xj | 0 ≤ j ≤ i})∇xi+1

again by definition of ∇?

= ŷi∇xi+1

by inductive hypotesis
= ŷi+1

by (ii) of Def. 8

As the sequence {ŷi}i≥0 stabilizes after a finite num-
ber of terms, so does {yi}i≥0.

ut
The notion of set-widening is weaker than the notion of
pair-widening. This is why, in general, there is no way to
prove the dual of Theorem 1, which can be stated only under
restricted conditions.

Theorem 2 Let (P,≤) be a poset, and let ∇? : ℘(P ) 9 P
be a set-widening operator on P such that

- dom(∇?) ⊇ {{x, y} | x, y ∈ P}, and

- ∀S ⊆ P, ∀x ∈ P, if S ∪ {x} ⊆ dom(∇?) then also
S ⊆ dom(∇?)

- ∀S ⊆ P, ∀x ∈ P, ∇?(S ∪ {x}) = ∇?({∇?(S), x}).
Then, the binary operator ∇ : P × P → P defined by
x∇y = ∇?({x, y}) is a pair-widening operator.

Proof: First, observe that ∇ is well defined. The cover-
ing requirement follows immediately from the definition
of ∇ and the covering property of ∇?. Now, consider an
ascending chain {xi}i≥0 in P , and the ascending chain
y0 = x0, yi+1 = yi∇xi. As∇? is a set-widening, we know

4



that the sequence y′0 = x0, y
′
i = ∇?({xj | 0 ≤ j ≤ i}

stabilizes finitely. We show by induction that for each i,
yi = y′i. The basis is true, as y0 = x0 = y′0. On the induc-
tion step,

y′i+1 = ∇?({xj | 0 ≤ j ≤ i + 1}
by point (ii) of Def. 7

= ∇?({∇?({xj | 0 ≤ j ≤ i}), xi+1})
by hypothesis on ∇?

= ∇?({y′i, xi+1}), by point (ii) of Def. 7
= ∇?({yi, xi+1}), by inductive hypothesis
= yi∇xi+1, by definition of ∇
= yi+1, by point (ii) of Def. 8.

As the sequence {y′i}i≥0 stabilizes after a finite number of
terms, so does {yi}i≥0. ut
Observe that the set-widening operator ∇k

? of Example 1
satisfies the conditions of Theorem 2 above, yielding to a
corresponding pair-widening operator.

3.2 Pair Widening and Cartesian Product

The next theorem shows that pair-widening operators can be
combined when considering the cartesian product of posets.

Theorem 3 Let ∇A and ∇D be pair-widening operators
defined on the posets A and D, respectively.
The binary operator ∇ : (A×D)× (A×D) → (A×D)
defined by ∀〈a, d〉, 〈a′, d′〉 ∈ A × D : 〈a, d〉∇〈a′, d′〉 =
〈a∇

A
a′, d∇

D
d′〉 is a pair-widening operator.

Proof:

- Covering

a ≤ a∇
A
a′ and d ≤ d∇

D
d′

by covering of ∇A ,∇D

⇒ 〈a, d〉 ≤ 〈a∇Aa′, d∇Dd′〉
by definition of ≤ on A×D

⇒ 〈a, d〉 ≤ 〈a, d〉∇〈a′, d′〉
by definition of ∇.

- Termination Let {〈ai, di〉}i≥0 be an ascending chain
in the cartesian product A × D. We have to show
that the sequence 〈u0, v0〉 = 〈a0, d0〉, 〈ui+1, vi+1〉 =
〈ui, vi〉∇〈ai, di〉 stabilizes after a finite number of
terms.

By the termination property of ∇A and ∇D , both the
sequence â0 = a0, âi+1 = âi∇A

ai, and the sequence
d̂0 = d0, d̂i+1 = d̂i∇Ddi stabilize finitely.

It can be easily proved by induction that for each
i, 〈ui, vi〉 = 〈âi, d̂i〉. Therefore, the sequence
{〈uj , vj〉}j≥0 stabilizes finitely too. ut

3.3 Combination of pair-widening opera-
tors on the same poset

What happens when more than one widening operator is
defined on a poset P ? Is it possible to get a more pre-
cise and/or a more efficient widening operator by combin-
ing them in a suitable way? Unfortunately, in general the
answer is negative. And the reason relies on the fact that
the possibly non monotonic behavior of the widening op-
erators becomes an issue when trying to prove termination
of their combination on an ascending chain. However, as
soon as stronger termination conditions are guaranteed on
the poset P , some positive results can be easily derived.

