
ar
X

iv
:0

80
8.

41
33

v1
 [

cs
.L

O
]

29
 A

ug
 2

00
8

Tableau-based decision procedure for the multi-agent epistemic
logic with operators of common and distributed knowledge

Valentin Goranko
University of the Witwatersrand

School of Mathematics
WITS 2050, Johannesburg, South Africa

goranko@maths.wits.ac.za

Dmitry Shkatov
University of the Witwatersrand

School of Computer Science
WITS 2050, Johannesburg, South Africa

dmitry@cs.wits.ac.za

Abstract

We develop an incremental-tableau-based decision pro-
cedure for the multi-agent epistemic logicMAEL (CD)
(akaS5n(CD)), whose language contains operators of
individual knowledge for a finite setΣ of agents, as
well as operators of distributed and common knowl-
edge among all agents inΣ. Our tableau procedure
works in (deterministic) exponential time, thus estab-
lishing an upper bound forMAEL (CD)-satisfiability
that matches the (implicit) lower-bound known from
earlier results, which impliesExpTime-completeness
of MAEL (CD)-satisfiability. Therefore, our procedure
provides a complexity-optimal algorithm for checking
MAEL (CD)-satisfiability, which, however, in most cases
is much more efficient. We prove soundness and com-
pleteness of the procedure, and illustrate it with an exam-
ple.

1 Introduction

Over the last two decades, multi-agent epistemic logics
([2, 8]) have played a significant role in computer science
and artificial intelligence. The main application seems to
have been to design, specification, and verification of dis-
tributed protocols ([6]), but a plethora of other applica-
tions are described in, among others, [3], [2] and [8].

Languages of multi-agent epistemic logics considered
in the literature contain various repertoires of modal oper-
ators. In the present paper, we consider the “full” multi-

agent epistemic logic, which we callMAEL (CD), whose
language contains operators of individual knowledge for
a non-empty, finite setΣ of agents as well as operators
of common (C) and distributed (D) knowledge among all
agents inΣ. (Since all modal operators ofMAEL (CD)
are S5-modalities, the logic is also referred to in the
literature asS5n(CD)). To be used for such tasks as
designing protocols conforming to a given specification,
MAEL (CD), needs to be equipped with an algorithm
checking forMAEL (CD)-satisfiability. The first step in
that direction was taken in [10], where the decidability of
MAEL (CD) has been established by showing that it has
a finite model property. This result was proved in [10]
via filtration; therefore, the decision procedure suggested
by that argument is based on an essentially brute-force
enumeration of all finite models forMAEL (CD), which
suggest a satisfiability-checking algorithm that is theoreti-
cally important, but of limited practical value. Our tableau
procedure has, in comparison, the following advantages:

1. It establishes a (deterministic)ExpTime upper-
bound forMAEL (CD)-satisfiability, which matches
the lower-bound that follows from the results of [7].

2. It provides an algorithm for checkingMAEL (CD)-
satisfiability that is not only provably complexity-
optimal, but which in the vast majority of cases re-
quires much less resources than what is predicted
by the worst-case upper bound. This is one of the
hallmarks of incremental tableaux ([11]) as opposed
to the top-down tableaux in the style of [1], which
always require the amount of resources predicted

http://arxiv.org/abs/0808.4133v1

by the worst-case complexity estimate. Top-down
tableaux for the fragment ofMAEL (CD) not con-
taining the operator of distributed knowledge have
been presented in [7].

The type of incremental tableau developed herein orig-
inates in [11]; tableaux in a similar style were recently
developed for the multi-agent logicATL and some of its
variations in [5]. Thus, the present paper continues the
enterprize of designing complexity-optimal decision pro-
cedures for logics used in design, specification and veri-
fication of multi-agent systems ([2, 12]). The particular
style of the tableaux presented here is meant to be com-
patible with the tableaux from [5], so that we can in the fu-
ture build tableaux for more sophisticated logics for multi-
agent systems.

The main reason for the restriction of the distributed
and common knowledge operators only to be (implicitly)
parameterized by the whole set of agents referred to in the
language, adopted in this paper, is to be able to present
the main ideas and features of the tableaux in sufficient
detail, while avoiding some additional technical compli-
cations arising in the case of several such operators, each
one associated with a non-empty subset of the set of all
agents. This, more complicated, case will be treated in a
follow-up paper.

2 Syntax and semantics of
MAEL(CD)

2.1 Syntax

The languageL of MAEL (CD) contains a (possibly,
countably-infinite) setAP of atomic propositions, typi-
cally denoted byp, q, r, . . .; a finite, non-empty setΣ of
(names of)agents, typically denoted bya, b . . .; a suffi-
cient repertoire of the Boolean connectives; and the modal
operatorsKa (“the agenta knows that . . . ”),D (“it is dis-
tributed knowledge amongΣ that . . . ”) andC (“it is com-
mon knowledge amongΣ that . . . ”). Thus, the formulae
of L are defined as follows:

ϕ := p | ¬(ϕ) | (ϕ1 ∧ ϕ2) | Ka(ϕ) | D(ϕ) | C(ϕ),

wherep ranges overAP anda ranges overΣ. The other
boolean connectives can be defined in the usual way. We

omit parentheses in formulae whenever it does not re-
sult in ambiguity. We denote arbitrary formulae ofL by
ϕ, ψ, χ, . . . (possibly with decorations). We writeϕ ∈ L
to mean thatϕ is a formula ofL. Formulae of the form
¬Cϕ are calledeventualities.

2.2 Semantics

Formulae ofL are interpreted over multi-agent epistemic
models, based on multi-agent epistemic frames. We will
also need a more general notion of multi-agent epistemic
structure.

Definition 2.1 A multi-agent epistemic structure(MAES,
for short) is a tupleS = (Σ, S, {Ra}a∈Σ,RD,RC),
where

1. Σ is a finite, non-empty set of agents;
2. S 6= ∅ is a set ofstates;
3. RD andRa, for eacha ∈ Σ, are binary relations on
S;

4. RC is the transitive closure ofRD ∪
⋃

a∈ΣRa.

Definition 2.2 A multi-agent epistemic frame(MAEF, for
short) is a MAESF = (Σ, S, {Ra}a∈Σ,RD,RC), where

(a) RD andRa, for everya ∈ Σ, are equivalence rela-
tions onS;

(b) RD =
⋂

a∈ΣRa.

If condition (b) above is replaced with

(b′) RD ⊆
⋂

a∈ΣRa,

thenF is amulti-agent epistemic pseudo-frame.

Notice that in (pseudo-)frames condition 4 of defini-
tion 2.1 is equivalent to the requirement thatRC is the
transitive closure of

⋃
a∈ΣRa. Also notice that, as in any

MAEF eachRa is an equivalence relation,RC is also an
equivalence relation.

Definition 2.3 A multi-agent epistemic model(MAEM,
for short) is a tupleM = (F,AP, L), where

(i) F is a MAEF;
(ii) AP is a (possibly, infinite) set of atomic propositions;
(iii) L : S 7→ P(AP), is a labeling function, whereL(s)

is the set of all atomic propositions that are declared
true ats.

