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Abstract agent epistemic logic, which we cAlAEL (CD), whose

language contains operators of individual knowledge for
We develop an incremental-tableau-based decision paoron-empty, finite set of agents as well as operators
cedure for the multi-agent epistemic log@AEL (CD) of common (C) and distributed (D) knowledge among all
(aka S5, (CD)), whose language contains operators afjents inX. (Since all modal operators ®AEL (CD)
individual knowledge for a finite seE of agents, as are S5-modalities, the logic is also referred to in the
well as operators of distributed and common knowliterature asS5,,(C'D)). To be used for such tasks as
edge among all agents iR. Our tableau proceduredesigning protocols conforming to a given specification,
works in (deterministic) exponential time, thus estabAAEL (CD), needs to be equipped with an algorithm
lishing an upper bound foMAEL (CD)-satisfiability checking forMAEL (CD)-satisfiability. The first step in
that matches the (implicit) lower-bound known fronthat direction was taken in [10], where the decidability of
earlier results, which implie¥xpTime-completeness MAEL (CD) has been established by showing that it has
of MAEL (CD)-satisfiability. Therefore, our procedura finite model property. This result was proved|(in|[10]
provides a complexity-optimal algorithm for checkingia filtration; therefore, the decision procedure suggkste
MAEL (CD)-satisfiability, which, however, in most caseby that argument is based on an essentially brute-force
is much more efficient. We prove soundness and coamumeration of all finite models faWlAEL (CD), which
pleteness of the procedure, and illustrate it with an exasuggest a satisfiability-checking algorithm that is théere
ple. cally important, but of limited practical value. Our tahlea

procedure has, in comparison, the following advantages:

; 1. It establishes a (deterministi®xpTime upper-
1 Introduction bound forMAEL (CD)-satisfiability, which matches

Over the last two decades, multi-agent epistemic logics the lower-bound that follows from the results of 7]

([2.18]) have played a significant role in computer science2. It provides an algorithm for checkingAEL (CD)-
and artificial intelligence. The main application seems to  satisfiability that is not only provably complexity-
have been to design, specification, and verification of dis- optimal, but which in the vast majority of cases re-
tributed protocols ([6]), but a plethora of other applica- quires much less resources than what is predicted
tions are described in, among others, [3], [2] &nd [8]. by the worst-case upper bound. This is one of the
Languages of multi-agent epistemic logics considered hallmarks of incremental tableaux ([11]) as opposed
in the literature contain various repertoires of modal eper  to the top-down tableaux in the style 6f [1], which
ators. In the present paper, we consider the “full” multi-  always require the amount of resources predicted
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by the worst-case complexity estimate. Top-dowsmit parentheses in formulae whenever it does not re-
tableaux for the fragment d¥IAEL (CD) not con- sult in ambiguity. We denote arbitrary formulae 6fby
taining the operator of distributed knowledge hawg, ¢, x, . .. (possibly with decorations). We write € £
been presented inl[7]. to mean thaty is a formula of£. Formulae of the form

. . —C are calleceventualities
The type of incremental tableau developed herein orig-

inates in [11]; tableaux in a similar style were recentl% 5 g .
developed for the multi-agent log&TL and some of its < emantics

variations in [5]. Thus, the present paper continues thgrmulae ofz are interpreted over multi-agent epistemic
enterprize of designing complexity-optimal decision prenodels, based on multi-agent epistemic frames. We will

cedures for logics used in design, specification and vegjso need a more general notion of multi-agent epistemic
fication of multi-agent systems ([2, [12]). The particulagtrycture.

style of the tableaux presented here is meant to be com-
patible with the tableaux froh[5], so that we can in the fiefinition 2.1 A multi-agent epistemic structu(®AES,
ture build tableaux for more sophisticated logics for multior short) is a tuple& = (%,5,{Ra}ees, R, Re),
agent systems. where
The main reason for the restriction of the distributed
and common knowledge operators only to be (|mpI|c_|tIy)2' S 2 ()is a set ofstates
parameterized by the whole set of agents referred toin thg . .
. . . . Rp andR,, for eacha € X, are binary relations on
language, adopted in this paper, is to be able to present
the main ideas and features of the tableaux in sufficien b o
detail, while avoiding some additional technical compli-h' Re is the transitive closure ®Rp U J acsRa-
cations arising in the case of several such operators, epéffinition 2.2 A multi-agent epistemic fram@AEF, for

one associated with a non-empty subset of the set ofHbrt) is a MAES = (%, S, {Ra }aex, R, Re), where

agents. This, more complicated, case will be treated in a )
follow-up paper. (a) Rp andR,, for everya € %, are equivalence rela-

tions onsS;
(b) Rp = aesRa-

If condition (b) above is replaced with

(bl) RD g ﬂ G/GZRG!
2.1 Syntax theng is amulti-agent epistemic pseudo-frame

The languagel of MAEL (CD) contains a (possibly, Notice that in (pseudo-)frames condition 4 of defini-
countably-infinite) sep of atomic propositionstypi- tjon 27 is equivalent to the requirement tHat: is the
cally denoted by, g, 7, .. .; a finite, non-empty set of 4 sitive closure of) wexR.. Also notice that, as in any

(names ofjagents typically denoted by, b...; a suffi- \MAEF eachR,, is an equivalence relatioR is also an
cient repertoire of the Boolean connectives; and the mo@ﬁ'uivalence relation.

operator¥, (“the agentz knowsthat...”)D (“itis dis- o _ . _

tributed knowledge among that ... ") andC (“itis com-  Definition 2.3 A multi-agent epistemic modgMAEM,
mon knowledge amon that ...”"). Thus, the formulaefor short) is a tupleM = (§, AP, L), where

of £ are defined as follows: (i) & is a MAEF;

— ol A K, D C(yp), (i7) APis a (possibly, infinite) set of atomic propositions;
p:=p (@) | (o1 A e2) [ Kale) | D(e) | Cle) (it3) L : S — P(aP), is alabeling functionwhereL(s)
wherep ranges oveRP anda ranges ovedl. The other is the set of all atomic propositions that are declared
boolean connectives can be defined in the usual way. We true ats.

