A fast algorithm to compute heap memory bounds of Java Card applets

Tuan-Hung Pham, Anh-Hoang Truong,
Ninh-Thuan Truong

College of Technology, Vietnam National University

144 Xuan Thuy, Hanoi, Vietnam

Abstract

We present an approach to find upper bounds of heap
space for Java Card applets. Our method first transforms
an input bytecode stream into a control flow graph (CFG),
and then collapses cycles of the CFG to produce a directed
acyclic graph (DAG). Based on the DAG, we propose a
linear-time algorithm to solve the problem of finding the
single-source largest path in it. We also have implemented
a prototype tool, tested it on several sample applications,
and then compared the bounds found by our tool with the
actual heap bounds of the programs. The experiment shows
that our tool returns good estimation of heap bounds, runs
fast, and has a small memory footprint.

1 Introduction

Java Card is a technology that allows us to develop soft-
ware applications that can run on smart cards and devices
with very limited memory and processing power. Many
of these devices allow new applications to be deployed on
them, even after they have been issued to end-users. Since
the new applications can come from third parties, they can,
unintentionally or intentionally, cause memory overflows,
which may result in loss of data in smart cards and even
destruction of the cards. It is, therefore, necessary for a
smart card to have a program to check the maximum heap
memory of new applications that are going to be installed
on the card. The checker itself should also run fast and have
a small memory footprint.

To adapt to the smart card environment, Java Card virtual
machine JCVM) [11, 12] is developed as a compact version
of Java virtual machine (JVM) [18]. The instruction set of
JCVM is only a subset of JVM'’s. In comparison with JVM,
JCVM does not support several complex features such as
threads, cloning, and finalization. As a result, JCVM does
not often provide garbage collection, a resource-consuming
technique for managing memory used by objects automat-
ically. Without garbage collection, allocated objects in the
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Java Card platform can still consume memory even when
they are no longer used or referenced. When a smart card
contains many disused objects, the card can easily run out
of memory. Consequently, it raises many problems of man-
aging memory cost. One of the problems that we focus on is
how to determine the maximum heap cost used by an applet
without the presence of any garbage collectors.

The problem of finding an upper bound of memory usage
of a program is not new, and various approaches have been
developed to address it. Some approaches [16, 8, 5, 9, 10,
17] analyze the program’s source code to calculate an upper
bound of heap memory. Others [3, 7] propose the ideas
of managing memory resources by analyzing the memory
affected for each bytecode instruction in compiled code.

Extending our previous work [13], we explore a slightly
different approach with a better algorithm, which is suitable
to run on cards. We assume that the size of allocated arrays
and the numbers of iterations of loops are input parame-
ters or constants. When input parameters are used to bound
loop executions, we assume that the used parameters are not
changed inside the loops. However, if they are altered, our
approach can detect the changes and indicate whether the
obtained results are good or not in these cases. The main
steps of our approach proceed as follows:

e First, we construct a control flow graph (CFG) of the
bytecode stream of an input method in a Java Card ap-
plet. The nodes of the CFG are the bytecode instruc-
tions. For edges, if one instruction follows another in
execution order, we create a directed edge from the for-
mer to the latter.

e Then, we transform the CFG into a weighted DAG.
The transformation collapses cycles and assigns each
edge of the CFG a corresponding non-negative weight.

e Finally, we compute the heap bound by DAG-largest-
path algorithm, a linear-time algorithm to solve the
single-source largest path problem in DAG.

In implementation, we combine these steps to reduce
our algorithmic complexity. We obtain a tool that takes the



bytecode stream of a method of Java Card applets as input
and returns a heap bound function of method parameters as
output. We tested the implemented tool on several programs
including applets provided in Java Card Development Kit
2.2.2 and some programs that use complex data structures
such as trees, linked lists, stacks, and queues. These pro-
grams can also contain loops and method invocations. The
experimental results have shown that our algorithm can not
only find the lowest upper bound of heap cost in many cases,
but also run fast and have a small memory footprint.