Theorem 4 Let (P,≤) be a lattice satisfying the ascending
chain property. Let∇1,∇2 be two pair-widening operators
on P . Then, the binary operators ∇u,∇t defined by

x∇u y = (x∇1 y) u (x∇2 y)
x∇t y = (x∇1 y) t (x∇2 y)

are pair-widening operators.

Proof: It follows by properties of t and u. ut
This result may apply for instance to widening operators
defined on the (infinite) domain of congruences [19], where
prime factorization is an issue, in order to tune performance
vs. accuracy of the analysis. In fact, ∇t may gain in ef-
ficiency with respect to both ∇1 and ∇2, while ∇u may
better keep accuracy, thus returning a more accurate result.

3.4 Strong Pair-Widening Operators

For numerical domains like polyhedra, where the abstract
elements computed at each iteration of the analysis are not
necessarily ordered, a stronger notion of widening is used
for forcing termination of the analysis. This is the case, for
instance, of the trace partitioning abstract domain of Astrée,
an abstract interpretation-based analyzer aiming at proving
automatically the absence of run time errors in programs
written in the C programming language, which has been ap-
plied with success to large safety critical real-time software
for avionics [4, 8].

Definition 10 (strong pair-widening [28]) Let (P,≤) be a
poset. A strong pair-widening operator is a binary operator
∇ : P × P → P such that

5



(i) Covering: ∀x, y ∈ P : x ≤ x∇y, and y ≤ x∇y.

(ii) Termination: For every sequence {xi}i≥0, the ascend-
ing chain defined as y0 = x0, yi+1 = yi∇xi+1 stabi-
lizes after a finite number of terms.

Observe that this definition is strictly stronger than Defini-
tion 8, as termination is required starting from every (not
necessarily increasing) sequence.

Example 3 The octagon domain [24, 25] is based on in-
variants of the form ±x± y ≤ c, where x and y are numer-
ical variables and c is a numeric constant. Sets described
by such invariants are special kind of polyhedra called oc-
tagons because they feature at most eight edges in dimen-
sion 2. These constraints are expressed through Different
Bound Matrices, which are adjacency matrices of weighted
graphs. The widening operator defined on this domain con-
sists on removing unstable constraints. In this case, termi-
nation has to be guaranteed for the chain of widened ele-
ments starting from a sequence of elements possibly incom-
parable. This is why the strongest notion of pair widening
has to be used.

The two notions of Pair-widening and Strong pair-
widening are equivalent for a lattice P , under associativity
conditions, as shown in Theorem 5. In order to prove it, we
introduce the following auxiliary Lemma.

Lemma 3 Let ∇ be a pair-widening operator on a lattice
(P,≤), such that for every finite set {xi}0≤i≤n and for ev-
ery y ∈ P , (((x0∇x1)∇ . . . )∇xn) ∇ (x0tx1t· · ·txnty)
= (((x0∇x1)∇ . . . )∇xn)∇y, then ∇ is a strong pair-
widening operator.

Proof: We need to focus only on the termination property.
Consider the sequence {xi}0≤i≤n, and the increasing se-
quence

z0 = x0, zi+1 = x0 t . . . t xi+1

We show by induction that the two increasing sequences
y0 = x0, yi+1 = yi∇xi+1 and h0 = z0, hi+1 = hi∇zi+1

are such that ∀i : yi = hi.
The basis is trivial, as y0 = x0 = z0 = h0.

The induction step:

hi+1 = hi∇zi+1

by def. of {hj}j≥0

= yi∇zi+1

by inductive hypothesis
= (((x0∇x1)∇ . . . )∇xi)∇zi+1

by def. of {yj}j≥0

= (((x0∇x1)∇ . . . )∇xi)∇(x0 t . . . t xi+1)
by def. of {zj}j≥0

= (((x0∇x1)∇ . . . )∇xi)∇xi+1

by hypothesis on ∇
= yi+1

by def. of {yj}j≥0

As the increasing sequence {hj}j≥0 stabilizes after a finite
number of terms, so does {yj}j≥0. ut

Theorem 5 Let ∇ be an associative pair-widening opera-
tor on a lattice (P,≤), such that for ∀x, y ∈ P : x∇y =
x∇(x t y), then ∇ is a strong pair-widening operator.