1. ¥ is a finite, non-empty set of agents;

2 Syntax and semantics  of
MAEL(CD)



If condition (i) above is replaced by the requirementthad  Hintikka structures

§ is a multi-agent epistemic pseudo-frame, thehis a

multi-agent epistemic pseudo-modpseudo-MAEM).  The ultimate purpose of the tableau procedure we develop
is to check if the input formula is satisfiable in a MAEM.

The satisfaction relation between (pseudo-)MAEMsowever, the tableau attempts not to directly construct a
and formulae is defined in the standard way. In particultMAEM for the input formula, but to build a more gen-
eral kind of semantic structure, viz. Hintikka structure

o M,sl-Kupiff (s,t) € R impliesM, ¢ I ] (which are, therefore, used in proving completeness of our
e M,sl-Dyiff (s,1) € Rp impliesM,t Ik ¢; tableaux). The basic difference between models and Hin-
o M, sl Cyliff (s,t) € Ro impliesM,t I ¢. tikka structures is that while models determine the truth

. of every formula of the language at every state, Hintikka

The truth condition for the operata® can be para- gy ctures only provide truth values of the formulae rel-
phrased in terms of reachability. L@tbe a (pseudo- o\ ant to the evaluation of a fixed formuta Another
)frame with state spac§ and lets,t < S. We say jmportant difference is that the accessibility relations i
that ¢ is reachable froms if there exists a sequencgnggels must satisfy the explicitly stated conditions of
§ = 50,51, 8n—1,5, = t Of elements oy such that, yefinition[22, while in Hintikka structures we only im-
for every0 < i < n, there existsa € X such that e conditions on the sets of formulas in the labels of
(si;si+1) € Rq. Itis then easy to see that the followinghe states; which correspond to the desirable conditions
truth condition forC is equivalent in (pseudo-)MAEMS 1, the accessibility relations. Even though no conditions
to the one given above: are implicitly imposed on the accessibility relations them
selves, the labeling is done is such a way that every Hin-
tikka structure generates, by a construction described in
the proof of lemm&3]5, a MAEM in such a way that the

Notice that ifS = {a}, then the formula& ¢ +» D ‘truth” of the formulas in the labels is preserved in the
andK,p < Cy are valid for allp € £, so the one- resultant model (whose relations satisfy all conditions of
agent case is trivialized. Thus, we assume throughoutﬂﬁfinitionlﬂ)-

auxiliary notion, inspired by [7].

e M,s - Cypiff M,t IF ¢ whenever is reachable
from s.

Definition 2.4 (Satisfiability and validity) Definition 3.1 A setA C £ is fully expandedf it satis-

fies the following conditions$S@ib(y) stands for the set of

Let d M be a MAEM. W thap i
° Lety € LandMbea € say tha IS subformulae of the formula):

satisfiablén M if M, s I ¢ holds for some € M
and thaty is validin M if M, s I ¢ holds for every
s € M.

e Letyp € £ andM be a class of models. We say that
v is satisfiablein M if M, s I ¢ holds for some
M € M and somes € M and thaty is valid in
M if M, s IF ¢ holds for everyM € M and every
s € M.

if == € A, theny € A;

if o A € A, thenp € Aandy € A;

if =2(p A) € A, then—p € Aor—p € A;

if Ko € A, forsomen € X, thenDp € A;

if Dp € A, thenp € A;

if Co € A, thenK,(pACy) € Aforeverya € ¥,
if -=Cy € A, then-K,(¢ A Cp) € A for some

a €
The goal of this paper is to develop a sound, complete,, ;¢ o € Aandy € Sub(y) is of the formK,x or
and complexity-optimal tableau-based decision procedure Dy, then either) € A or —) € A. ¢

for testing satisfiability, and hence also validity, of farm

las of £ in the class of all MAEMs; in other words, theDefinition 3.2 A multi-agent epistemic Hin-
procedure tests for the belonging of formulaelofo the tikka structure (MAEHS for short) is a tuple
logic MAEL (CD), which is the logic of all such models. (3, S, {R, }aes, Rp, R, H) such that



e (3,5 {Ru}ues, Rp, Rc) is a MAES; Proof. Let @ € L and H =
(3,58,{Ra}aes, Rp,Rc, H) be an MAEHS for 6.
e H is alabeling of the elements Sfwith formulae of First, we define, using4, a pseudo-MAEMM’ sat-

L that satisfies the following constraints: isfying ¢; then, we turnM’ into a MAEM satisfying
6.

H1 if = € H(s), theny ¢ H(s); M’ is defined as follows. First, for every € ¥,

H2 H(s) is fully expanded, for every € S let R. be the reflexive, symmetric, and transitive clo-

H3 if Koy € H(s) and (s,t) € Rq, theny € sure of R, U Rp; let R}, be the reflexive, symmet-
H(t); ric, and transitive closure oRp; and let R, be the

H4 if -K,¢ € H(s), then there exists € S such transitive closure of J ,cxR/,. (Notice thatRc C
that(s,t) € R, and—p € H(t); Ry.) Second, letap = {p € H() | t €

H5 if (s,t) € Rq, thenK,p € H(s) iff K, € S andp is an atomic propositioh  Finally, let L(s) =
H(t); H(s) n ap for everys € S. Itis then straightforward

H6 if Dy € H(s)and(s,t) € Rp, thenp € H(t); to check thatt’ = (X, S, {R/,}ues, R)p, R, AP, L) is
H7 if -Dy € H(s), then there exists € S such a pseudo-MAEM (recall definition 2.3).
that(s,t) € Rp and—p € H(t); Next, we prove, by induction on the structurexof £
H8 if (s,t) € Rp, thenDy € H(s) iff Do € that, forevery € S andevery € L, the following hold:
H(t),andK,p € H(s) iff K,p € H(t), for i) x € H(s) impliesM’, s IF x, and

everya € ; i) =x € H(s) impliesM’, s |- —y.
HY if ~Cy € H(s), then there exists € S such  Lety be some € Ap. Then,p € H(s) impliesp
that(s,t) € Rc and—p € H(t). L(s) and, thus,M’, s |- p; if, on the other handp