2

If condition (i) above is replaced by the requirement that
F is a multi-agent epistemic pseudo-frame, thenM is a
multi-agent epistemic pseudo-model(pseudo-MAEM).

The satisfaction relation between (pseudo-)MAEMs
and formulae is defined in the standard way. In particular,

• M, s
 Kaϕ iff (s, t) ∈ Ra impliesM, t
 ϕ;
• M, s
 Dϕ iff (s, t) ∈ RD impliesM, t
 ϕ;
• M, s
 Cϕ iff (s, t) ∈ RC impliesM, t
 ϕ.

The truth condition for the operatorC can be para-
phrased in terms of reachability. LetF be a (pseudo-
)frame with state spaceS and let s, t ∈ S. We say
that t is reachable froms if there exists a sequence
s = s0, s1, . . . , sn−1, sn = t of elements ofS such that,
for every 0 ≤ i < n, there existsa ∈ Σ such that
(si, si+1) ∈ Ra. It is then easy to see that the following
truth condition forC is equivalent in (pseudo-)MAEMs
to the one given above:

• M, s
 Cϕ iff M, t
 ϕ whenevert is reachable
from s.

Notice that ifΣ = {a}, then the formulaeKaϕ↔ Dϕ
andKaϕ ↔ Cϕ are valid for allϕ ∈ L, so the one-
agent case is trivialized. Thus, we assume throughout the
remainder of the paper thatΣ contains at least 2 agents.

Definition 2.4 (Satisfiability and validity)

• Let ϕ ∈ L andM be a MAEM. We say thatϕ is
satisfiablein M if M, s
 ϕ holds for somes ∈ M
and thatϕ is valid in M if M, s
 ϕ holds for every
s ∈ M.

• Letϕ ∈ L andM be a class of models. We say that
ϕ is satisfiablein M if M, s
 ϕ holds for some
M ∈ M and somes ∈ M and thatϕ is valid in
M if M, s
 ϕ holds for everyM ∈ M and every
s ∈ M.

The goal of this paper is to develop a sound, complete,
and complexity-optimal tableau-based decision procedure
for testing satisfiability, and hence also validity, of formu-
las ofL in the class of all MAEMs; in other words, the
procedure tests for the belonging of formulae ofL to the
logic MAEL (CD), which is the logic of all such models.

3 Hintikka structures

The ultimate purpose of the tableau procedure we develop
is to check if the input formula is satisfiable in a MAEM.
However, the tableau attempts not to directly construct a
MAEM for the input formula, but to build a more gen-
eral kind of semantic structure, viz. aHintikka structure
(which are, therefore, used in proving completeness of our
tableaux). The basic difference between models and Hin-
tikka structures is that while models determine the truth
of every formula of the language at every state, Hintikka
structures only provide truth values of the formulae rel-
evant to the evaluation of a fixed formulaθ. Another
important difference is that the accessibility relations in
models must satisfy the explicitly stated conditions of
definition 2.2, while in Hintikka structures we only im-
pose conditions on the sets of formulas in the labels of
the states, which correspond to the desirable conditions
on the accessibility relations. Even though no conditions
are implicitly imposed on the accessibility relations them-
selves, the labeling is done is such a way that every Hin-
tikka structure generates, by a construction described in
the proof of lemma 3.5, a MAEM in such a way that the
“truth” of the formulas in the labels is preserved in the
resultant model (whose relations satisfy all conditions of
definition 2.2).

To define Hintikka structures, we need the following
auxiliary notion, inspired by [7].

Definition 3.1 A set∆ ⊆ L is fully expandedif it satis-
fies the following conditions (Sub(ϕ) stands for the set of
subformulae of the formulaϕ):

• if ¬¬ϕ ∈ ∆, thenϕ ∈ ∆;
• if ϕ ∧ ψ ∈ ∆, thenϕ ∈ ∆ andψ ∈ ∆;
• if ¬(ϕ ∧ ψ) ∈ ∆, then¬ϕ ∈ ∆ or ¬ψ ∈ ∆;
• if Kaϕ ∈ ∆, for somea ∈ Σ, thenDϕ ∈ ∆;
• if Dϕ ∈ ∆, thenϕ ∈ ∆;
• if Cϕ ∈ ∆, thenKa(ϕ∧Cϕ) ∈ ∆ for everya ∈ Σ;
• if ¬Cϕ ∈ ∆, then¬Ka(ϕ ∧ Cϕ) ∈ ∆ for some
a ∈ Σ;

• if ϕ ∈ ∆ andψ ∈ Sub(ϕ) is of the formKaχ or
Dχ, then eitherψ ∈ ∆ or ¬ψ ∈ ∆.

Definition 3.2 A multi-agent epistemic Hin-
tikka structure (MAEHS for short) is a tuple
(Σ, S, {Ra}a∈Σ,RD,RC , H) such that

3

• (Σ, S, {Ra}a∈Σ,RD,RC) is a MAES;

• H is a labeling of the elements ofS with formulae of
L that satisfies the following constraints:

H1 if ¬ϕ ∈ H(s), thenϕ /∈ H(s);
H2 H(s) is fully expanded, for everys ∈ S;
H3 if Kaϕ ∈ H(s) and (s, t) ∈ Ra, thenϕ ∈

H(t);
H4 if ¬Kaϕ ∈ H(s), then there existst ∈ S such

that (s, t) ∈ Ra and¬ϕ ∈ H(t);
H5 if (s, t) ∈ Ra, thenKaϕ ∈ H(s) iff Kaϕ ∈

H(t);
H6 if Dϕ ∈ H(s) and(s, t) ∈ RD, thenϕ ∈ H(t);
H7 if ¬Dϕ ∈ H(s), then there existst ∈ S such

that (s, t) ∈ RD and¬ϕ ∈ H(t);
H8 if (s, t) ∈ RD, thenDϕ ∈ H(s) iff Dϕ ∈

H(t), andKaϕ ∈ H(s) iff Kaϕ ∈ H(t), for
everya ∈ Σ;

H9 if ¬Cϕ ∈ H(s), then there existst ∈ S such
that (s, t) ∈ RC and¬ϕ ∈ H(t).

Definition 3.3 Let θ ∈ L andH be a MAEHS with state
spaceS. We say thatH is a MAEHS forθ if θ ∈ H(s) for
somes ∈ S.

Now we will prove thatθ ∈ L is satisfiable in the class
of all MAEMs iff there exists a MAEHS forθ. This will
allow us to design our tableau procedure to test for the
existence of a MAEHS, rather than a MAEM, for the input
formula.

Given a MAEMM with a labeling functionL, we de-
fine theextended labeling functionL+ : S 7→ P(L) on
M as follows:L+(s) = {ϕ | M, s
 ϕ }. Then, the
following is straightforward.

Lemma 3.4 Let M = (Σ, S, {Ra}a∈Σ,RD,RC , L) be
a MAEM satisfyingθ and letL+ be an extended label-
ing on M. Then, (Σ, S, {Ra}a∈Σ,RD,RC , L

+) is a
MAEHS forθ.