Proof: By Lemma 3, it is sufficient to prove by induction
that for every finite set {xi}0≤i≤n and for every y ∈ P ,
(((x0∇x1)∇ . . . )∇xn) ∇ (x0 t x1 t · · · t xn t y) =
(((x0∇x1)∇ . . . )∇xn)∇y.
The basis (n = 1) follows immediately from the hypothesis.
Induction step:

(((x0∇x1)∇ . . . )∇xn) ∇ (x0 t · · · t xn t y) =
by inductive hypothesis

(((x0∇x1)∇ . . . )∇(x0 t · · · t xn)) ∇ (x0 t . . . t xn t y) =
by associativity of ∇ and of t

((x0∇x1)∇ . . . )∇((x0 t · · · t xn)∇((x0 t · · · t xn) t y)) =
by applying the hypothesis

((x0∇x1)∇ . . . )∇((x0 t · · · t xn)∇y) =
by associativity of ∇

(((x0∇x1)∇ . . . )∇xn)∇y.

ut

Example 4 Observe that the pair-widening operator on in-
tervals obtained from the set-widening of Example 1 follow-
ing the construction of Theorem 2, satisfies the condition of
Theorem 5, and it is in fact a strong pair widening operator.
However, not every pair-widening operator is also a strong
one. On the same lattice of intervals, consider for instance
the pair-widening ∇ defined by:

⊥∇x = x and x∇⊥ = x

6



[`0, u0]∇[`1, u1] =

=





[−∞, +∞]
if [`0, u0] ≤ [`1, u1] or [`1, u1] ≤ [`0, u0]

[min(`0, `1),max(u0, u1)]
otherwise

On increasing sequences, the widened sequence terminates
immediately, whereas if we consider for instance the se-
quence {[i, i + 1]}i≥0, ∇ yields the ascending sequence
{[0, i]}i≥1, which does not terminate.

4 Widening Operators and Galois Insertions

Widening operators have already been used in order to de-
rive abstract domains [29]. The next results show how to
derive Galois insertions by introducing an abstraction func-
tion built on top of a widening operator. In order to do that,
additional requirements have to be assumed on the widen-
ing operator, like idempotence and order-preservation on
pairs/singletons.

Theorem 6 Let ∇ be a pair-widening operator on a com-
plete lattice (L,≤) such that ∀x, y ∈ L : x ≤ y ⇒
x∇x ≤ y∇y. Let A be the set {x∇x | x ∈ L}. Then
α

LA
(x) = x∇x is the lower adjoint of a Galois insertion

between L and A, with the upper adjoint being the identity
function.

Proof: According to Def. 6, we have to show that
(γAL , L, A, αLA) is a Galois insertion, with γAL being the
identity function. By Lemma 1, it is sufficient to prove that
∀x ∈ L : x ≤ γ

AL
(α

LA
(x)), and that ∀a ∈ A : a =

α
LA

(γ
AL

(a)).

∀x ∈ L : x ≤ x∇x, by (i) of Def. 8
⇒ x ≤ α

LA
(x), by definition of α

LA

⇒ x ≤ γAL(αLA(x)), as γAL is the identity

∀a ∈ A : a = a∇a, by definition of A
⇒ a = (γ

AL
(a))∇(γ

AL
(a)), as γ

AL
is the identity

⇒ a = α
LA

(γ
AL

(a)), by definition of α
LA

ut
A corresponding result can be obtained also for set-
widening operators.

Theorem 7 Let ∇? be a set-widening operator on a com-
plete lattice (L,≤) such that ∇?({x}) is defined for each
x in L, and such that ∀x, y ∈ L : x ≤ y ⇒ ∇?({x}) ≤
∇?({y}). Let A be the set {∇?({x}) | x ∈ L}. Consider
the function αLA : L → A defined by αLA(x) = ∇?({x}).
Then, α

LA
is the lower adjoint of a Galois insertion between

L and A, with the upper adjoint being the identity function.