H(s), then due to (H1)p ¢ H(s) and thusp ¢ L(s);
Definition 3.3 Let# € £ and be a MAEHS with state hence M’, s I —p.
spaceS. We say that is a MAEHS ford if 0 € H(s)for  Assume that the claim holds for all subformulae\of
somes € S. then, we have to prove that it holds fgras well.
Suppose that is —p. If —¢ € H(s), then the inductive
Now we will prove that) € L is satisfiable in the classhypothesis immediately gives ust’, s I+ —; if, on the
of all MAEMs iff there exists a MAEHS fof). This will other hand~—¢ € H(s), then by virtue of (H2), €
allow us to design our tableau procedure to test for thp(s) and hence, by inductive hypothesist’, s I- ¢ and
existence of a MAEHS, rather than a MAEM, for the inpihus M, s IF ——op.

formula. The case of¢ = ¢ A ) is straightforward, using (H2).
Given a MAEM M with a labeling function’., we de- Suppose thai is K,¢. Assume, first, thaK,p €
fine theextended labeling functioh™ : S — P(L) o f7(4) In view of inductive hypothesis, it suffices to show
M as follows: L™ (s) = {¢ | M,s |- ¢}. Then, the a5 +) ¢ R/, impliesy € H(t). So, assume that
following is straightforward. (s,t) € R.. There are two cases to consider.slf t,
then the conclusion immediately follows from (H2). If,
Lemma 3.4 Let M = (X, 5, {Ra}acs, Rp;Rc, L) be on the other hand; +# ¢, then there exists an undirected
a MAEM satisfyingd and let L* be an extended label-path froms to ¢ along the relation®, andR . Then,
ing on M. Then, (3, 5,{Ra}sex, Rp, R, L") is @ in view of (H5) and (H8) K.y € H(t); hence, by (H2),

MAEHS ford. o€ H(t).
o Assume, next, thatK,p € H(s). In view of the
Next, we prove the opposite direction. inductive hypothesis, it suffices to show that there exist

t € S suchthats,t) € R, and—¢ € H(t). By (H4),
Lemma 3.5 Letd € £ be such that there exists a MAEH$here exists € S such that(s,t) € R, and—p € H(1).
for . Then ¢ satisfiable in a MAEM. AsR, C R/, the desired conclusion follows.



The case of = Dy is very similar to the previous oneMAEM (iff there exists a MAEHS fax.
and is left to the reader.

Suppose now that is Cy. Assume thaCy € H(s). Proof. Immediate from lemma 3.4 and leminal3.5. O
In view of the inductive hypothesis, it suffices to show
that if (s,t) € R, thenp € H(t). So, assume that

(s,t) € Ry, i.e., eithers = ¢ or, for somen > 1, there
exists a sequence of states= sg,s1,...,5,-1,8, = t 4 Tableau procedure for
such that, for every < i < n, either there exists € © MAEL(CD)

such that(s;, s;+1) € Ra Of (84, 8:+1) € Rp. In the
former case, the desired conclusion follows from (H2); ifraditionally, tableaux work by decomposing the formula
the latter, it follows from (H2), (H3), and (H8). whose satisfiability is being tested into “semantically-sim

Assume, on the other hand, tha€y € H(s). Then, pler” formulae. In the classical propositional case, “se-
the desired conclusion follows from (H9), the fact thamantically simpler” implies “smaller”, which by itself
Rc € R, and inductive hypothesis. guarantees termination of the procedure. Another feature

To finish the proof of the lemma, we convett!’ of the tableau method for the classical propositional logic
into a MAEM M” in a truth-preserving way. To thatis that this decomposition into simpler formulae results
end, we use a variation of the construction known #&sa simple tree, representing an exhaustive search for a
tree-unwinding (see, for examplel][4]; first appliethodel—or, to be more precise, a Hintikka set (the clas-
in the context of epistemic logics with the operataical analogue of Hintikka structures)—for the input for-
of distributed knowledge in[]3] and[9]). The onlymula. If at least one leaf of the tree produces a Hintikka
difference between our construction and the standaet for the input formula, the search has succeeded and the
tree-unwinding is that, in the tree we produce, all edgéssmula is pronounced satisfiable.
labeled byD (representing the tree’s relatidRt) also ~ These two defining features of the classical tableau
get labeled (unlike in the standard tree-unwinding) byethod do not emerge unscathed when the method is ap-
all agents inx, too; all other transitions are labeled bylied to logics containing fixed point operators, suclCas
single agents, as in the standard tree-unwinding. (@, for example, the{ and -0 operators of the linear-
obtain M”, we takeR’, to be the reflexive, symmetric,time temporal logidTL ). Firstly, decomposing (in ac-
and transitive closure dR’ andR!, for everya € ¥, cordance with the clauses in the definition of a fully ex-
to be the reflexive, symmetric, and transitive closure painded set above) of formulae of the fo@xp produces
RT; finally, we takeR/. to be the reflexive closure offormulae of the formkK,(» A Cy), which are “semanti-
U aexRY. Itis routine to check that” is bisimilar to cally simpler”, but not smaller than the original formula.
M’ and, therefore, satisfigsat its root. To complete theHence, we cannot take termination for granted and need to
proof, all we have to show is that1” is a MAEM; i.e., take special precautions to guarantee it—in our tableaux,
the equalityR?, = () 4.exRY holds. The left-to-right we do so by deploying prestates, whose role is to ensure
direction is immediate from the construction. For thiaat the whole construction is finite. Secondly, in the clas-
right-to-left direction assume th&t, t) € R” holds for sical case, the only reason why it might turn out to be im-
everya € Y; i.e, there is an undirected path betweenpossible to produce a Hintikka set for the input formula is
andt alongR! for everya € X. As we are in a tree that every attempt to build such a set results in a collec-
andX contains at least two agents, this is only possibiien of formulae containing an inconsistency. In the case
if there is an undirected path betweeandt alongR%L of MAEL (CD), there are other such reasons; the mostim-
since we only connected nodes of the tree by multigh@rtant of them has to do with eventualities: semantically,
agent relations if these nodes were connectedRily. the truth of an eventuality:C at states of a model re-
Therefore(s,t) € RY,, as desired. O quiresthat there is a path forsito a state satisfying—.