Next, we prove the opposite direction.

Lemma 3.5 Letθ ∈ L be such that there exists a MAEHS
for θ. Then,θ satisfiable in a MAEM.

Proof. Let θ ∈ L and H =
(Σ, S, {Ra}a∈Σ,RD,RC , H) be an MAEHS for θ.
First, we define, usingH, a pseudo-MAEMM′ sat-
isfying θ; then, we turnM′ into a MAEM satisfying
θ.
M′ is defined as follows. First, for everya ∈ Σ,

let R′

a be the reflexive, symmetric, and transitive clo-
sure ofRa ∪ RD; let R′

D be the reflexive, symmet-
ric, and transitive closure ofRD; and letR′

C be the
transitive closure of

⋃
a∈ΣR′

a. (Notice thatRC ⊆
R′

C .) Second, letAP = { p ∈ H(t) | t ∈
S andp is an atomic proposition}. Finally, let L(s) =
H(s) ∩ AP for everys ∈ S. It is then straightforward
to check thatM′ = (Σ, S, {R′

a}a∈Σ,R′

D,R
′

C ,AP, L) is
a pseudo-MAEM (recall definition 2.3).

Next, we prove, by induction on the structure ofχ ∈ L
that, for everys ∈ S and everyχ ∈ L, the following hold:

i) χ ∈ H(s) impliesM′, s
 χ, and
ii) ¬χ ∈ H(s) impliesM′, s
 ¬χ.
Let χ be somep ∈ AP. Then,p ∈ H(s) impliesp ∈

L(s) and, thus,M′, s
 p; if, on the other hand,¬p ∈
H(s), then due to (H1),p /∈ H(s) and thusp /∈ L(s);
hence,M′, s
 ¬p.

Assume that the claim holds for all subformulae ofχ;
then, we have to prove that it holds forχ, as well.

Suppose thatχ is¬ϕ. If ¬ϕ ∈ H(s), then the inductive
hypothesis immediately gives usM′, s
 ¬ϕ; if, on the
other hand,¬¬ϕ ∈ H(s), then by virtue of (H2),ϕ ∈
H(s) and hence, by inductive hypothesis,M′, s
 ϕ and
thusM′, s
 ¬¬ϕ.

The case ofχ = ϕ ∧ ψ is straightforward, using (H2).
Suppose thatχ is Kaϕ. Assume, first, thatKaϕ ∈

H(s). In view of inductive hypothesis, it suffices to show
that (s, t) ∈ R′

a implies ϕ ∈ H(t). So, assume that
(s, t) ∈ R′

a. There are two cases to consider. Ifs = t,
then the conclusion immediately follows from (H2). If,
on the other hand,s 6= t, then there exists an undirected
path froms to t along the relationsRa andRD. Then,
in view of (H5) and (H8),Kaϕ ∈ H(t); hence, by (H2),
ϕ ∈ H(t).

Assume, next, that¬Kaϕ ∈ H(s). In view of the
inductive hypothesis, it suffices to show that there exist
t ∈ S such that(s, t) ∈ R′

a and¬ϕ ∈ H(t). By (H4),
there existst ∈ S such that(s, t) ∈ Ra and¬ϕ ∈ H(t).
AsRa ⊆ R′

a, the desired conclusion follows.

4

The case ofχ = Dϕ is very similar to the previous one
and is left to the reader.

Suppose now thatχ is Cϕ. Assume thatCϕ ∈ H(s).
In view of the inductive hypothesis, it suffices to show
that if (s, t) ∈ R′

C , thenϕ ∈ H(t). So, assume that
(s, t) ∈ R′

C , i.e., eithers = t or, for somen ≥ 1, there
exists a sequence of statess = s0, s1, . . . , sn−1, sn = t
such that, for every0 ≤ i < n, either there existsa ∈ Σ
such that(si, si+1) ∈ Ra or (si, si+1) ∈ RD. In the
former case, the desired conclusion follows from (H2); in
the latter, it follows from (H2), (H3), and (H8).

Assume, on the other hand, that¬Cϕ ∈ H(s). Then,
the desired conclusion follows from (H9), the fact that
RC ⊆ R′

C , and inductive hypothesis.
To finish the proof of the lemma, we convertM′

into a MAEM M′′ in a truth-preserving way. To that
end, we use a variation of the construction known as
tree-unwinding (see, for example, [4]; first applied
in the context of epistemic logics with the operator
of distributed knowledge in [3] and [9]). The only
difference between our construction and the standard
tree-unwinding is that, in the tree we produce, all edges
labeled byD (representing the tree’s relationRT

D) also
get labeled (unlike in the standard tree-unwinding) by
all agents inΣ, too; all other transitions are labeled by
single agents, as in the standard tree-unwinding. To
obtainM′′, we takeR′′

D to be the reflexive, symmetric,
and transitive closure ofRT

D andR′′

a , for everya ∈ Σ,
to be the reflexive, symmetric, and transitive closure of
RT

a ; finally, we takeR′′

C to be the reflexive closure of⋃
a∈ΣR′′

a . It is routine to check thatM′′ is bisimilar to
M′ and, therefore, satisfiesθ at its root. To complete the
proof, all we have to show is thatM′′ is a MAEM; i.e.,
the equalityR′′

D =
⋂

a∈ΣR′′

a holds. The left-to-right
direction is immediate from the construction. For the
right-to-left direction assume that(s, t) ∈ R′′

a holds for
everya ∈ Σ; i.e, there is an undirected path betweens
and t alongRT

a for everya ∈ Σ. As we are in a tree
andΣ contains at least two agents, this is only possible
if there is an undirected path betweens andt alongRT

D

since we only connected nodes of the tree by multiple
agent relations if these nodes were connected byRT

D.
Therefore,(s, t) ∈ R′′

D, as desired. ✷

Theorem 3.6 Let θ ∈ L. Then, θ is satisfiable in a

MAEM iff there exists a MAEHS forθ.

Proof. Immediate from lemma 3.4 and lemma 3.5. ✷

4 Tableau procedure for
MAEL(CD)

Traditionally, tableaux work by decomposing the formula
whose satisfiability is being tested into “semantically sim-
pler” formulae. In the classical propositional case, “se-
mantically simpler” implies “smaller”, which by itself
guarantees termination of the procedure. Another feature
of the tableau method for the classical propositional logic
is that this decomposition into simpler formulae results
in a simple tree, representing an exhaustive search for a
model—or, to be more precise, a Hintikka set (the clas-
sical analogue of Hintikka structures)—for the input for-
mula. If at least one leaf of the tree produces a Hintikka
set for the input formula, the search has succeeded and the
formula is pronounced satisfiable.