The rest of this paper is organized as follows. Section 2
briefly introduces Java Card bytecode. Section 3 presents
our approach to find upper bounds of heap space for Java
Card applets. In Section 4, we show our experimental re-
sults on sample applications. Related work is discussed in
Section 5. Section 6 concludes.

2 Java Card bytecode

Java Card bytecodes are the form of instructions that
JCVM understands and executes. Each bytecode instruc-
tion consists of one opcode and zero or more operands. The
opcode represents the action JCVM needs to perform, while
the operands act as arguments of the action.

JCVM is designed as a stack-based machine; thus, stacks
are the center of all computations. In other words, the
operand stack holds all temporary results of operations and
the remains (local variables and method parameters) are
stored in an array of local variables (so-called local variable
table).

Among all Java Card bytecode instructions, there are
three instructions that can increase heap cost. They are
new, newarray and anewarray for creating a new in-
stance of an object, an array of a primitive type and an array
of object references, respectively. In addition, method invo-
cation instructions (invokeinterface, invokespecial,
invokestatic, invokevirtual) increase heap cost by
the heap units that the invoked interface or the invoked
method uses itself. The other instructions do not change
heap space when they are executed.

Let h(7) be the maximum heap cost allocated for instruc-
tion 4. The formula to calculate h(i) is presented in Fig-
ure 1, where:

® M¢ . a,,.,a, denotes the method m whose parameters
are as, .., ay in class ¢, and H (M . q,,...q, ) denotes
its heap bound function of method parameters.

e M, denotes the set of methods that instruction 4 can in-
voke. Depending on the type of instruction ¢, we have:

- |M;| = 1 if instruction ¢ is a normal method
invocation instruction (invokeinterface,
invokespecial, invokestatic). In this

case, only a specific method is called.

- |M;| > 1in case of dynamic dispatch where in-
struction ¢ is invokevirtual. Depending on
the runtime types of objects, different methods
can be invoked in this case.

- |M;| = 0 otherwise.

Figure 2 shows a method named sample_method. De-
pending on the input parameter x, the method allocates heap
memory for creating an instance of AClass or an array of
integer numbers or an array of AClass. JCVM compiles
this source code to the bytecode stream in Figure 3. As
we have seen, every instruction begins with an offset (0, 1,
3,..., 72, and 75) followed by the mnemonic of an opcode
and operand values (if any). The offset of an instruction is
the location where the instruction appears in the bytecode
stream.

3 Our approach

First we present three steps of our approach: transform-
ing the bytecode stream of a method into a CFG, transform-
ing the CFG into a weighted DAG, and finding the single-
source largest path in the weighted DAG. Then we present
an effective algorithm for finding heap bounds of Java Card
applets.

3.1 Transforming the bytecode stream of
a method into a CFG

To represent all paths that may be traversed during exe-
cution of a method, we transform its bytecode stream into
a CFG, a common technique in compilers [1] as well as in
static analysis tools such as JULIA [14]. When construct-
ing a CFG, many approaches [2, 3] usually store in each
node a sequence of instructions that always execute sequen-
tially, without any jumps or branching instructions. How-
ever, if we consider each bytecode instruction as a distinct
node, it is easier to store and traverse the CFG. In addi-
tion, it makes our analyzer simpler, since we can omit the
need in summarizing each block of sequential code that is
required otherwise. Therefore, each node in our CFG corre-
sponds to one instruction of the bytecode stream. We name
each node its corresponding instruction’s offset. If two in-
structions execute sequentially or one instruction performs
a jump to another, we connect them by a directed edge. Our
CFG contains an entry node e (corresponding to the entry
instruction of the bytecode stream), internal nodes, and one
or more exit nodes (representing return instructions).

