
Applying formal passive testing to study temporal properties of the Stream
Control Transmission Protocol ∗

César Andrés, Mercedes G. Merayo, Manuel Núñez
Departamento Sistemas Informáticos y Computación

Universidad Complutense de Madrid
E-28040 Madrid. Spain.

{c.andres,mgmerayo}@fdi.ucm.es,mn@sip.ucm.es

Abstract

In this paper we present a formal passive testing frame-
work and use it to analyze time aspects in the Stream Con-
trol Transmission Protocol (SCTP). This protocol presents
different phases where time aspects are critical. In order
to represent temporal requirements we use so-called timed
invariants since they allow us to easily verify that the traces
collected from the observation of the protocol fulfill the cor-
responding timed constraints. In addition to introduce our
theoretical framework, we report on the results obtained
from the application of our techniques over (possibly mu-
tated) traces extracted from runs of the SCTP.

1 Introduction

With the growing significance and complexity of soft-
ware systems, techniques that assist in the production of re-
liable software are becoming more important. Two of the
most promising approaches within software engineering to
increase the confidence on the developed software are for-
mal methods and testing. Traditionally, formal methods and
testing have been seen as rivals. Therefore, there was very
little interaction between the two communities. In recent
years, however, these approaches are seen as complemen-
tary [BU91, LY96, Tre96, Pet01, BT01, RMN08, HBH08,
HBB+09].

Testing is usually based on the ability of a tester
that stimulates the Implementation Under Test (IUT) and
checks the correction of the answers provided by it. How-
ever, in some situations this activity becomes difficult and
even impossible to perform. For example, this is the case if
the tester is not provided with a direct interface to the IUT.

∗Research supported by the Spanish MEC project WEST/FAST
(TIN2006-15578-C02-01) and by the UCM-BSCH programme to fund re-
search groups (GR58/08 - group number 910606).

Another conflictive situation appears when the IUT cannot
be shutdown or interrupted for a long period of time. In
these situations, there is a particular interest in using other
types of validation techniques such as passive testing. The
main difference between active and passive testing is that
in active testing testers can interact, by providing inputs,
with the IUT and observe the obtained result. In passive
testing, testers cannot interact directly with the IUT. The
usual approach of formal passive testing consists in observ-
ing the IUT and trying to find a fault by comparing the ob-
served events and the specification [LNS+97, Mil98, TC99,
WZY01, LCH+02, UX07, BDS+07]. It is worth to men-
tion that a similar objective, but using completely differ-
ent techniques, is pursued by research on runtime verifica-
tion [LS09].

A new methodology to perform passive testing was pre-
sented in [CGP03]. The main novelty is that a set of in-
variants is used to represent the most relevant expected
properties of the specification. Intuitively, an invariant ex-
presses the fact that each time the IUT performs a given
sequence of actions, called preface, then it must exhibit a
behavior reflected in the last part of the invariant. This
approach presented the drawback that the grammar to ex-
press invariants was very limited. For example, it did not
allow to represent wild-card characters. This first limita-
tion was overcome with a new proposal having a richer
class of invariants [BCNZ05]. But there was still a lim-
itation shared by all previous proposals for (formal) pas-
sive testing: They cannot deal with temporal information.
Even though research on active testing of timed systems
is already well established (see, for example, [MMM95,
HNTC99, SVD01, EDK02, HW05, MNR08a, MNR08b]),
our work [AMN08, AMN09] together with the PASTE tool
(see [AMM09] for a description of its main features) rep-
resents, as far as we know, the first complete framework
to perform passive testing of timed systems. As most of the
previously mentioned work on passive testing, our approach

2009 Seventh IEEE International Conference on Software Engineering and Formal Methods

978-0-7695-3870-9/09 $26.00 © 2009 IEEE

DOI 10.1109/SEFM.2009.21

73

2009 Seventh IEEE International Conference on Software Engineering and Formal Methods

978-0-7695-3870-9/09 $26.00 © 2009 IEEE

DOI 10.1109/SEFM.2009.21

73

is based on the finite state machine formalism, more pre-
cisely, our machines allow to represent the time that elapses
between applying an input and receiving an output.