Proof: The proof is similar to the proof of Theorem 6. ut

4.1 Pair-widening and abstraction

The following theorem shows that pair widening is pre-
served through abstraction.

Theorem 8 Let C and D be two complete lattices, s.t.
G

CD
= (γ

DC
, C, D, α

CD
) is a Galois insertion. Let ∇

C

be a pair-widening on C. The binary operator ∇
D

defined
by ∀d1, d2 ∈ D, d1∇D

d2 = α
CD

(γ
DC

(d1)∇C
γ

DC
(d2)) is a

pair-widening operator on D.

Proof:

- Covering. Let us show that ∀d1, d2 ∈ D : d1 ≤
d1∇Dd2.

γDC (d1) ≤ γDC (d1)∇C γDC (d2)
by (ii) of Def. 8

α
CD

(γ
DC

(d1)) ≤ α
CD

(γ
DC

(d1)∇C
γ

DC
(d2))

by monotonicity of α
CD

αCD (γDC (d1)) ≤ d1∇Dd2

by definition of ∇D

d1 ≤ d1∇D
d2

as G
CD

is a Galois insertion.

The same way, we can also prove that ∀d1, d2 ∈ D :
d2 ≤ d1∇Dd2.

- Termination. Consider the ascending chain {di}i≥0

in D. Consider the corresponding ascending chain
γ

DC
(d0) ≤ γ

DC
(d1) ≤ . . . in C. And consider the

sequence y0 = γ
DC

(d0), yi+1 = yi∇C
γ

DC
(di+1).

As ∇
C

is a pair-widening operator, this ascending se-
quence stabilizes after a finite number of terms. We
have to show that also the sequence ŷ0 = d0, ŷi+1 =
ŷi∇D

di+1 stabilizes after a finite number of terms. By
induction, we prove that for each i, ŷi = α

CD
(yi).

The basis is trivial, as ŷ0 = d0 = α
CD

(γ
DC

(d0)) =
αCD (y0).

7



Looking at the inductive step,

ŷi+1 = ŷi∇D
di+1

by definition of the sequence {ŷj}j≥0.
= α

CD
(yi)∇D

di+1

by inductive hypotesis
= α

CD
(yi)∇D

α
CD

(γ
DC

(di+1))
as G

CD
is a Galois insertion

= α
CD

(yi∇C
γ

DC
(di+1))

by definition of ∇D

= α
CD

(yi+1)
by definition of the sequence {yj}j≥0.

ut

As a corollary of Theorem 8, we can prove that pair-
widening operators are preserved also when projecting a
cartesian product of lattices on one of its components.

Corollary 1 Let A and D be complete lattices, and let∇ be
a pair-widening operator over the cartesian product A×D.
Let π1 be the projection on the first argument. The binary
operator ∇A : A×A → A defined by

a∇Aa′ = π1(〈a,>〉∇〈a′,>〉)

is a pair-widening operator.

Proof: It is sufficient to observe that the monotone functions
α : A×D → A and γ : A → A×D defined by

∀(a, d) ∈ A×D : α(〈a, d〉) = a
∀a ∈ A : γ(a) = 〈a,>〉

form a Galois insertion between A and D. There-
fore, by applying Theorem 8, the binary operator ∇′ =
α(γ(a)∇γ(a′)) is a pair widening operator on A. To con-
clude, it is sufficient to observe that ∇A = ∇′. ut

4.2 Pair-widening and Reduced Product

A very important operator to combine abstract domains in
Abstract Interpretation, is the reduced product [10]. We
have already seen in Theorem 3 that the pair-widening oper-
ators can be combined when considering the cartesian prod-
uct of two posets. Unfortunately, this result cannot be fully
extended to the reduced product, due to the fact that pair-
widening operators in general are not required to be mono-
tone. However, getting results relating widening operators
in case of reduced product may have great impact on ab-
stract domains used for the analysis of critical software. For

instance, the octagon domain [25] can be seen as the re-
duced product of 2n2 abstract domains, each one of them
focusing on an invariant of the form ±x± y ≤ c.

Definition 11 Let C, A,D be complete lattices, and let
G

CD
= (γ

DC
, C, D, α

CD
) and G

CA
= (γ

AC
, C, A, α

CA
) be

Galois insertions.
Consider the function reduce:A ×D → A ×D defined by
reduce(〈a, d〉) = u{〈a′, d′〉 | γ

AC
(a)uγ

DC
(d) = γ

AC
(a′)u

γDC (d′)}
The reduced product A uD is defined as follows:

A uD = {reduce(〈a, d〉) | a ∈ A, d ∈ D}.