Consider the bytecode stream of sample_method in
Figure 3. Its corresponding CFG is shown in Figure 4. The
entry node is 0 and the exit node is 75. Each directed edge in
the CFG is formed by either two sequential instructions rep-
resented by a directed straight line, or a branch (jump) de-



Size(the newly allocated instance)

ifi € {new, newarray, anewarray}
H(Mciamhailwwain) with Mchmiaail,-wain € Mi7 |Ml| =1
ifi € {invokeinterface, invokespecial, invokestatic}
ma'r{H(MCmmmau»-wam) | Mciﬂnmaih--ﬂm € ML}7 |M1‘ >1
if 1 = invokevirtual
0 otherwise

Figure 1. Formula to calculate /(i)

public void sample_method(int x, int n,
int m) {
AClass aClass;
int[] intArray;
AClass[] aClassArray;
for (int i = 0; 1 < x; 1i++) {
switch (x % 3) {
case 0:
aClass = new AClass();
break;
case 1l:
intArray = new int[n];
break;
case 2:
aClassArray = new AClass[m];
break;
default:
break;

Figure 2. Sample method

noted by a curve arc. Three special nodes 40, 53, 61 are in-
structions that allocate memory for an instance of AClass,
an array int[n] and an array AClass[m], respectively.
The edge from node 72 to node 3 creates a cycle.

For cycles, it is crucial to know how many times the cy-
cles will execute. To do that, we analyze patterns of some
common loops to identify the number of loops of these cy-
cles, in this case the number of loops is x. We currently
identify patterns of for loops whose number of iterations of
loops are method parameters or constants, as we assumed
in Section 1. It is not difficult to incorporate other kinds of
loops once we know the patterns of the loop variable.

Furthermore, we also can detect if the loop counter vari-
able (i) is changed inside the loop or not so that the mem-
ory bound is attached with an extra attribute, which indi-
cates whether or not the found bound is good. When the
loop variable is not altered inside a loop, the quality of our

bound is good.

Note that in any valid bytecode streams, every node must
be reachable from the entry node in the CFG of a method;
otherwise, JCVM’s verifier will reject the applet. Since we
need to traverse all nodes in the CFG in our algorithm, the
reachability property is required.

We denote our CFG by G = (V, E) where each node
v € Vrepresents an instruction of the bytecode stream. We
redefine A (¢) in Figure 1 as the maximum heap cost that the
instruction corresponding to node ¢ allocates (in this case,
note that ¢ denotes a node, not an instruction as in Figure 1).
Since a CFG represents all paths that may be traversed dur-
ing the execution of a program, the problem of computing
heap bounds of Java Card applets can be restated as follows:

Given the CFG of a method in a Java Card applet, find
a path p that starts at the entry node e and ends at one of
the exit nodes such that the total weight of all nodes on p,
> vep P(v), is maximum.

Note that the path p may traverse via a node more than
once and each time p traverses a node, namely v, h(v) is
added to the total weight.

3.2 Transforming a CFG into a weighted
DAG

Now we transform a CFG and its h function into a DAG,
denoted by G; = (V4, E;) and a weight function w over the
edges E+. Let u,v with indices range over nodes of CFG
and DAG. For two nodes u, v that have a direct edge from
u to v, we denote the edge by (u,v) and the weight of the
edge by w(u, v).

First, we assign each edge of G a non-negative weight
by the following steps:

e Setw(u,v) = h(v) for each (u,v) € E.

e Create a source node s, add it to V, and connect it to the
entry node e by a directed edge (s, e) with w(s,e) =
h(e).

Lemma 3.1 The total weight w(p) of a path p =
{s,e,v1,...,u} is the sum of the weight of its constituent
edges.



public void sample_method(int, int, int);
Code:
O: iconst_0

1: istore 7

3: iload 7

5: iload_1

6: if_icmpge 75
9: iload_1

10: iconst_3
11: irem
12: tableswitch{ //0 to 2

0: 40;
1: 52;
2: 60;

default: 69 }
40: new #1; //class AClass
43: dup
44: invokespecial #2;

//Method AClass."<init>": ()V

47: astore 4
49: goto 69
52: 1load_2
53: newarray int
55: astore 5
57: goto 69
60: iload_3
61: anewarray #1; //class AClass
64: astore 6