In order to assess the suitability of our framework we
decided to use it in a non-trivial experiment. We chose
a real protocol, the Stream Control Transmission Protocol
(SCTP), and decided to perform experiments with it. The
SCTP is a network protocol with three different phases:
Handshake, information sending, and disconnection. This
protocol can be seen as a natural extension of TCP, but
there are some relevant new features that SCTP supports,
such as multi-homing and multi-streaming. Our first prob-
lem to model the protocol was that it was highly unnatural
to maintain a strict alternation between inputs and outputs
since, very often, we had to use empty inputs or outputs
to simulate the situation when two or more inputs (resp.
outputs) are consecutively generated. Thus, we consid-
ered the translation of our formal framework to the most
extended formalism to model timed systems: Timed Au-
tomata [AD94]. Let us remark that by no means we are
claiming that (timed) finite state machines should be dis-
carded. In particular, our group is a strong advocate of
(timed, probabilistic, stochastic) variants of finite state ma-
chines (e.g. [LNR06, MNR08b, MNR08a, HMN09]). In
fact, we think that this paper shows that research on (timed)
finite state machines can be easily adapted to deal with
(timed) automata.

In this paper we report on the application of the new
framework, that is, the adaption of [AMN08, AMN09] to
deal with timed automata, to analyze the SCTP. Due to
space limitations, we will not give the technicalities of the
new framework, that is, the algorithms to decide the correct-
ness of an invariant with respect to a specification and to
match an invariant and a log extracted from the IUT. These
algorithms are, more or less cumbersome, adaptions of the
ones appearing in [AMN08, AMN09].

The first step was to model the protocol as a collec-
tion of timed automata. We used the informal description
available at [Int07] and the RFC 2960 [SXM+00]. Once
we had each of the relevant entities of the SCTP modeled
as a timed automaton, we had to ensure, better say, con-
vince ourselves, that we had accurately modeled the pro-
tocol. As usual, there is no automatic way of proving that
a formal specification correctly reflects the (informal) re-
quirements of the system. This is a detail that it is very
often overlooked in case studies: The main problem might
be that either the specification or the formalization of infor-
mal requirements is wrong. Therefore, we decided to start
with a sanity-check, self-feedback process: Instead of using
passive testing on an implementation to detect errors, we
checked correct traces with respect to our specification. In
this case, if we find an error, then we know that we were a
bit careless since this error must be caused by a wrong spec-

ification. Following the procedure described in [CGP03],
we automatically derived all the invariants with length up
to five (including wild-card characters). We checked these
invariants against real traces of the SCTP protocol.1 We did
not find a mismatch between traces and invariants. Let us
remark again that this fact does not imply that our speci-
fication is a correct representation of the informal require-
ments: We are simply confident that we modeled the correct
system. This uncertainty is common to any research that
takes as basis a specification manually generated from in-
formal requirements. Other possibilities are to assume that
the specification is correct by definition or that requirements
are expressed in a certain formal language (e.g. as temporal
logic formulae) and that we model check the correctness of
the specification with respect to these requirements. In our
case, we reached a point where we had a correct specifica-
tion and we wanted to put into practice our timed passive
testing approach.

The next problem that we confronted was that we could
not find errors in the recorded traces since they were ex-
tracted from correct implementations of the protocol. Thus,
in order to evaluate our proposal, we considered a rele-
vant set of invariants and matched them against mutated
traces. Mutation testing techniques (e.g. [How82, OL94,
OPTZ99]) can be used to choose those tests that are more
likely to find errors in a faulty IUT. Intuitively, the idea
consists in taking the original, correct program/specification
and introduce some errors to generate a set of mutants. If
a test finds most of the added errors, then the test is very
likely to find errors in real implementations. In our case,
we could have introduced errors in the original code of the
SCTP since we can access the kernel of our Devian Oper-
ating System. However, this was too complicated and we
preferred an alternative approach with the same final result:
We extracted correct traces and (automatically) introduced
mutations in the traces, instead of introducing them in the
protocol. This paper reports on these experiments.

The structure of the rest of the paper is as follows. In
Section 2 we present the basis behind the timed automata
formalism. In Section 3 we give the formal representation,
using timed automata, of the SCTP protocol. Next, in Sec-
tion 4 we introduce our notion of timed invariants. The re-
sults of our experiments are presented in Section 5. Finally,
in Section 6 we present our conclusions and future lines of
research.

1We obtained traces from three different sources. We used
the official download web site samples of the Wireshark snif-
fer at http://wiki.wireshark.org/SampleCaptures and
at http://www.techtraces.com/sample_captures, where
representative sets of logs of the SCTP protocol can be found. In order
to increase the number of traces, we installed the SCTP in one of our sys-
tems and recorded traces of varying length.

7474

2 A review of timed automata

In this paper we use timed automata with a finite set of
clocks over a dense time domain to represent specifications
of systems. Since we will not use most of the technical
machinery behind timed automata, the reader is referred
to [AD94] for further details. The clock domain is defined
in IR+. The choice of a next state in the automaton does not
only depend on the action, but also on the timed constraints
associated to each transition. Only when the time condition
is satisfied by the current values of the clocks, the transition
can be triggered.