These two defining features of the classical tableau
method do not emerge unscathed when the method is ap-
plied to logics containing fixed point operators, such asC

(or, for example, theU and¬✷ operators of the linear-
time temporal logicLTL). Firstly, decomposing (in ac-
cordance with the clauses in the definition of a fully ex-
panded set above) of formulae of the formCϕ produces
formulae of the formKa(ϕ ∧ Cϕ), which are “semanti-
cally simpler”, but not smaller than the original formula.
Hence, we cannot take termination for granted and need to
take special precautions to guarantee it—in our tableaux,
we do so by deploying prestates, whose role is to ensure
that the whole construction is finite. Secondly, in the clas-
sical case, the only reason why it might turn out to be im-
possible to produce a Hintikka set for the input formula is
that every attempt to build such a set results in a collec-
tion of formulae containing an inconsistency. In the case
of MAEL (CD), there are other such reasons; the most im-
portant of them has to do with eventualities: semantically,
the truth of an eventuality¬Cϕ at states of a model re-
quires that there is a path forms to a statet satisfying¬ϕ.
The analogue of this semantic condition in the tableau we
refer to asrealization of eventualities. Apart from consis-
tency requirement on a “good” tableau, all eventualities in

5

such a tableau should be realized. (A third, more techni-
cal reason why a tableau might fail to represent a MAEHS
will be mentioned in due course.)

4.1 Overview of the tableau procedure

In essence, the tableau procedure for testing a formula
θ ∈ L for satisfiability is an attempt to construct a non-
empty graphT θ, called atableau, representing all possi-
ble MAEHSs forθ (in the sense made precise later on).
If the attempt is successful,θ is pronounced satisfiable;
otherwise, it is declared unsatisfiable.

The tableau procedure consists of three major phases:
construction phase, prestate elimination phase, andstate
elimination phase. Accordingly, we have three types of
tableau rules: construction rules, a prestate elimination
rule, and state elimination rules. The procedure itself es-
sentially specifies in what order and under what circum-
stances these rules should be applied.

During the construction phase, the construction rules
are used to produce a directed graphPθ— called the
pretableaufor θ—whose set of nodes properly contains
the set of nodes of the tableauT θ that we are building.
Nodes ofPθ are sets of formulae, some of which, called
states, are meant to represent states of a Hintikka struc-
ture, while others, calledprestates, fulfill a purely techni-
cal role of to keepingPθ finite. During the prestate elim-
ination phase, we create a smaller graphT θ

0 out of Pθ,
called theinitial tableau forθ, by eliminating all prestates
of Pθ (and tweaking with its edges) since prestates have
already fulfilled their function: as we are not going to
add any more nodes to the graph built so far, the pos-
sibility of producing an infinite structure is no longer a
concern. Lastly, during the state elimination phase, we
remove fromT θ

0 all states, if any, that cannot be satisfied
in any MAEHS, for one of the following three reasons:
either the state is inconsistent, or it contains an unreal-
ized eventuality, or it does not have all successors needed
for its satisfaction. The elimination procedure results in
a (possibly empty) subgraphT θ of T θ

0 , called thefinal
tableau forθ. Then, if we have some state∆ in T θ con-
tainingθ, we declareθ satisfiable; otherwise, we declare
it unsatisfiable.

4.2 Construction phase

At this phase, we build the pretableauPθ — a directed
graph whose nodes are sets of formulae, coming in two
varieties: statesandprestates. States are meant to rep-
resent states of a MAEHS which the tableau attempts
to construct, while prestates are “embryo states”, which
will in the course of the construction be “unwound” into
states. Technically, states are fully expanded (recall defi-
nition 3.1), while prestates do not have to be so.

Moreover,Pθ will contain two types of edges. As we
have already mentioned, our tableaux attempt to produce
a MAEHS for the input formula; in this attempt, they
set in motion an exhaustive search for such a MAEHS.
One type of edge, depicted by unmarked double arrows
=⇒, will represent this exhaustive search dimension of
our tableaux. Exhaustive search looks for all possible al-
ternatives, and in our tableaux the alternatives will arise
when we unwind prestates into states; thus, when we draw
an unmarked arrow from a prestateΓ to states∆ and∆′

(depicted asΓ =⇒ ∆ andΓ =⇒ ∆′, respectively), this
intuitively means that, in any MAEHS, a state satisfying
Γ has to satisfy at least one of∆ and∆′.

Given a setΓ ⊆ L, we say that∆ is a minimal fully
expanded extension ofΓ if ∆ is fully expanded,Γ ⊆ ∆,
and no∆′ is such thatΓ ⊆ ∆′ ⊂ ∆ and∆′ is fully
expanded.

Our first construction rule,(SR), tells us how to create
states from prestates. (Throughout the presentation of the
rules, the reader can refer to the example given below to
see how they are applied in particular cases.)

(SR) Given a prestateΓ, do the following:

1. add to the pretableau all minimal fully expanded ex-
tensions∆ of Γ asstates;

2. for each so obtained state∆, putΓ =⇒ ∆;
3. if, however, the pretableau already contains a state

∆′ that coincides with∆, do not create another copy
of ∆′, but only putΓ =⇒ ∆′.

We denote the finite set of states created by applying
(SR) to a prestateΓ by states(Γ).

The second type of edge featuring in our tableaux rep-
resents accessibility relations in MAEHSs. Accordingly,
this type of edge will be represented by single arrows
marked with formulas whose presence in the source state

6

requires the existence of a target state reachable by a par-
ticular relation. As there are two such kinds of formulae,
¬Kaϕ and¬Dϕ (see conditions (H4) and (H7) in the def-
inition of MAEHS), we will have single arrows marked
by formulas of one of these two types. Intuitively if, say
¬Kaϕ ∈ ∆, then we need some prestateΓ containing¬ϕ
to be accessible by a relationRa; however, we mark this
single arrow not just by agenta, but by formula¬Kaϕ,
which helps us remember not just what relation connects
states satisfying∆ andΓ, but why we had to create this
particularΓ. This information will prove crucial when we
start eliminating prestates and then states.

The two remaining construction rules,(KR) and(DR),
tell us how to create prestates from states. These rules do
not apply to patently inconsistent states as such states can
not be satisfied in any MAEHS.

(KR) Given a state∆ such that¬Kaϕ ∈ ∆, for some
a ∈ Σ, and there is noχ ∈ L such that bothχ ∈ ∆ and
¬χ ∈ ∆, do the following:

1. create a new prestateΓ = {¬ϕ} ∪ {Kaψ | Kaψ ∈
∆ } ∪ {¬Kaψ | ¬Kaψ ∈ ∆ };

2. connect∆ to Γ with
¬Kaϕ
−→ ;

3. if, however, the tableau already contains a prestate
Γ′ = Γ, do not add to it another copy ofΓ′, but

simply connect∆ to Γ′ with
¬Kaϕ
−→ .