Moreover, the function γ : A u D → C defined by
γ(〈a, d〉) = γ

AC
(a) u γ

DC
(d) is the upper adjoint of a Ga-

lois insertion between A uD and the domain C.

We can prove (Lemma 5) that by combining two pair-
widening operators in the reduced product at least covering
is preserved, i.e. we can obtain an extrapolation operator
(which not necessarily terminates on ascending sequences,
see for instance the domain of octagons [25]). The follow-
ing auxiliary Lemma says that reduce well behaves with re-
spect to the ordering in the reduced product A uD.

Lemma 4 Let C, A,D be complete lattices, and let GCD =
(γ

DC
, C, D, α

CD
) and G

CA
= (γ

AC
, C, A, α

CA
) be Galois

insertions. For â ∈ A, d̂ ∈ D, 〈a, d〉 ∈ A u D, if a ≤ â

and d ≤ d̂, then 〈a, d〉 ≤ reduce(〈â, d̂〉).

Proof: By u properties and monotonicity of γ functions,
γAC (a) u γDC (d) ≤ γAC (â) u γDC (d̂). Therefore,
reduce(〈â, d̂〉) is such that

γ(〈a, d〉) ≤ γ(reduce(〈â, d̂〉)

where γ is the upper adjoint of the Galois insertion
(γ, C,A uD, α) as in Def. 11.
By applying α to both expressions, by monotonicity of α
we get

α(γ(〈a, d〉)) ≤ α(γ(reduce(〈â, d̂〉)))

and by Galois insertion properties, as α ◦ γ is the identity
function, we get

〈a, d〉 ≤ reduce(〈â, d̂〉)

ut

8



Lemma 5 Let C, A,D be complete lattices, and let G
CD

=
(γ

DC
, C, D, α

CD
) and G

CA
= (γ

AC
, C,A, α

CA
) be Galois

insertions.
Let ∇

A
and ∇

D
be pair-widening operators defined on the

lattice A and D, respectively.
The binary operator • : (A u D) × (A u D) → (A u D)
defined by ∀〈a, d〉, 〈a′, d′〉 ∈ A u D : 〈a, d〉 • 〈a′, d′〉 =
reduce(〈a∇

A
a′, d∇

D
d′〉) is an extrapolator operator.

Proof: Let 〈a, d〉, 〈a′, d′〉 ∈ A u D. We have to prove that
〈a, d〉 ≤ 〈a, d〉 • 〈a′, d′〉.

〈a, d〉 ≤ 〈a∇
A
a′, d∇

D
d′〉

by covering of ∇
A
,∇

D

⇒ 〈a, d〉 ≤ reduce(〈a∇
A
a′, d∇

D
d′〉)

by Lemma 4
⇒ 〈a, d〉 ≤ 〈a, d〉 • 〈a′, d′〉

by definition of • .

In the same way, we can also prove that 〈a′, d′〉 ≤ 〈a, d〉 •
〈a′, d′〉. ut
The last Theorem shows that in a reduced product, when
the pair-widening operators on the two domains are not af-
fected by reduce, the extrapolator of Lemma 5 enjoys also
the termination property, thus resulting into a pair-widening
operator too.

Theorem 9 Let C,A, D be complete lattices, and let
GCD = (γDC , C, D, αCD ) and GCA = (γAC , C, A, αCA) be
Galois insertions.
Let ∇

A
and ∇

D
be pair-widening operators defined on the

lattice A and D, respectively, such that ∀〈a, d〉 ∈ A u D,
∀a′ ∈ A, ∀d′ ∈ D : 〈a∇Aa′, d∇Dd′〉 ∈ A uD.
Then the binary operator ∇ : (A uD)× (A uD) → (A u
D) defined by ∀〈a, d〉, 〈a′, d′〉 ∈ A uD : 〈a, d〉∇〈a′, d′〉 =
reduce(〈a∇

A
a′, d∇

D
d′〉) is a pair-widening operator.