66: goto 69
69: iinc 7, 1
72: goto 3

75: return

Figure 3. Bytecode stream

Proof After assigning each edge a non-negative weight, we
obtain:

k
w(p) =h(e) + > h(v;)
i=1
k
:w(&e)—l—w(e,’lﬂ)-f—zw(viflyvi) I

To generate a DAG from G, we need to collapse all cy-
clesin G. A loop £ = {ug,u1, ..., Ug, Uo, U1, U2, v} in G is
formed by a sequence of nodes ug, w1, ..., ug, Ug, U1, U2, V
and bounded by x (x > 0), which is a constant or a method
parameter. In the loop, wug,uy, ..., uq, uo form the loop
body; u1, us check whether the loop condition is met; and v
is the node that the control flow goes to when the loop exits.
An example is the loop formed by the sequence of nodes 3,
5,...,72,3,5, 6,75 presented in Figure 4.

We propose in Algorithm 1 a method to collapse cycles
in G. Figure 5 is a graphical representation of the algorithm.

Escape the cycle A

X times

Figure 4. Control flow graph

Theorem 3.2 (Correctness of Algorithm 1) Algorithm 1
does not change the total weight of every path that contains
the collapsed cycle. It also does not change the reachability
from the source node s to each node v € V.

Proof Let p be a path in G and suppose that p contains a
cycle whose number of iterations is a constant or a method
parameter, denoted by x (z > 0). We have the sequence of
nodes of the cycle:

UQy ULy U2y -eny Ugy --05 UQ, UL, U2,V

loop x times

Consider a sub-path p, from the first u4 to v. By Lemma
3.1, the weight w(ps) of p; is



Algorithm 1 Collapsing a cycle in G = (V, E)

CollapsingCycle (G, £):
I: E— EU(ug,v)
2: w(ug, v) — 3 wlui—1,u:) x (v —1)
32 E«— E\ {(ug,uo0), (u2,v)}

\loop x
| times

|
I
1

Figure 5. Collapse a cycle

q
w(ps) = X wlug, up) + Zw(ui_l,u,;) x (x—1)+
i=1
w(ug, u1) + w(ug, uz) + wlug, v)

However, in the loop structure of bytecode stream, the
weights of (ugq,uo), (uo, u1), (u1,uz), and (ug,v) are ze-
roes since they only represent jumps (from u, to ug and
from w9 to v) or prepare values for checking the loop con-
dition (the edge (up, u1) and (u1,us)). Thus, we obtain:

q

w(ps) = Zw(ui_l,ui) x (x—1)

i=1

Since (ug, ug) and (ug,v) are only used in the loop, we
can safely remove them and create a new edge (uq, v) with
w(ug,v) = wps) = Yt w(ui—1,u;) x (z — 1) without
changing the total weight of the cycle. Thus, it does not
change the total weight of every path that contains the cycle.

Although we need to remove (ug, v) and (ug, ug) to col-
lapse the cycle, the reachability from the source node s to
node v is still preserved since a new edge (uq, v) is created.
Consequently, Algorithm 1 preserves the reachability from

the source node s to each nodein V. |}

After collapsing all cycles in G, we produce a DAG
Gi = (V;,E;) from G. Every edge (u,v) € Ej; has
a non-negative weight w(u,v) representing the maximum
heap cost consumed when we traverse from node u to node
v. The heap memory bound that we need to compute is now
the weight of the largest path from the source node s to one

of the exit nodes in G. In the next subsection, we will in-
troduce an algorithm to find the single-source largest path.