(DR) Given a state∆ such that¬Dϕ ∈ ∆ and there
is noχ ∈ L such that bothχ ∈ ∆ and¬χ ∈ ∆, do the
following:

1. create a new prestateΓ = {¬ϕ} ∪ {Dψ | Dψ ∈
∆ } ∪ {¬Dψ | ¬Dψ ∈ ∆ } ∪ {Kaχ | Kaχ ∈
∆, a ∈ Σ } ∪ {¬Kaχ | ¬Kaχ ∈ ∆, a ∈ Σ };

2. connect∆ to Γ with
¬Dϕ
−→ ;

3. if, however, the tableau already contains a prestate
Γ′ = Γ, do not add to it another copy ofΓ′, but

simply connect∆ to Γ′ with
¬Dϕ
−→ .

It should be noted that, in the pretableau, we never cre-
ate in one go full-fledged successors for states; i.e., we
never draw a marked arrow from state to state; such ar-
rows always go from states to prestates. On the other
hand, unmarked arrows connect prestates to states.

When building a tableau for a formulaθ, the construc-
tion stage starts off with creating a single prestate{θ}.

Afterwards, we alternate between applying rules creating
states and those creating prestates: first,(SR) is applied to
the prestates created at the previous stage of the construc-
tion, then(KR) and(DR) are applied to the states created
at the previous stage. The construction phase comes to
an end when every prestate required to be added to the
pretableau has already been added (as prescribed in point
3 of (SR)), or when we end up with states to which neither
(KR) nor (DR) is applicable (i.e. states not containing
formulas of the form¬Kaϕ or¬Dϕ or containing patent
inconsistencies).

4.3 Termination of construction phase

As we identify states and prestates whenever possible, to
prove that the above procedure terminates, it suffices to
establish that there are only finitely many possible states
and prestates. To that end we use the concept of the ex-
tended closure of a formulaθ.

Definition 4.1 Letθ ∈ L. Theclosureofθ, denotedcl(θ),
is the least set of formulae such that:

• θ ∈ cl(θ);
• cl(θ) is closed under subformulae;
• if Kaϕ ∈ cl(θ) for somea ∈ Σ, thenDϕ ∈ cl(θ);
• if Cϕ ∈ cl(θ), thenKa(ϕ ∧Cϕ) ∈ cl(θ) for every
a ∈ Σ.

Definition 4.2 Let θ ∈ L. The extended closureof θ,
denotedecl(θ), is the least set such that ifϕ ∈ cl(θ), then
ϕ,¬ϕ ∈ ecl(θ).

It is straightforward to check thatecl(θ) if finite for ev-
ery θ and that all state and prestates ofPθ are subsets of
ecl(θ); hence, their number is finite.

4.4 Prestate elimination phase

At this phase of the tableau procedure, we remove from
Pθ all prestates and all unmarked arrows, by applying the
following rule:

(PR) For every prestateΓ in Pθ, do the following:

1. removeΓ fromPθ;
2. if there is a state∆ in Pθ with ∆

χ
−→ Γ, then for

every state∆′ ∈ states(Γ), put∆
χ

−→ ∆′;

7

We call the graph obtained by applying(PR) to Pθ the
initial tableau, denoted byT θ

0 .

4.5 State elimination phase

During this phase, we remove fromT θ
0 nodes that cannot

be satisfied in any MAEHS. There are three reasons why a
state∆ of T θ

0 can turn out to be unsatisfiable:∆ contains
an inconsistency,or satisfiability of∆ requires satisfia-
bility of some other unsatisfiable “successor” states,or ∆
contains an eventuality that is not realized in the tableau.
Accordingly, we have three elimination rules,(E1)–(E3).

Technically, the state elimination phase is divided into
stages; at stagen + 1 we remove from the tableauT θ

n

obtained at the previous stage exactly one state, by apply-
ing one of the elimination rules, thus obtaining the tableau
T θ
n+1. We now state the rules governing the process. The

set of states of the tableauT θ
m is denoted bySθ

m.

(E1) If {ϕ,¬ϕ} ⊆ ∆ ∈ Sθ
n, then obtainT θ

n+1 by elim-
inating∆ from T θ

n .

(E2) If ∆ contains a formulaχ of the form¬Kaϕ or
¬Dϕ and all states reachable from∆ by single arrows
marked byχ have been eliminitated at previous stages,
obtainT θ

n+1 by eliminating∆ from T θ
n .

To formulate the third elimination rule, we need the
concept of eventuality realization. We say that¬Cϕ
is realized at∆ in T θ

n if there exists a path∆ =
∆0,∆1, . . . ,∆m such that¬ϕ ∈ ∆m and, for every
0 ≤ i < m, there existχ such that∆i

χ
−→ ∆i+1.

Realization of eventuality¬Cϕ at∆ in T θ
n can be eas-

ily checked by computing therank of every∆ ∈ Sθ
n with

respect to¬Cϕ in T θ
n , denoted byrank(∆,¬Cϕ, T θ

n).
Intuitively, the rank of∆ in T θ

n represents the length of
the longest path inT θ

n from ∆ to a state containing¬ϕ.
If no such path exists, the rank of∆ is ω (the first infi-
nite ordinal). Formally, the rank is computed as follows.
At first, if ¬ϕ ∈ ∆, setrank(∆,¬Cϕ, T θ

n) = 0; oth-
erwise, setrank(∆,¬Cϕ, T θ

n) = ω. Afterwards, repeat
the following procedure until no changes in the rank of
any state occurs:rank(∆,¬Cϕ, T θ

n) = 1 + max{rχ},

whererχ = min{ rank(∆′,¬Cϕ, T θ
n) | ∆

χ
−→ ∆′ }.

Now, we can state our last rule.

(E3) If ∆ ∈ Sθ
n contains an eventuality¬Cϕ that is

not realized at∆ in T θ
n (i.e., if rank(∆,¬Cϕ, T θ

n) = ω),
then obtainT θ

n+1 by removing∆ from T θ
n .

We have thus far described the individual rules; to de-
scribe the state elimination phase as a whole, it is crucial
to specify the order of their application.

First, we apply(E1) to all states ofT θ
0 ; it is clear that,

once this is done, we do not need to go back to(E1) again.
The cases of(E2) and (E3) are slightly more involved.
Having applied(E3) to the states of the tableau, we could
have removed, for some∆, all states accessible from it
along the arrows marked with some formulaχ; hence, we
need to reapply(E2) to the resultant tableau to get rid of
such∆’s. Conversely, having applied(E2), we could have
removed some states that were instrumental in realizing
certain eventualities; hence, having applied(E2), we need
to reapply(E3). Furthermore, we can’t stop the proce-
dure unless we have checked thatall eventualities are re-
alized. Thus, what we need is to apply(E3) and(E2) in a
dovetailed sequence that cycles through all eventualities.
More precisely, we arrange all eventualities occurring in
the tableau obtained fromT θ

0 after having applied(E1) in
the listξ1, . . . , ξm. Then, we proceed in cycles. Each cy-
cle consists of alternatingly applying(E3) to the pending
eventuality, and then applying(E2) to the tableau result-
ing from that application, until all eventualities have been
dealt with; once we reachξm, we loop back toξ1. The
cycles are repeated until, having gone through the whole
cycle, we have not removed any states.

Once that happens, the state elimination phase is over.
We call the resultant graph thefinal tableau forθ and de-
note it byT θ and its set of states bySθ.