The analogue of this semantic condition in the tableau we
refer to agealization of eventualitiesApart from consis-

Theorem3.6Let # € L. Then,# is satisfiable in a tency requirementon a “good” tableau, all eventualities in



such a tableau should be realized. (A third, more techdi-2 Construction phase

cal reason why a tableau might fail to representa MAEHS | . . :
will be mentioned in due course.) At this phase, we build the pretable®{ — a directed

graph whose nodes are sets of formulae, coming in two
varieties: statesand prestates States are meant to rep-
resent states of a MAEHS which the tableau attempts
to construct, while prestates are “embryo states”, which
will in the course of the construction be “unwound” into
states. Technically, states are fully expanded (recalt defi
In essence, the tableau procedure for testing a formHlﬁon@), while prestates do not have to be so.
¢ € L for satisfiability is an attempt to construct a non- poreover, P? will contain two types of edges. As we
empty graph7™®, called atableay representing all possi-aye already mentioned, our tableaux attempt to produce
ble MAEHSSs ford (in the sense made precise later on}. MAEHS for the input formula; in this attempt, they
If the attempt is successfud, is pronounced satisfiable;set in motion an exhaustive search for such a MAEHS.
otherwise, it is declared unsatisfiable. One type of edge, depicted by unmarked double arrows
The tableau procedure consists of three major phases:, will represent this exhaustive search dimension of
construction phaseprestate elimination phasandstate our tableaux. Exhaustive search looks for all possible al-
elimination phase Accordingly, we have three types oternatives, and in our tableaux the alternatives will arise
tableau rules: construction rules, a prestate eliminatistien we unwind prestates into states; thus, when we draw
rule, and state elimination rules. The procedure itself e unmarked arrow from a prestdieo statesA and A’
sentially specifies in what order and under what circurtdepicted ad® = A andI' = A/, respectively), this
stances these rules should be applied. intuitively means that, in any MAEHS, a state satisfying

During the construction phase, the construction rulgshas to satisfy at least oneAfandA_’. .
are used to produce a directed graph— called the Given a sef’ g L, we say that is aminimal fully
pretableaufor /—whose set of nodes properly containEXpandeq gxtensmn ofif A is 1:u||y expa”de‘j'r. € A,
the set of nodes of the tablegf that we are building. and noA’is such thal” ¢ A" ¢ A andA’is fully
Nodes ofP? are sets of formulae, some of which, Ca"eaxpanded.

states are meant to represent states of a Hintikka struc-OUr first construction rulgSR), tells us how to create
ture, while others, callegrestatesfulfill a purely techni- states from prestates. (Throughout the presentation of the

cal role of to keeping®? finite. During the prestate e"m_rules, the reader can refer to the example given below to

ination phase, we create a smaller grafghout of P, see how they are applied in particular cases.)

called theinitial tableau for¢, by eliminating all prestates  (SR) Given a prestat, do the following:

of P? (and tweaking with its edges) since prestates have

already fulfilled their function: as we are not going to 1. add to the pretableau all minimal fully expanded ex-
add any more nodes to the graph built so far, the pos- tensionsA of I' asstates

sibility of producing an infinite structure is no longer a 2. for each so obtained state putl’ = A;

concern. Lastly, during the state elimination phase, wes. if, however, the pretableau already contains a state
remove from7 all states, if any, that cannot be satisfied A’ that coincides with\, do not create another copy

in any MAEHS, for one of the following three reasons:  of A’, but only putl’ = A’.

either the state is inconsistent, or it contains an unreal-

ized eventuality, or it does not have all successors neede/e denote the finite set of states created by applying
for its satisfaction. The elimination procedure results {$R)to a prestaté' by states(T").

a (possibly empty) subgraph? of 77, called thefinal The second type of edge featuring in our tableaux rep-
tableau ford. Then, if we have some statein 7% con- resents accessibility relations in MAEHSs. Accordingly,
taining 8, we declare satisfiable; otherwise, we declar¢his type of edge will be represented by single arrows
it unsatisfiable. marked with formulas whose presence in the source state

4.1 Overview of the tableau procedure



requires the existence of a target state reachable by a pditerwards, we alternate between applying rules creating
ticular relation. As there are two such kinds of formulastates and those creating prestates: {igR)is applied to
-K,p and—Dy (see conditions (H4) and (H7) in the defthe prestates created at the previous stage of the construc-
inition of MAEHS), we will have single arrows markedion, then(KR) and(DR) are applied to the states created
by formulas of one of these two types. Intuitively if, sagt the previous stage. The construction phase comes to
-K,p € A, then we need some prestéteontaining~¢ an end when every prestate required to be added to the
to be accessible by a relatidd,; however, we mark this pretableau has already been added (as prescribed in point
single arrow not just by agemnt, but by formula—K,p, 3 of(SR)), or when we end up with states to which neither
which helps us remember not just what relation conne¢kR) nor (DR) is applicable (i.e. states not containing
states satisfying\ andT", but why we had to create thisformulas of the form-K,¢ or =D or containing patent
particularT’. This information will prove crucial when weinconsistencies).
start eliminating prestates and then states.