Proof: By Lemma 5, we need to focus only on the termina-
tion property.
Consider the increasing sequence 〈a0, d0〉 ≤ 〈a1, d1〉 . . . in
A u D. As the ordering ≤ in A u D is the same as in the
cartesian product A × D, we may consider the increasing
sequence a0 ≤ a1 ≤ . . . in A, and the increasing sequence
d0 ≤ d1 ≤ . . . in D. By the termination property of ∇

A

and ∇
D

, we know that the corresponding sequences â0 =
a0, âi+1 = âi∇Aai+1, and d̂0 = d0, d̂i+1 = d̂i∇Ddi+1

stabilize after a finite number of terms.
We show by induction that the increasing sequence
〈a′0, d′0〉 = 〈a0, d0〉, 〈a′i+1, d

′
i+1〉 = 〈a′i, d′i〉∇〈ai+1, di+1〉

is such that ∀i : 〈a′i, d′i〉 = 〈âi, d̂i〉.

The basis is trivial, as 〈a′0, d′0〉 = 〈a0, d0〉 = 〈â0, d̂0〉.
Induction step:

〈a′i+1, d
′
i+1〉 = 〈a′i, d′i〉∇〈ai+1, di+1〉

by definition of {〈a′j , d′j〉}j≥0

= reduce(a′i∇A
ai+1, d

′
i∇D

di+1)
by def. of ∇

= 〈a′i∇A
ai+1, d

′
i∇D

di+1〉
by the hypothesis

= 〈âi+1, d̂i+1〉
by def. of {âj}j≥0 and {d̂j}j≥0

It follows that {〈a′j , d′j〉}j≥0 converges in a finite number
of steps, namely the maximum between the termination in-
dexes of {âj}j≥0 and {d̂j}j≥0. ut

5 Conclusions and Future Work

We investigated which properties are necessary to sup-
port a systematic design of widening operators. As far as
we know, this is the first attempt to provide a general com-
parison of the different notions of widening used in the liter-
ature and a first comprehensive discussion of their main fea-
tures. More work deserves to be done in order to support a
broader range of widening operators defined on abstract do-
mains where only the concretization function is available or
where the least upper bound operator is not always defined.
We are currently investigating how to enhance domains and
widening operators with suitable metrics that allow to get
a quantitative comparison of their precision and/or of their
speed to reach a fixed-point.

Aknowledgments

This paper was conceived while the author was visiting the École
Normale Supérieure, invited by Patrick and Radhia Cousot. Many
thanks to Xavier Rival, Pietro Ferrara, and Flemming Nielson for
their comments on the a first draft of this work.
Work partially supported by PRIN 2007 MUR Project
200793N42R ”SOFT - Tecniche formali orientate alla sicurezza”.

References

[1] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise
widening operators for convex polyhedra. Science of Com-
puter Programming, 58(1-2):28–56, 2005.

[2] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening oper-
ators for powerset domains. Software Tools for Technology
Transfer, 8(4/5):449–466, 2006.

9



[3] Gareth Birkhoff. Lattice Theory. American Mathematical
Society Colloquium Publications, Rhode Island, 1973.

[4] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome
Feret, Laurent Mauborgne, Antoine Miné, David Monniaux,
and Xavier Rival. A static analyzer for large safety-critical
software. In PLDI ’03: Proc. of the ACM SIGPLAN 2003
conference on Programming language design and implemen-
tation, pages 196–207, 2003.

[5] Agostino Cortesi, Baudouin Le Charlier, and Pascal Van
Hentenryck. Combinations of abstract domains for logic pro-
gramming: open product and generic pattern construction.
Science of Computer Programming, 38(1–3):27–71, 2000.

[6] Agostino Cortesi, Gilberto Filé, Francesco Ranzato, Roberto
Giacobazzi, and Catuscia Palamidessi. Complementation in
abstract interpretation. ACM Trans. Program. Lang. Syst.,
19(1):7–47, 1997.

[7] Agostino Cortesi, Gilberto Filé, and William Winsborough.
The quotient of an abstract interpretation. Theoretical Com-
puter Science, 202(1-2):163 – 192, 1998.

[8] P. Cousot. Proving the absence of run-time errors in safety-
critical avionics code. In C. Kirsch and R. Wilhelm, editors,
Proc. 7th ACM & IEEE International Conference on Embed-
ded Sofware, Embedded Systems, (EMSOFT 2007), pages 7–
9, Salzburg, Austria, 2007. ACM press.