Definition 4.3 The final tableauT θ is openif θ ∈ ∆ for
some∆ ∈ Sθ; otherwise,T θ is closed.

The tableau procedure returns “no” if the final tableau is
closed; otherwise, it returns “yes” and, moreover, pro-
vides sufficient information for producing a finite model
satisfyingθ; that construction is described in section 5.2.

Example 1 Let’s assume thatΣ = {a, b} and construct a
tableau for the formulaKap∧Kbp∧¬DCp. The picture
below shows the complete pretableau for this formula.

8

Γ0

❄
∆1

❄
χ0

Γ1

�
�
�

�✠
❅
❅

❅
❅❘

∆2

�
�✠

χ1 ❅
❅❅❘

χ0

Γ2

��✠
∆5

✒
χ1 ❄

∆4

❅❅❘
∆6

■χ1

❘

χ2

Γ3

��✠
∆7

✒χ0✒
❅❅❘

χ1 χ2

✠ ❘

∆8

❅❘χ0

∆3

�
��✠

χ0 ❅
❅❅❘

χ2

Γ4

��✠
∆9

�✠χ0

❅❅❘
∆10

χ0■■
Γ5

��✠
∆12

✒
χ2

✠

χ1

❄
∆11

❅❅❘
∆13

χ2■

Γ6

❄
∆14

χ0

✒

Γ7

��✠ ❄❅❅❘
∆16

χ1 ✒

∆15 ∆17

χ2■

χ0 = ¬DCp, χ1 = ¬Ka(p ∧Cp), χ2 = ¬Kb(p ∧Cp);
Γ0 = {Kap ∧Kbp ∧ ¬DCp};
∆1 = {Kap ∧Kbp ∧ ¬DCp,Kap,Kbp,¬DCp,Dp, p};
Γ1 = {¬Cp,Kap,Kbp,¬DCp,Dp};
∆2 = {¬Cp,Kap,Kbp,¬DCp,Dp, p,¬Ka(p ∧Cp)};
∆3 = {¬Cp,Kap,Kbp,¬DCp,Dp, p,¬Kb(p ∧Cp)};
Γ2 = {¬(p ∧Cp),Kap,¬Ka(p ∧Cp)};
Γ3 = {¬Cp,Kap,Kbp,¬DCp,Dp,¬Ka(p ∧Cp)};
∆4 = {¬p,Kap,¬Ka(p ∧Cp),Dp, p};
∆5 = {¬Cp,Kap,¬Ka(p ∧Cp),Dp, p};
∆6 = {¬Cp,Kap,¬Ka(p ∧Cp),Dp, p,¬Kb(p ∧Cp)};
∆7 = {¬Cp,Kap,Kbp,¬DCp,Dp,¬Ka(p ∧Cp), p};
∆8 = {¬Cp,Kap,Kbp,¬DCp,Dp,¬Ka(p ∧Cp), p,

¬Kb(p ∧Cp)}
Γ4 = {¬Cp,Kap,Kbp,¬DCp,Dp,¬Kb(p ∧Cp)}
Γ5 = {¬(p ∧Cp),Kbp,¬Kb(p ∧Cp)}
∆9 = {¬Cp,Kap,Kbp,¬DCp,Dp,¬Kb(p ∧Cp),¬Ka(p ∧

Cp)}
∆10 = {¬Cp,Kap,Kbp,¬DCp,Dp,¬Kb(p ∧Cp), p}
∆11 = {¬p,Kbp,¬Kb(p ∧Cp),Dp, p}
∆12 = {¬Cp,Kbp,¬Kb(p ∧Cp),¬Ka(p ∧Cp),Dp, p}
∆13 = {¬Cp,Kbp,¬Kb(p ∧Cp),Dp, p}
Γ6 = {¬Cp,Kap,Kbp,¬DCp,Dp,¬Ka(p ∧ Cp),¬Kb(p ∧

Cp)}
∆14 = {¬Cp,Kap,Kbp,¬DCp,Dp,¬Ka(p∧Cp),¬Kb(p∧

Cp), p}
Γ7 = {¬(p ∧Cp)}
∆15 = {¬p};
∆16 = {¬Cp,¬Ka(p ∧Cp};

∆17 = {¬Cp,¬Kb(p ∧Cp}

For lack of space, we do not depict the initial and final
tableaux for the input formula, but briefly describe what
happens at the state elimination stage. States∆4 and∆11

get removed due to(E1), as they contain patent inconsis-
tencies.∆14 gets removed due to(E3), since it contains
an eventuality¬Cp which is not realized in the tableau,
as the rank of∆14 stabilizes atω, because it does not con-
tain¬p, and is its only successor. Then∆8 and∆9 get re-
moved, as their only successor alongχ0, namely∆14 has
been removed. All other states remain in place; in partic-
ular, all of them receive a finite rank, because from each
of them one can reach the state∆15, which contains¬p.
The resultant graph encodes all possible Hintikka struc-
tures for the input formula.

We note that our tableaux never close on account of all
states obtained from the initial prestate containing unful-
filled eventualities (we omit the formal proof of this claim
due to lack of space). The rule(E3), however, as can be
seen from the example above, eliminates from the tableau
“bad” states, thus making our tableau not only test a for-
mula for satisfiability, but actually, for every satisfiable
formulaθ, produce a graph “containing” all possible Hin-
tikka structures forθ (i.e, whenever a node of the graph
is connected to several other nodes by arrows marked by
the same formula, these “target” nodes are not meant to
be part of the same MAEHS forθ, but rather represent
alternative ways of building a MAEHS forθ).

5 Soundness and completeness

5.1 Soundness

The soundness of a tableau procedure amounts to claim-
ing that if the input formulaθ is satisfiable, then the
tableau forθ is open. To establish soundness of the over-
all procedure, we prove a series of lemmas that show that
every rule is sound; the soundness of the overall proce-
dure will then easily follow. The proofs of the following
three lemmas are straightforward.

Lemma 5.1 LetΓ be a prestate ofPθ such thatM, s
 Γ
for some MAEMM ands ∈ M. Then,M, s
 ∆ holds
for at least one∆ ∈ states(Γ).

Lemma 5.2 Let∆ ∈ Sθ
0 be such thatM, s
 ∆ for some

MAEMM ands ∈ M, and let¬Kaϕ ∈ ∆. Then, there

9

existst ∈ M such that(s, t) ∈ Ra andM, t
 {¬ϕ} ∪
{Kaψ | Kaψ ∈ ∆ } ∪ {¬Kaψ | ¬Kaψ ∈ ∆ }.

Lemma 5.3 Let∆ ∈ Sθ
0 be such thatM, s
 ∆ for some

MAEMM ands ∈ M, and let¬Dϕ ∈ ∆. Then, there
existst ∈ M such that(s, t) ∈ RD andM, t
 {¬ϕ} ∪
{Dψ | Dψ ∈ ∆ } ∪ {¬Dψ | ¬Dψ ∈ ∆ } ∪ {Kaχ |
Kaχ ∈ ∆, a ∈ Σ } ∪ {¬Kaχ | ¬Kaχ ∈ ∆, a ∈ Σ }.