The two remaining construction rul§&R) and(DR), 4.3 Termination of construction phase
tell us how to create prestates from states. These rules do
not apply to patently inconsistent states as such states 8arwe identify states and prestates whenever possible, to
not be satisfied in any MAEHS. prove that the above procedure terminates, it suffices to
establish that there are only finitely many possible states
and prestates. To that end we use the concept of the ex-
tended closure of a formuta

(KR) Given a state\ such that-K,p € A, for some
a € ¥, and there is no¢ € £ such that bothy € A and
—x € A, do the following:

Definition 4.1 Let# € L. Theclosureofd, denoted!(6),

1. create a new prestdie= {—-¢} U { K, K. e .
P (e UKoy | v is the least set of formulae such that:

A} U {_‘Ka'l/) | —Kqy € A}.
2. connectA to T with =2; e 0 cclh);
3. if, however, the tableau already contains a prestates cl(6) is closed under subformulae;
I = T, do not add to it another copy af, but e if K,p € cl(6) for somes € 3, thenDy € cl(6);
simply connectA to T’ with “Kagp o if ng € cl(9), thenK,(p A Cyp) € cl(9) for every
acX.
(DR) Given a state\ such that-Dyp € A and there
isnox € £ such that bothy € A and—y € A, do the Definition4.2 Leté € L. Theextended closuref 0,
following: denotectcl(0), is the least set such thatdf € cl(6), then
@, € ecl(f).
1. create a new prestafe= {-p} U {Dvy | Dy €
AYU{-Dy | Dy e A} U{Kyx| Kyx € It is straightforward to check thatl(6) if finite for ev-
AaeX}U{-Kyx| " KoxeAaeXl; ery 0 and that all state and prestatesiff are subsets of
2. connectA to T with ~2¢- ecl(#); hence, their number is finite.

3. if, however, the tableau already contains a prestate
I = T, do not add to it another copy df, but 4.4 Prestate elimination phase

. .. D
simply connect\ to I" with . At this phase of the tableau procedure, we remove from

It should be noted that, in the pretableau, we never cf@- all prestates and all unmarked arrows, by applying the
ate in one go full-fledged successors for states; i.e., {pdowing rule:
never draw a marked arrow from state to state; such ar{pR) For every prestatg in P¢, do the following:
rows always go from states to prestates. On the other
hand, unmarked arrows connect prestates to states. 1. remove from P?;

When building a tableau for a formuia the construc- 2. if there is a staté\ in P? with A =5 T, then for
tion stage starts off with creating a single prestgié. every state\’ € states(I'), putA =5 A’;



We call the graph obtained by applyitR) to 7Y the (E3) If A € S? contains an eventualityC¢ that is
initial tableay, denoted by7. notrealized at\ in 7,7 (i.e., ifrank(A, ~Cp, T,?) = w),
then obtair7,?, ; by removingA from 7,.

n

4.5 State elimination phase We have thus far described the individual rules; to de-

During this phase, we remove frome nodes that cannotScribe the state elimination phase as a whole, it is crucial

be satisfied in any MAEHS. There are three reasons whipaspecify the order of their application.

stateA of 77 can turn out to be unsatisfiablé: contains  First, we apply(E1) to all states of7?; itis clear that,

an inconsistencyor satisfiability of A requires satisfia- once this is done, we do not need to go badlgb) again.

bility of some other unsatisfiable “successor” statesd The cases o{E2) and (E3) are slightly more involved.

contains an eventuality that is not realized in the tableddaving applied E3) to the states of the tableau, we could

Accordingly, we have three elimination rulég1)~«(E3). have removed, for som4, all states accessible from it
Technically, the state elimination phase is divided in@long the arrows marked with some formylahence, we

stages; at stage + 1 we remove from the tableaii’ need to reapplyE?2) to the resultant tableau to get rid of

obtained at the previous stage exactly one state, by apslychA’s. Conversely, having appligé?2), we could have

ing one of the elimination rules, thus obtaining the table&gmoved some states that were instrumental in realizing

7.,. We now state the rules governing the process. Téertain eventualities; hence, having applE@), we need

set of states of the tabledf is denoted bys?,. to reapply(E3). Furthermore, we can't stop the proce-

dure unless we have checked ta#iteventualities are re-

(E1) If {p,~p} C A € S, then obtairT,?, , by elim- alized. Thus, what we need is to apBB) and(E2) in a

inating A from 7,9 dovetailed sequence that cycles through all eventualities
More precisely, we arrange all eventualities occurring in

. ) . : .
(E2) If A contains a formula of the form—K, or the tableau obtained froffyy after having appliedel) in

=Dy and all states reachable frok by single arrows the list¢y, .. ., &m. Then, we proceed in cycles. Each cy-

marked byyx have been eliminitated at previous stage%Ie consists of alternatingly applyirg3) to the pending
obtain7, , by eliminatingA from 7 eventuality, and then applyin@2) to the tableau result-
el " ing from that application, until all eventualities have bee

. L dealt with; once we reacfy,,, we loop back tct;. The
To fotrm;JIate t?e lt_t;wd eI;mn:_atmn wle, Wetggéd thSycles are repeated until, having gone through the whole
concept ot even .ua|3(/9 realization. We say v cycle, we have not removed any states.
is realized atA in 77 if there exists a patA = Lo .
Once that happens, the state elimination phase is over.

Ao, Aq,...,A,, such that-p € A,, and, for ever i
0 0< , 1< there exis suchfhatA» XA 4 We call the resultant graph tlimal tableau ford and de-
St=m N g il note it by7? and its set of states by’ .

Realization of eventualityCy at A in 7,% can be eas-
ily checked by computing theank of everyA € S? with o ] . )
respect to-C in 7, denoted byrank(A, ~C e, 7.9). Definition 4.3 The final tableaw™ is openif § € A for
Intuitively, the rank ofA in T represents the length ofSOMeA € S?; otherwise, 7" is closed
the longest path i, from A to a state containingp.