[9] P. Cousot and R. Cousot. Static determination of dynamic
properties of programs. In Proceedings of the Second In-
ternational Symposium on Programming, pages 106–130.
Dunod, Paris, France, 1976.

[10] P. Cousot and R. Cousot. Systematic design of program anal-
ysis frameworks. In Conference Record of the Sixth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 269–282, San Antonio, Texas,
1979. ACM Press, New York, NY.

[11] P. Cousot and R. Cousot. Abstract interpretation frame-
works. Journal of Logic and Computation, 2(4):511–547,
August 1992.

[12] P. Cousot and R. Cousot. Comparing the Galois connection
and widening/narrowing approaches to abstract interpreta-
tion. In Proc. Int. Workshop on Programming Language Im-
plementation and Logic Programming, volume 631 of LNCS,
pages 269–295. Springer-Verlag, 1992.

[13] P. Cousot and N. Halbwachs. Automatic discovery of lin-
ear restraints among variables of a program. In 5th ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 84–97. ACM Press, 1978.

[14] B. A. Davey and H. A. Priestley. Introduction to Lattices and
Order. Cambridge University Press, Cambridge, 1990.

[15] Vijay D’Silva. Widening for automata. In PhD thesis, Institut
fur Informatik, Universitaat Zurich, 2006.

[16] Vijay D’Silva, Mitra Purandare, and Daniel Kroening.
Approximation refinement for interpolation-based model
checking. In VMCAI, 2008.

[17] Jérôme Feret. Static analysis of digital filters. In European
Symposium on Programming (ESOP’04), number 2986 in
LNCS. Springer-Verlag, 2004.

[18] Roberto Giacobazzi and Francesco Ranzato. The reduced
relative power operation on abstract domains. Theoretical
Computer Science, 216(1-2):159 – 211, 1999.

[19] P. Granger. Static analysis of linear congruence equali-
ties among variables of a program. In Int. Joint Confer-
ence on Theory and Practice of Software Development (TAP-
SOFT’91), volume 464 of LNCS, pages 169–192. Springer-
Verlag, April 1991.

[20] P. Granger. Improving the results of static analyses programs
by local decreasing iteration. In Proceedings of FSTTCS,
volume 652 of Lectures Notes in Computer Science, pages
68–79. Springer-Verlag, 1992.

[21] Pascal Van Hentenryck, Agostino Cortesi, and Baudouin Le
Charlier. Type analysis of prolog using type graphs. In SIG-
PLAN Conference on Programming Language Design and
Implementation, pages 337–348, 1994.

[22] K. Rustan M. Leino and Francesco Logozzo. Using widen-
ings to infer loop invariants inside an smt solver, or: A the-
orem prover as abstract domain. In Workshop on Invariant
Generation (WING 2007), Hagenberg, Austria, June 25-26,
2007.

[23] Francesco Logozzo and Manuel Fahndrich. A weakly re-
lational domain for the efficient validation of array accesses.
In 23th ACM Symposium on Applied Computing (SAC 2008),
Fortaleza, Brazil, 2008.

[24] A. Miné. The octagon abstract domain. In AST 2001 in
WCRE 2001, IEEE, pages 310–319. IEEE CS Press, October
2001.

[25] A. Miné. The octagon abstract domain. Higher-Order and
Symbolic Computation, 19(1):31–100, 2006.

[26] F. Nielson, Riis H. Nielson, and C. L. Hankin. Principles of
Program Analysis. Springer, second printing, 2005 edition,
1999.

[27] Viswanath Ramachandran, Pascal Van Hentenryck, and
Agostino Cortesi. Abstract domains for reordering clp(rlin)
programs. J. Log. Program., 42(3):217–256, 2000.

[28] Xavier Rival and Laurent Mauborgne. The trace partitioning
abstract domain. ACM Trans. Program. Lang. Syst., 29(5):7–
47, 2007.

[29] Arnaud Venet. Abstract cofibered domains: Application to
the alias analysis of untyped programs. In Proc. of the 3rd
Int. Symposium on Static Analysis (SAS 96), pages 366–382.
Springer-Verlag, 1996.

10