Lemma 5.4 Let∆ ∈ Sθ
0 be such thatM, s
 ∆ for some

MAEMM ands ∈ M, and let¬Cϕ ∈ ∆. Then,¬Cϕ
is realized at∆ in T θ

n .

Proof. As ∆ is fully expanded,¬Ka(ϕ ∧ Cϕ) ∈ ∆ for
somea ∈ Σ, and thusM, s
 ¬Ka(ϕ ∧ Cϕ). There-
fore, there existss1 ∈ M such that(s, s1) ∈ Ra and
M, s1
 ¬(ϕ ∧ Cϕ). By construction of the tableau,
M, s1
 Γ holds for the prestateΓ associated with
¬Ka(ϕ ∧ Cϕ), i.e. suchΓ that¬(ϕ ∧ Cϕ) ∈ Γ. Now,
there exists∆1 ∈ states(Γ) such thatM, s1
 ∆1.
Indeed, elements ofstates(Γ) are full expansions ofΓ;
clearly,Γ can be fully expanded in such a way that when-
ever we have to make a choice which of several formulae
to include into∆1 (say, for whichb ∈ Σ to add the for-
mula¬Kb(ϕ ∧ Cϕ) if ¬Cϕ ∈ Γ), we choose the one
that is actually satisfied ats1. Now, as¬(ϕ ∧ Cϕ) ∈ Γ,
either M, s1
 ¬ϕ or M, s1
 ¬Cϕ. In the for-
mer case, we are done straight off, as then¬ϕ ∈ ∆1.
In the latter case, asM, s1
 ¬Cϕ, there exists a se-
quence of statess1, s2, . . . , sm in M such that for every
1 ≤ i < m, we have(si, si+1) ∈ Rb for someb ∈ Σ
andM, sm
 ¬ϕ. By taking this sequence of states of
M, we can build, in the “forcing choices” style described
above, a sequence of states∆1,∆2, . . . ,∆m ∈ Sθ

n such

that, for every1 ≤ i < m, we have∆i

¬Kb(ϕ∧Cϕ)
−→ ∆i+1

for someb ∈ Σ, and¬ϕ ∈ ∆m. The existence of the path
∆,∆1, . . . ,∆m implies that¬Cϕ is realized at∆ in T θ

n .
✷

Theorem 5.5 (Soundness)If θ ∈ L is satisfiable in a
MAEM, thenT θ is open.

Proof sketch. Using the preceding lemmas, show by
induction on the number of stages in the state elimination
process that no satisfiable state can be eliminated due to
(E1)–(E3). The claim then follows from lemma 5.1. ✷

5.2 Completeness

The completeness of a tableau procedure means that if the
tableau for a formulaθ is open, thenθ is satisfiable in a
MAEM. By making use of theorem 3.6, it suffices to show
that an open tableau forθ can be turned into a MAEHS for
θ. The construction of such a MAEHS is described in the
following lemma.

Lemma 5.6 If T θ is open, then there exists a MAEHS for
θ.

Proof sketch. Let T θ be open. The MAEHSH for θ is
built out of the so-calledfinal tree components. Each final
tree component is a tree-like MAES with nodes labeled
with states fromSθ. Each component is associated with
a state∆ ∈ Sθ and an eventualityξ ∈ ecl(θ); such a
component is denoted byT∆,ξ.

Now we describe how to build the final tree compo-
nents. Letξ = ¬Cϕ ∈ ecl(θ) and∆ ∈ Sθ. If ξ /∈ ∆,
thenT∆,ξ is a “simple tree” (i.e, one whose only inner
node is the root) whose root is labeled with∆ and that
has exactly one leaf associated with each formula of the
form ¬Kaϕ or ¬Dϕ belonging to∆. A leaf associated
with formulaχ is labeled by a state∆′ ∈ Sθ such that in
T θ we have∆

χ
−→ ∆′ (such a∆′ exists—otherwise∆

would have been eliminated from the tableau due to(E2)).
To obtain a tree-like MAES, put(s, t) ∈ Ra if s is labeled

with ∆, t is labeled with∆′, and∆
¬Kaϕ
−→ ∆′ for someϕ;

analogously, put(s, t) ∈ RD if s is labeled with∆, t is

labeled with∆′, and∆
¬Dϕ
−→ ∆′ for someϕ.

If, on the other hand,ξ = ¬Cϕ ∈ ∆, thenT∆,ξ is
constructed as follows. Since¬Cϕ is realized at∆ in T θ,
there exists a sequence of states∆ = ∆0,∆1, . . . ,∆m

in Sθ such that¬ϕ ∈ ∆m and for every0 ≤ i < m,
∆

χ
−→ ∆′ holds for someχ of the form¬Kaϕ or ¬Dϕ

(otherwise, it would have been eliminated due to(E3)).
Take this sequence and give to each∆i (0 ≤ i ≤ m)
“enough” successors, as in the previous paragraph, and
define the relations for this tree as prescribed therein.

We are next going to stitch the above-definedT∆,ξ’s
together. First, however, we note that if an eventuality
ξ′ belongs to∆ and is not realized inside some final tree
componentT∆,ξ (the realization in a final tree component
is defined as in tableaux, with substitutingT∆,ξ for T θ

n),

10

thenξ′ belongs to every leaf ofT∆,ξ, and thus its real-
ization is deferred—this is crucial to our ability to stitch
T∆,ξ’s up into a Hintikka structure.

We now proceed as follows. First, we arrange all states
of T θ in a list∆0, . . . ,∆n−1 and all eventualities occur-
ring in the states ofT θ in a list ξ0, . . . , ξm−1. We then
think of all final tree components as arranged in anm-
by-n grid whose rows are marked with the correspond-
ingly numbered eventualities ofT θ and whose columns
are marked with the correspondingly numbered states of
T θ. The final tree component at the intersection of the
ith row and thejth column will be denoted byT(i,j). The
building blocks for our MAEHS will all come from the
grid. This MAEHS is built incrementally, so that at each
stage of the construction we produce a structure realizing
more and more eventualities.

We start off with a final tree component that is uniquely
determined by the input formulaθ, in the following way.
If θ is an eventuality, i.e.,θ = ξp for some0 ≤ p < m,
then we start off with the componentT(p,q) where, for
definiteness,q is the least number< n such thatθ ∈ ∆q;
asT θ is open, such aq exists. If, on the other hand,θ is
not an eventuality, then we start off withT(0,q), whereq is
as described above. Let’s denote this initial structure by
H0.

Henceforth, we proceed as follows. Informally, we
think of the above list of eventualities as a queue of cus-
tomers waiting to be served. Unlike the usual queues, we
do not necessarily start serving the queue from the first
customer (ifθ is an eventuality, then it gets served first;
otherwise we start from the beginning of the queue), but
then we follow the queue order, curving back to the be-
ginning of the queue after having served its last eventual-
ity, if we started in the middle. Serving an eventualityξ
amounts to appending to the leaves of the structure built
thus far final tree components realizingξ. Thus, we keep
track of what eventualities have already been served, take
note of the one that was served the last, sayξj , and re-
place every leaf of the structureHi constructed thus far
with the final tree componentTi+1,((j+1) mod m). The
process continues until all eventualities have been served,
at which point we have gone the full cycle through the
queue.