If no such path exists, the rank &f is w (the first infi- The tableau procedure returns “no” if the final tableau is
nite ordinal). Formally, the rank is computed as follow§losed; otherwise, it returns “yes” and, moreover, pro-
At first, if - € A, setrank(A,-Cy,7,) = 0; oth- vides sufficient information for producing a finite model
erwise, serank(A, -Cp, 7,%) = w. Afterwards, repeat satisfyingd; that construction is described in section 5.2.
the following procedure until no changes in the rank of

any state occursrank(A, =Cy, 7,7) = 1+ max{ry}, Example 1 Let's assume tha& = {a, b} and constructa

wherer, = min{rank(A’,-Cyp,7,%) | A =5 A’}. tableau for the formuld& ,p A KypA—DCp. The picture
Now, we can state our last rule. below shows the complete pretableau for this formula.



A7 A8 A9 Afp A2 A1n Aigg

PRSP

xoN, ¢ x0

F6 X1
e

A1g

A1g A5 Adr

xo = "DCp, x1 = “Ka(p A Cp), x2 = “Kup(p A Cp);
o = {Kaup AKpp A -DCp};

A1 = {Kap ANKyp A -DCp, Kup, Kyp, "DCp, Dp, p};
I't = {-Cp,Kaup,Kyp, "DCp, Dp};

Az = {~Cp, Kup, Kyp, "DCp, Dp, p, =Ko (p A Cp)};
Az = {~Cp, Kup, Kyp, ~"DCp, Dp, p, -Ky,(p A Cp)};
T2 = {~(p A Cp),Kap, ~Ka(p A Cp)};

I's = {-Cp, Kap, Kyp, "DCp, Dp, -Ka(p A Cp)};

Ay = {-p,Kap,~Ka(p A Cp),Dp,p};

As = {~Cp,Kap,~Ka(p A Cp),Dp,p};

Ag = {—~Cp,Kap, ~Ka(p A Cp),Dp,p, " Ky(p A Cp)};
A7 = {-Cp,Kup, Kpp, -DCp, Dp, =K (p A Cp), p};
Ag = {-Cp,Kup, Kpp, -DCp,Dp, =K. (p A Cp), p,

-Ky(p A Cp)}

I's = {-Cp,Kaup, Kpp, -DCp, Dp, =Ky (p A Cp)}
I's = {~(p A Cp), Kpp, ~Ky(p A Cp)}

Ag = {~Cp,Kaup, Kyp, -DCp, Dp, -Ky(p A Cp), ~Ka(p A
Cp)}

Ao = {~Cp,Kup,Kpp, "DCp,Dp, -K;(p A Cp), p}
A1 = {-p,Kpp, ~Ky(p A Cp), Dp,p}

A2 = {—Cp,Kyp, ~Ky(p A Cp), =Ko (p A Cp), Dp, p}
A1z = {-Cp,Kpp, Ky (p A Cp), Dp, p}

For lack of space, we do not depict the initial and final
tableaux for the input formula, but briefly describe what
happens at the state elimination stage. Stétggand A1,
get removed due t(E1), as they contain patent inconsis-
tencies. A4 gets removed due {&3), since it contains
an eventuality-Cp which is not realized in the tableau,
as the rank of\ 4 stabilizes atv, because it does not con-
tain —p, and is its only successor. Thén andAg get re-
moved, as their only successor alopg namelyA4 has
been removed. All other states remain in place; in partic-
ular, all of them receive a finite rank, because from each
of them one can reach the statg 5, which contains-p.
The resultant graph encodes all possible Hintikka struc-
tures for the input formula.

We note that our tableaux never close on account of all
states obtained from the initial prestate containing unful
filled eventualities (we omit the formal proof of this claim
due to lack of space). The ru(&3), however, as can be
seen from the example above, eliminates from the tableau
“bad” states, thus making our tableau not only test a for-
mula for satisfiability, but actually, for every satisfiable
formula#, produce a graph “containing” all possible Hin-
tikka structures fop (i.e, whenever a node of the graph
is connected to several other nodes by arrows marked by
the same formula, these “target” nodes are not meant to
be part of the same MAEHS fdt, but rather represent
alternative ways of building a MAEHS fd).

5 Soundness and completeness

5.1 Soundness

The soundness of a tableau procedure amounts to claim-
ing that if the input formulad is satisfiable, then the
tableau for is open. To establish soundness of the over-
all procedure, we prove a series of lemmas that show that
every rule is sound; the soundness of the overall proce-
dure will then easily follow. The proofs of the following

Tg = {=Cp, Kup, Kyp, ~DCp, Dp, ~Ka(p A Cp), =K, (p A HTE€ lemmas are straightforward.

Cp)} 0
Ars = {~Cp, Kap, Kyp, ~DCp, Dp, ~Ka(pACp), =K,y (pa -€MMas.1 Letl be a prestate gP” such thatM, s I- '

Cp),p} for some MAEMM ands € M. ThenM, s |- A holds
I'7 ={~(pACp)} for at least one\ € states(I").

Azs = {-p};
Lemma 5.2 LetA € S§ be such that, s I A for some

Ay = {-Cp,-Ka(p A Cp};
A7 = {~Cp,—K;,(p A Cp} MAEM M ands € M, and let-K,p € A. Then, there



existst € M such that(s,¢) € R, and M, t I- {-¢} U 5.2 Completeness

K, K., poe At U {-K, Ky, € A} )
{Kay| v Ut v v } The completeness of a tableau procedure means that if the

Lemma 5.3 LetA € 5§ be suchthat\, s I- A for some tableau for a formuld is open, therd is satisfiable in a
MAEM M ands € M, and let-D¢y € A. Then, there MAEM. By making use of theorem 3.6, it suffices to show
existst € M such that(s,t) € Rp and M, ¢ I {—~¢} U thatan open tableau fércan be turned into a MAEHS for
{Dy | DYy A} U {-Dvy | -Dyc€ A} U{Kaux| 6. The construction of such a MAEHS is described in the
Kix€A,aeX} U {-Kux| "Kix€A,aeX}.  following lemma.