3.3 Finding the single-source largest path
in the weighted DAG

This subsection shows how to solve the problem of find-
ing the single-source largest path in a DAG generated from
a CFG. We are given a DAG G; = (V4, E4) in which each
edge (u,v) € E; has a non-negative weight w(u,v) > 0.
The weight of path p; = (s, v1, ..., vx) from the source node
s to vy, is the sum of the weights of its constituent edges:

k
w(p) = w(s,v1) + Zw(vi_l, v;)

=2

As mentioned in Subsection 3.1, every node in G must
be reachable from its entry node. Accordingly, by Theorem
3.2, there is always a path from the source node s to node
v in G; obtained from G. We define the weight 6(v) of the
largest path from the source node s to node v in G4 by

d(v) = max{w(p;) : s L}

Based on the DAG-shortest-paths algorithm in [6], we
propose an algorithm presented in Algorithm 2 to find the
largest path from the source node s to each node v in G'.
For each node v € V3, the algorithm maintains an attribute
F[v] - alower bound on the weight of the largest path from
the source node s to node v.

Algorithm 2 Single-source largest path in G+ = (V;, E})

DAG-largest-path (G;,w, s):

: perform a topological sort of G'

F[s] —0

for each node v € V; \ {s} do
Fv] « —o0

end for

for each node v € V; taken in topological order do
Flv] = maz{Flu] + w(u,v) | (u,v) € Et}

end for

A A R ol e

In line 1, we perform a topological order 7 =
{v1,va, ..., v)v; |} of Gy such that for each edge (v;,v;) €
E, node v; appears before node v; in 7. Since Cormen
et al. [6] presented a well-known topological sorting algo-
rithm, we do not restate it for brevity.

Theorem 3.3 (Correctness of Algorithm 2) DAG-
largest-path algorithm runs on a DAG G; = (V, Ey) with
non-negative weight function w and source s, terminates
with Flv] = 6(v) for all v € V;.



Proof Since F'[v] is a lower bound of §(v), F[v] < 6(v) for
each node v € V;. We need to prove that F'[v] = 6(v) for
all v € Vi. Suppose for the purpose of contradiction that
v is the first node in 7 for which F[vy] < &(vg). Since
the largest path from s to itself is 6(s) = F[s] = 0, we
must have v, # s. Therefore, the largest path from s to v,
contains at least two nodes. Let v, € V; be the predecessor
of v, in the largest path. We have (v, v,) € E} and

Flug] < 6(vg)

= 0(vp) + w(vp, vy)

Since (vp,vq) € FEj, v, appears before v, in the topo-
logical order 7. Based on our supposition that v, is the first
node in 7 that F'lv,] < 6(vg), we infer that F'[v,] = 6(v,).
Hence, we have

However, from line 7 in Algorithm 2, we obtain

Flvg) = maz{Flu] + w(u,v5) | (u,v,) € By}
> Floy] + w(vp, vg)

Consequently, we derive the contradiction that F'[v,] +
w(vp,vq) < Flug] < Flvp] 4+ w(vp, vg). This contradiction
completes the proof. We conclude that F'[v] = é(v) for all
veVi. 1

As stated by Cormen et al. [6], the topological sort in
line 1 of Algorithm 2 can be done in O(|V;|+ |E;|) time. It
takes O(|V;|) time for the initialization from line 2 to line
5, and O(|V4| + |E4|) time for computing the attribute F
from line 6 to line 8. Therefore, the total running time of
Algorithm 2 is O(|V;|+ | E4|), which is linear in the sum of
the number of nodes and the number of edges in G.

3.4 An effective algorithm for finding
heap bounds of Java Card applets

We have shown that it is possible to compute heap
bounds of Java Card applets. However, our approach needs
to construct two extra data structures (CFG and DAG)
and a transformation between them, which may be space-
consuming phases. Since smart cards own very limited re-
sources, we need to optimize our approach’s steps to pro-
pose an effective algorithm that has a small memory foot-
print and runs fast enough to be suitable for smart cards.
Consequently, we propose an effective algorithm for com-
puting heap bounds of Java Card applets in Algorithm 3,
which combines the three steps.