After that, the cycle is repeated, for as long as the queue
remains non-empty. Alternatively, if we want to guarantee
that the MAEHS we are building is going to be finite, the

cycle is repeated with the following modification: when-
ever the component we are about to attach, sayT(i,j), is
already contained in our structure in the making, instead
of replacing the leaft with that component, we connect
every “predecessor”s of t to the root ofT(i,j) with the
relation connectings to t. This modified version of the
cycle is repeated until we come to a point when no more
components get added—this is bound to happen in a fi-
nite number of steps as the number ofT∆,ξ’s is finite. It
is now routine to check that the resultant structureH is a
Hintikka structure, whose set of agents is the set of agents
occurring inθ. By construction, it contains a node labeled
with a set containingθ. ✷

Theorem 5.7 (Completeness)Let θ ∈ L and letT θ be
open. Then,θ is satisfiable in a MAEM.

Proof. Immediate from lemma 5.6 and theorem 3.6.✷

6 Complexity of the procedure

Let’s denote the length of the input formulaθ by n and
the number of agents in the language byk. We assume
thatk > 1, otherwise we just deal with the modal logic
S5. The size of the extended closure forθ (recall defi-
nition 4.2) is bounded from above byO(kn), as eachC
operator occurring inθ requiresk formulas to be added to
the extended closure.

The examination of the procedure shows that the
longest path to any state of the pretableau we cre-
ate at the construction phase from the initial prestate
(i.e., the one containing the input formulaθ) is
bound by the number of nested “diamond” modal-
ities (such as ¬Ka) in θ plus 1. From any
given state or prestate we can create at mostO(kn)
(pre-)states, hence the whole number of nodes we create
is inO(kn

2

). Thus, the construction phase can be done in
timeO(kn

2

).
At the prestate elimination phase, we delete at most

O(kn
2

) states and for each prestate redirect at most
O(kn) arrows, which takes withinO(kn

2

) steps.
At the state elimination stage, we first apply(E1) to

O(kn
2

) states, which can be done inO(k(2n+n2)) steps.

11

After that, we embark on the dovetailed application of
(E2) and(E3). We proceed in circles, whose number is
bound byO(kn

2

), as at each iteration we remove at least
one state. During each cycle, we carry outO(kn) times
(the upper bound on the number of eventualities) the fol-
lowing procedure: fist, we apply(E2) to all states, which
can be done in timeO(k(n+n2)), and then apply(E3)
to the pending eventuality. The latter procedure is car-
ried out by computing a rank of each state of the tableau
with respect to the pending eventuality. The number of
rank updates is bound byO(kn

2

), each update requiring
O(k(n+n2)) steps, as for each state∆ we check the ranks
of the targets of outgoing arrows marked by formulae in
∆. Thus, the whole state elimination phase can be carried
out inO(k2n

2

) steps.
We conclude that the whole procedure can be carried

out in O(k2n
2

) steps, wheren is the size of the in-
put formula. It follows thatMAEL (CD)-satisfiability is
in ExpTime, which together with the result from [7]
implies that MAEL (CD)-satisfiability is ExpTime-
complete.

7 Concluding remarks

We have developed a sound, complete, and complexity-
optimal incremental-tableau-based decision procedure for
the multi-agent epistemic logicMAEL (CD). We claim
that this style of tableau is of immediate practical use,
both by human and computerized execution. It is more
efficient (within the theoretically established complexity
bounds) and more modular and adaptable than the top-
down tableaux of the type developed (for a fragment of
the logic not including theD operator) in [7]. In partic-
ular, the tableaux presented lends itself to an extension to
the full multi-agent epistemic logic, with modal operators
of common and distributed knowledge for all coalitions
of agents, and well as to a combination with the similar
style tableaux developed for the Alternating-time tempo-
ral logicATL developed in [5], which are going to be the
subject of our subsequent work.

Acknowledgments This research was supported by a
research grant of the National Research Foundation of
South Africa and was done during the second author’s
post-doctoral fellowship at the University of the Witwa-

tersrand, funded by the Claude Harris Leon Foundation—
we gratefully acknowledge the financial support from
these institutions. We also acknowledge the anonymous
referees whose remarks helped to improve our presenta-
tion.

References

[1] E. A. Emerson and J. Halpern. Decision procedures and
expressiveness in the temporal logic of branching time.
Journal of Computation and System Sciences, 30(1):1–24,
1985.

[2] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.Rea-
soning about Knowledge. MIT Press: Cambridge, MA,
1995.

[3] R. Fagin, J. Y. Halpern, and M. Y. Vardi. What can ma-
chines know? On the properties of knowledge in dis-
tributed systems. Journal of the ACM, 39(2):328–376,
April 1992.

[4] V. Goranko and M. Otto. Model theory of modal logic.
In Handbook of Modal Logic, pages 249–330. Elsevier,
2007.

[5] V. Goranko and D. Shkatov. Tableau-based de-
cision procedures for logics of strategic ability in
multi-agent systems. To appear inACM Trans-
actions on Computational Logic. Available at
http://arxiv.org/abs/0803.2306.

[6] J. Y. Halpern and Y. Moses. Knowledge and common
knowledge in a distributed environment.Journal of ACM,
37(3):549–587, 1990.

[7] J. Y. Halpern and Y. Moses. A guide to completeness and
complexity for modal logics of knowledge and belief.Ar-
tificial Intelligence, 54:319–379, 1992.

[8] J.-J. C. Meyer and W. van der Hoek.Epistemic Logic for
Computer Science and Artificial Intelligence. CUP, 1995.

[9] W. van der Hoek and J.-J. C. Meyer. Making some issues
of implicit knowledge explicit. International Journal of
Foundations of Computer Science, 3(2):193–224, 1992.

[10] W. van der Hoek and J.-J. C. Meyer. A complete epistemic
logic for multiple agents–combining distributed and com-
mon knowledge. In M. O. L. B. et al., editor,Epistemic
Logic and the Theory of Games and Decisions, pages 35–
68. Kluwer Academic Publishers, 1997.

[11] P. Wolper. The tableau method for temporal logic: an
overview. Logique et Analyse, 28(110–111):119–136,
1985.

[12] M. Wooldridge. An Introduction to Multiagent Systems.
John Willey and Sons, 2002.

12

	Introduction
	Syntax and semantics of MAEL(CD)
	Syntax
	Semantics

	Hintikka structures
	Tableau procedure for MAEL(CD)
	Overview of the tableau procedure
	Construction phase
	Termination of construction phase
	Prestate elimination phase
	State elimination phase

	Soundness and completeness
	Soundness
	Completeness

	Complexity of the procedure
	Concluding remarks