Lemma 5.4 LetA € S§ be such thatM, s I A for some ) )
MAEM M ands € M, and let-Cy € A. Then,~Cyp Lemma 5.6 If 7% is open, then there exists a MAEHS for
6.

is realized atA in 7,7

Proof. As A is fully expanded;-K. (o A Cy) € Afor  proof sketch. Let 7% be open. The MAEHS for 6 is
somea € ¥, and thusM, s |- =Kq(p A Cp). There- piit out of the so-calledinal tree componentEach final
fore, there exists, € M such that(s,s1) € R, and gee component is a tree-like MAES with nodes labeled

M, s1 IF =(p A Cp). By construction of the tableau yith states froms?. Each component is associated with
M;s; I T holds for the prestaté’ associated with 5 gtateA ¢ S¢ and an eventuality € ecl(¢); such a

-K, (¢ A Cyp), i.e. suchl that—(p A Cy) € T'. Now, component is denoted K .

there existsA; ¢ states(I) such thatM,s1 |- A1 Now we describe how to build the final tree compo-
Indeed, elements aftates(I") are full expansions of; ants. Lett = -Cy € ecl(f) andA € S°. If € ¢ A

clearly,I' can be fully expanded in such a way that whens ., T is a “simple tree” (i.e, one whose only inner

ever we have to make a choice which of several formulla}sde is the root) whose root is labeled withand that
to include intoA; (say, for whichb € ¥ to add the for- g exactly one leaf associated with each formula of the
mula-K, (¢ A Cp) if ~Cyp € I'), we choose the oneto i, or =D, belonging toA. A leaf associated
that is actually satisfied at. Now, as~(¢ A Cp) € I it formulay is labeled by a statd’ € S such that in

either M, 51 - —p or M,s1 |- =Cyp. In the for- g o paven X, A/ (such aA’ exists—otherwise\

mer case, we are done straight off, as thep € A,. would have been eliminated from the tableau du&®)).

In the latter case, ag4, s, I ~Co, there exists a se-y yiain a tree-like MAES, pus, t) € R, if sis labeled
quence of states, s, ..., s, In M such that for every

1 < i < m, we have(s;, s;11) € R, for someb € ¥ with A, ¢ is labeled withA’, andA e A for somey;
andM, s,, |- —¢. By taking this sequence of states dtnalogously, puts,t) € Rp if s is labeled withA, ¢ is
M, we can build, in the “forcing choices” style describelhbeled withA’, andA D¢ A’ for someyp.

above, a sequence of statds, Ay, ..., A,, € S such  If, on the other hand = -Cy € A, thenTx ¢ is
that, for everyl < i < m, we haven, ~"#AC¥) A;,, constructed asfollows. SineeCy is realized at\ in 77,

for someb € ¥, and—¢ € A,,. The existence of the path_thers exists a sequence of states= A, Ay, e Am
A, A1, ..., A, implies that-C is realized an\ in 7.9, 1N S° such that~p € A, and for every) < i < m,
O A -5 A’ holds for somey of the form—K,¢ or =Dy

(otherwise, it would have been eliminated dugE&3)).
) - , Take this sequence and give to eath (0 < i < m)
Theorem 5.5 (es_oundness)f 0 € Lis satisfiable in @ wonqgh successors, as in the previous paragraph, and
MAEM, then7™ is open. define the relations for this tree as prescribed therein.
Proof sketch. Using the preceding lemmas, show by We are next going to stitch the above-defifgd,’'s
induction on the number of stages in the state eliminatitogether. First, however, we note that if an eventuality
process that no satisfiable state can be eliminated dug’tbelongs toA and is not realized inside some final tree
(E1)~E3). The claim then follows from lemniaB.1. O componenfa ¢ (the realization in a final tree component

is defined as in tableaux, with substitutifig ¢ for 7,%),
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then¢’ belongs to every leaf dI'a ¢, and thus its real- cycle is repeated with the following modification: when-

ization is deferred—this is crucial to our ability to stitctever the component we are about to attach,&ayy, is

Ta.¢’'s up into a Hintikka structure. already contained in our structure in the making, instead
We now proceed as follows. First, we arrange all statereplacing the leat with that component, we connect

of 7% inalist Ao, ..., A,_1 and all eventualities occur-every “predecessord of ¢ to the root ofT{; ;, with the

ring in the states of ? in a list&,...,&,,_1. We then relation connecting to t. This modified version of the

think of all final tree components as arranged inran cycle is repeated until we come to a point when no more

by-n grid whose rows are marked with the correspondemponents get added—this is bound to happen in a fi-

ingly numbered eventualities 6fY and whose columnsnite number of steps as the numberZof ¢'s is finite. It

are marked with the correspondingly numbered statesi@how routine to check that the resultant structtrés a

T9. The final tree component at the intersection of thdintikka structure, whose set of agents is the set of agents

ith row and thejth column will be denoted by, ;). The occurring ing. By construction, it contains a node labeled

building blocks for our MAEHS will all come from the with a set containing. O

grid. This MAEHS is built incrementally, so that at each

stage of the construction we produce a structure realizing

more and more eventualities. Theorem 5.7 (Completeness)etf € £ and let7? be

We start off with a final tree component that is uniquePen. Thend is satisfiable in a MAEM.
determined by the input formuly in the following way. . -
If 6 is an eventuality, i.e4 — &, for some0 < p < m, Proof. Immediate from lemmia®.6 and theorEml 3.6
then we start off with the componeity, ,, where, for
definitenessy is the least numbet n such that € A;

as7? is open, such g exists. If, on the other hand,is ;
not an eventuality, then we start off withy, ,), whereg is 6 CompIeX|ty of the procedure

as described above. Let's denote this initial structure Egt’s denote the length of the input formuaby n and
Ho. the number of agents in the languagekyWe assume