Algorithm 3 Heap analysis algorithm for Java Card applets

Input: The bytecode stream of method M¢ 1.4, ....a.
Output: The heap bound function H (M 1 a;....a, )
Variables:
e: the entry node of the CFG
S a stack holds expanded nodes for exploration
L: alist of nodes to which the chosen node connects
For each node u:
F[u]: the weight of the largest path from e to u
pushed[u]: Determine whether node u has been in S
indegreelu]: the indegree of node u
goto_jumplu]: goto jump destinations of node ¢
nextlu|, i f_jumplu]: the next node and the if jump
target of node u

HeapBound():
1: push e into the empty stack S; pushed|e] <+ true
2: Fle] < h(e)
3: pushed[k] < false for each node k where k # e
4: repeat

5 i < pop the node at the top of S; L « 0
6:  if Jif_jumplu] then
7: append i f_jumplu] to L
8: endif
9:  if Inext[u] then
10: append next[u] to L
11:  endif
12:  if goto_jumplu] # () then
13: append all elements of goto_jumplu] to L
14:  end if
15:  for all v € L from left to right do
16: UpdateHeapBound(u, v)
17: indegree[v] «— indegree[v] — 1
18: if indegree[v] = 0 and pushed[v] = false then
19: push v into S; pushed[v] < true
20: end if
21:  end for
22: until S =0

23: return maxz{F[r] | r in the set of exit nodes}

UpdateHeapBound(u, v):
1: if pushed[v] = true and u > v then
2:  F[v] « Flv]+the number of iterationsx (Flu]—
F[v]) /I A cycle is detected
temp < v // Move forward two nodes
repeat
temp «— next[temp)
Fltemp| «— F[v]
until 3if_jump|temp]
Flif jumpltemp]] — F[v]
else
10 F[v] « maz{F[v], Flu] + h(v)}
11: end if

R A




Our algorithm directly works with CFG to find the
largest path from the entry node e to one of the exit nodes
of CFG. We still use F'[v] as a lower bound on the weight
of the largest path ending at node v. In the algorithm, we
collapse a cycle by updating F'[| and moving forward two
nodes to reach a node of i f jump.

Regarding the data structures used in the algorithm, the
most space-consuming one is for storing the CFG. We need
three arrays to do this, including next[], if_jump|] and
goto_jumpl| to represent the next (sequential) node, the i f
jump target and the set of goto jump destinations of each
node, respectively.

The main idea of our algorithm is that we perform depth-
first search (DFS) to traverse the CFG. Each time DFS is
performed, a CFG’s node that has zero in indegree is cho-
sen. Since the chosen node does not have any ingoing
edges, we use it to update the heap bounds of nodes to which
it connects. When the heap bound of a node is updated, we
reduce the indegree of the node by one. Each cycle is col-
lapsed by moving forward two nodes to reach an if jump,
where control flow leaves the cycle.

Since DFS is a recursive algorithm for traversing the
CFQG, it may result in stack overflow in Java Card environ-
ment. Therefore, we propose a non-recursive implemen-
tation of DFS in Algorithm 3 by using a stack S to hold
expanded nodes for exploration.

According to Cormen et al. [6], the running time of DFS
is proportional to the number of nodes |V] plus the number
of directed edges |E| in the CFG. During CFG traversal, it
takes O(1) time to update the heap bound of a node. Hence,
the total time complexity of our algorithm is O(|V] + |E]).
Our space complexity is also O(|V] 4 |E|) for cost of stor-
ing all directed edges of the CFG and several other one-
dimensional arrays used for this algorithm.

To illustrate how the algorithm works, we briefly run the
algorithm with the CFG presented in Figure 4. The algo-
rithm starts at node 0 whose heap bound is initially set to
zero. There is no change of heap bound when going to
nodes 1, 3, 5 and 6. After reaching node 6, a choice be-
tween the next node 9 and the conditional branch 75 ap-
pears. According to the order of CFG traversal in Algo-
rithm 3, we visit node 9 first. When we reach node 12, there
is a set of got o jump destinations {40, 52, 60, 69}. At node
40, the program executes an instruction that allocates mem-
ory for AClass object. The heap bound of node 40 is thus
changed from O to Size(AClass). This heap bound value
is preserved through nodes 43, 44, 47 and 49. Similarly, the
paths from node 12 to nodes 52, 53, 55, 57 and to nodes 60,
61, 64, 66 set the heap bounds of node 57 and node 66 to
Size(int [n]) and Size(AClass [m]), respectively.

Considering node 69, its heap bound is the max-
imum heap memory bounds of its ingoing nodes
and equal to maxz{0, Size(rClass), Size(int[n]),

Table 1. Experimental results on Sun’s ap-
plets

Sample Size NNodes NEdges Time
(byte) (ms)
NullApp 916 21 18 3
Wallet 3277 64 68 7
RMIDemo 3067 111 107 11
ServiceDemo 2755 114 111 9
JavaLoyalty 2312 125 128 12
ChannelsDemo 7227 191 190 18
Transit 7765 269 276 21
Biometry 5419 271 259 19
Photocard 5383 330 340 19
Utilitydemo 10580 405 414 24
SecureRMIDemo 7411 417 424 24
JavaPurse 15489 465 479 26
JavaPurseCrypto 16713 524 538 31
SigMsgRec 4606 654 656 35

Size(AClass [m])} = max{Size(int [n]),
Size(aClass[m])}. A cycle with x-time loops is
detected when we reach node 72, which has a goto
instruction jumping to node 3. It then escapes the cycle
by moving forward two nodes to find an if jump, which
locates at node 6. From node 6, an if jump is performed
to go to the exit node 75 and update its heap bound to x
x max{Size(int [n]), Size(AClass[m])}. This heap
bound function of method parameters is also the maximum
heap used by sample_method in Figure 2.

4 Experimental results

We have implemented a prototype tool that computes the
heap bounds of Java Card applets using our proposed algo-
rithm. The input of this tool is an applet and the output is the
maximum heap space that its main method uses. This tool
is tested on sample applets provided in Java Card Develop-
ment Kit 2.2.2, and the obtained results are shown in Table
1. The first column is the name of tested samples. Each
sample consists of several class files, and the total size of
these classes is presented in the Size. The columns NNodes
and NEdges contain the numbers of nodes and the numbers
of directed edges of CFGs, respectively. The last column is
the execution time (in milliseconds).

Since JCVM does not provide API to measure the heap
memory that applets use at runtime, we do not have their
actual heap bounds to compare with our results. However,
by doing manual calculations, we found that the heap bound
functions our tool returned are accurate.

To validate our tool by comparing its results to



Table 2. Experimental results on our samples

Sample Size NNodes NEdges HB AHB Time
(byte) (byte) (byte)  (ms)
MethodCalls 1423 41 44 504 504 4
Loops_Choices 1795 69 76 720 720 7
Tree 1551 57 63 8040 8040 5
LinkedList 1254 35 38 216 216 3
Stack 923 32 35 552 552 4
Queue 1162 37 42 432 432 3
Inaccuracy 1426 43 47 629 592 5

the actual heap bounds, we wrote several sample pro-
grams, which can be compiled by both JCVM and
JVM. We first compiled them by JCVM, used our
tool to find their heap bounds, and then used two
methods Runt ime . getRuntime () .totalMemory () and
Runtime.getRuntime () . freeMemory () of JVM to
measure the actual heap bounds they need!. Our samples
use complex data structures like trees, linked lists, stacks
and queues as well as control flow statements like choices,
loops and method calls. We obtained the experimental re-
sults shown in Table 2.

In Table 2, the column HB represents the heap bounds
that our algorithm returns. The actual heap bounds our sam-
ples allocate are shown in the column AHB. As we have
seen, the values in the HB and the AHB are the same for
most of our input samples. It means our algorithm can infer
the least upper bound of heap cost used by Java Card ap-
plets in many cases. In case of the sample Inaccuracy that
contains a change of method parameters in its loop body,
our tool returns a non-optimal result.