Henceforth, we proceed as follows. Informally, Whhatk > 1, otherwise we just deal with the modal logic

think of the above list of eventualities as a queue of CUSz 11,6 size of the extended closure fo(recall defi-

tomers waiting to be served. Unlike the usual queues, Weon [2) is bounded from above k(k™), as eactC

do not necessarily start serving the queue from the f'f)%eratoroccurring id requiresk formulas to be added to

customer (ifd is an eventuality, then it gets served firs he extended closure.

otherwise we start from the beginning of the queue), but.l_he examination of the procedure shows that the
then_we follow the queue ord(_ar, curving _back to the bF'ngest path to any state of the pretableau we cre-
gining of the queue after having ser.ved Its last eventuﬁé at the construction phase from the initial prestate
ity, if we started in the middle. Serving an eventuality |? the one containing the input formuld) is
amounts to appending to the leaves of the structure buil

thus far final t X liziaaTh K ound by the number of nested “diamond” modal-
us far final tree components realiziggThus, we keep itf{es (such as-K,) in 0 plus 1. From any

track of what eventualities have already been served,t%“(;en state or prestate we can create at mO&")

nggeoé\fz:a CI)QSftS?:hV;a;rii%;:» tggngf;’cff(ﬁﬂﬂsrzr (pre-)states, hence the whole number of nodes we create
P y ! isin O(k"z). Thus, the construction phase can be done in

with the final tree componet | ((j11) mod m)- The 2

process continues until all eventualities have been sendge O(k™). L

at which point we have gone the full cycle through the At 2the prestate elimination phase, we delete at most

queue. O(k™") states and for each prestaQte redirect at most
After that, the cycle is repeated, for as long as the que@ék™) arrows, which takes withi® (k") steps.

remains non-empty. Alternatively, if we want to guarantee At the state elimination stage, we first apilyl) to

that the MAEHS we are building is going to be finite, thé (k") states, which can be done (k2" steps.
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After that, we embark on the dovetailed application eérsrand, funded by the Claude Harris Leon Foundation—
(E2) and(E3). We proceed in circles, whose number iwe gratefully acknowledge the financial support from
bound byo(knz), as at each iteration we remove at leathiese institutions. We also acknowledge the anonymous
one state. During each cycle, we carry GUtx") times referees whose remarks helped to improve our presenta-
(the upper bound on the number of eventualities) the fdilen.
lowing procedure: fist, we appfE2) to all states, which
can be done in tim&(k("+"*)), and then applyE3)
to the pending eventu(ality. Trze latter procedure is Cﬁeferences
ried out by computing a rank of each state of the tablea
with respect to the pending eventuality. The number o
rank updates is bound b9 (k™"), each update requiring Journal of Computation and System Scien@e¢1):1-24,
O(k("+1%)) steps, as for each statewe check the ranks 1985.
of the targets of outgoing arrows marked by formulae il2] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardkea-
A. Thus, the whole state elimination phase can be carried iggg‘g about KnowledgeMIT Press: Cambridge, MA,
outin O(k?"") steps. - .

We C(()ncluzje that the whole procedure can be carrie[?] R. Fagin, J. ¥. Halper, and M. Y. Vardi. What can ma-

] E. A. Emerson and J. Halpern. Decision procedures and
expressiveness in the temporal logic of branching time.

) 5 i ) ! chines know? On the properties of knowledge in dis-
out in O(k*™") steps, wheren is the size of the in-
put formula. It follows thatMAEL (CD)-satisfiability is

tributed systems. Journal of the ACM 39(2):328-376,
April 1992.

in ExpTime, which together with the result from|[7] [4] V. Goranko and M. Otto. Model theory of modal logic.

implies that MAEL (CD)-satisfiability is ExpTime-

In Handbook of Modal Logicpages 249-330. Elsevier,

2007.
[5] V. Goranko and D. Shkatov. Tableau-based de-
cision procedures for logics of strategic ability in
multi-agent systems. To appear IACM Trans-
actions on Computational Logic Available at
http://arxiv.org/abs/0803.2306.
J. Y. Halpern and Y. Moses. Knowledge and common

complete.

7 Concluding remarks

We have developed a sound, complete, and complexin{e]
optimal incremental-tableau-based decision procedure fo * ynowledge in a distributed environmedournal of ACM

the multi-agent epistemic logiMAEL (CD). We claim 37(3):549-587, 1990.

that this style of tableau is of immediate practical use[7] J. Y. Halpern and Y. Moses. A guide to completeness and
both by human and computerized execution. It is more complexity for modal logics of knowledge and beliéit-
efficient (within the theoretically established complgxit tificial Intelligence 54:319-379, 1992.

bounds) and more modular and adaptable than the toff! é;JrﬁCﬁtgreéi:eigi \;\ﬁ(;’aAr;tﬁ%a']‘?Sfmiséi“;%éogiigggr
down tf'zlbleau_x of the type developed.(fO_r a fragmgnt 0{9] W. vapn der Hoek and J.-J. C. Meyer. I\?Iaking séme issues
the logic not including thd operator) in([[7]. In partic-

| h bl d lends itself . of implicit knowledge explicit. International Journal of
ular, the tableaux presented lends itself to an extension to =, ,nqations of Computer Scien@2):193-224, 1992.

the full multi-agent epistemic logic, with modal operatorg o] . van der Hoek and J.-J. C. Meyer. A complete epistemic
of common and distributed knowledge for all coalitions  |ogic for multiple agents—combining distributed and com-
of agents, and well as to a combination with the similar  mon knowledge. In M. O. L. B. et al., editoEpistemic
style tableaux developed for the Alternating-time tempo-  Logic and the Theory of Games and Decisiqreges 35—

ral logic ATL developed in([5], which are going to be the ~ 68. Kluwer Academic Publishers, 1997.
subject of our subsequent work. [11] P. Wolper. The tableau method for temporal logic: an

overview. Logique et Analyse28(110-111):119-136,
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