We observe that the values of NNodes are nearly equal
to ones of NEdges in both Table 1 and Table 2. The rea-
son is that the number of jumps in a bytecode stream is very
small in comparison with the total number of instructions.
In other words, the number of nodes |V] and the number of
directed edges |E| are almost the same. Therefore, the ac-
tual time and space complexity of our algorithm are O(|V]),
which is linear in the number of instructions.

For all samples in Table 1 and Table 2, our tool requires
less than 3KB of space for the main memory. However, it
is still preliminary and currently does not support complex
features such as exceptions and subroutines. We will work
on the features in the future. The experiments were carried
out on an Intel P4 2.4 GHz with 1GB of RAM.

'See Determining Memory Usage in Java by Dr. Heinz M. Kabutz,
available at http://www. javaspecialists.co.za/archive/
Issue029.html

5 Related work

Many different approaches for heap space analysis have
been proposed. Unnikrishnan et al. [16] propose a model
analysis for inferring maximum size of live heap space of
programs written in garbage-collected languages. Hofmann
and Jost [9] point out a method to count the memory used
for object allocation and deallocation in Java-like languages
by extending the ideas of the static prediction in their previ-
ous work [8]. Chin et al. [5] present a type system to calcu-
late memory usage of programs written in object-oriented
languages. Since these techniques are performed at source-
level, it is difficult to apply them to Java Card environment
where source code is not available. Truong and Bezem [15]
also give a type system for an abstract language. The type
system can find a sharp upper bound of the number of in-
stances but their type inference algorithm is polynomial.

Giambiagi and Schneider [7] analyze memory consump-
tion by an algorithm that finds all potential loops and (mu-
tually) recursive methods of Java Card applets. This algo-
rithm improves the one presented in their certified analyzer
[4] in terms of reducing memory footprint and dealing with
several special features such as exceptions, subroutines, and
virtual method invocations. As mentioned in their paper
[7], this algorithm works directly with bytecode streams of
programs without transforming them into an additional data
structure such as CFG. However, the space complexity of
the algorithm is higher than ours. Let N, Ny, N¢, and B
be the number of instructions, the number of unconditional
jumps, the number of conditional ones, and the number
of bits for representing a pc-number (offset), respectively.
As estimated by Giambiagi and Schneider, the complexity
needed to compute Loop of their algorithm is bounded by
N x ((Ny +2N¢ + 1) x B+ 1), which is, unlike ours, not
linear in the number of instructions. Also, they provide no
experiments to support their ideas.

Albert et al. [3] extend their previous work [2], which
focuses on computing cost analysis of Java programs, to
propose an approach for heap space analysis of Java byte-
code. In the paper [3], they base on heap space cost re-
lations generated at compile-time to infer heap bound of



an input Java bytecode program. Their experiments, which
were done on an Intel P4 Xeon 2GHz with 4GB of RAM,
show that it takes hundred milliseconds for analyzing input
programs whose sizes are a few kilobytes. The algorithm
is not linear in complexity and take long time to run for the
abstract-interpretation based size analysis. They take full
bytecode instruction set but did not show how to validate
their experimental results.

6 Conclusion and Acknowledgement

We have presented an approach to compute heap bounds
of Java Card applets in linear time and low space complex-
ity. We then have implemented a prototype tool that takes
a set of Java Card classes together with a method name and
prints out a heap bound function of method parameters that
the method allocates on heap memory. This tool has been
tested on various programs, and the obtained results show
that our approach can find the least upper bounds of heap
memory in many cases. The experiments also show that our
tool not only runs fast but also has a small memory foot-
print.

Memory overflows of Java Card applets may result from
either running out of heap space to allocate for new objects,
or stack overflows. Therefore, to ensure that an applet is
completely safe to run on cards, we plan to compute stack
memory bounds and combine them with the heap usage
analysis presented here to determine whether a Java Card
applet can cause memory overflow exceptions.

This work was supported by the College of Technol-
ogy, Vietnam National University, Hanoi, under the project
QC.08.16. We also thank Van-Hung Dang, Viet-Ha Nguyen
and anonymous reviewers for their comments on the earlier
version of the paper.
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