Definition 1 A clock is a variable 𝑐 in IR+. A set of clocks
will be denoted by 𝒞. A timed constraint 𝜑 on 𝒞 is defined
by the following EBNF:

𝜑 ::= 𝜑 ∧ 𝜑 ∣ 𝑐 ≤ 𝑡 ∣ 𝑐 < 𝑡 ∣ ¬𝜑

where 𝑐 ∈ 𝒞 and 𝑡 ∈ IR+. The set of all timed constraints
over a set 𝒞 of clocks is denoted by 𝜙(𝒞).

A clock valuation 𝜈 for a set 𝒞 of clocks assigns a real
value to each of them. For 𝑡 ∈ IR+, the expression 𝜈 + 𝑡 de-
notes the clock valuation which maps every clock 𝑐 ∈ 𝒞 to
the value 𝜈(𝑐)+ 𝑡. For a set of clocks 𝒴 ⊆ 𝒞, the expression
𝜈[𝒴 := 0] denotes the clock valuation for 𝒞 which assigns 0
to each 𝑐 ∈ 𝒴 and agrees with 𝜈 over the rest of the clocks.
The set of all clock valuations is denoted by Ω(𝒞).

Let 𝜈 be a clock valuation and 𝜑 be a timed constraint.
We write 𝜑 ⊢ 𝜈 iff 𝜈 holds 𝜑; 𝜑 ⊬ 𝜈 denotes that 𝜈 does not
hold 𝜑.

A timed automaton is a tuple 𝒜 = (𝒮, 𝑠0,Σ, 𝒞,𝒵, ℰ)
where 𝒮 is a finite set of locations, 𝑠0 ∈ 𝒮 is the initial
location, Σ is the alphabet of actions, 𝒞 is a finite set of
clocks, 𝒵 : 𝒮 → 𝜙(𝒞) associates a time condition to each
location, and ℰ ⊆ 𝒮 × Σ𝜏 × 𝜙(𝒞) × ℘(𝒞) × 𝒮 is the set
of transitions where Σ𝜏 = Σ ∪ {𝜏}, being 𝜏 /∈ Σ a special
symbol to represent internal, non-observable activity. We
will consider that Σ is partitioned into two (disjoint) sets of
inputs, preceded by ?, and outputs, preceded by !.

We overload the ⊢ symbol. Let 𝑠 ∈ 𝒮 and 𝜈 ∈ Ω(𝒞).
We denote by 𝑠 ⊢ 𝜈 the fact that 𝜈 holds 𝒵(𝑠) (resp.
𝑠 ⊬ 𝜈 represents that 𝜈 does not hold 𝒵(𝑠)). Let 𝑒 =
(𝑠, 𝛼, 𝜑,𝒴, 𝑠′) ∈ ℰ . We denote by 𝑒 ⊢ 𝜈 the fact that 𝜈
holds 𝜑 (resp. 𝑒 ⊬ 𝜈 represents that 𝜈 does not hold 𝜑). ⊓⊔

Intuitively, a transition (𝑠, 𝛼, 𝜑,𝒴, 𝑠′) indicates that if
the system is at state 𝑠 and 𝜑 holds for the current valu-
ation of the clocks, then the system moves to the state 𝑠′

performing the action 𝛼 and resetting the clocks in 𝒴 . For
each state 𝑠, 𝒵(𝑠) represents a timed constraint for 𝑠, that
is, the system can remain in 𝑠 while 𝒵(𝑠) holds for the cur-
rent valuation of the clocks. We will assume the following
usual condition on timed automata: For all 𝑠 ∈ 𝒮 and all

configuration 𝜈 ∈ Ω(𝒞) if 𝑠 ⊬ 𝜈 then there exists at least a
transition 𝑒 = (𝑠, 𝛼, 𝜑,𝒴, 𝑠′) ∈ ℰ with 𝑒 ⊢ 𝜈. This prop-
erty allows to leave a state once the restrictions on clocks
do not hold in that state.

As usual, the semantics of a timed automaton is given
by translating it into a labeled transition system with an un-
countably number of states. Let us remark that, in general,
we will not construct the associated labeled transition sys-
tem; we will use it to reason about the traces of the corre-
sponding timed automaton.

Definition 2 A labeled transition system, or LTS, is a tuple
ℳ = (𝒬, 𝑞0,Σ,→), where 𝒬 is a set of states, 𝑞0 ∈ 𝒬 is
the initial state, Σ is the alphabet of actions, and the relation
→⊆ 𝒬 × Σ𝜏 ∪ IR+ × 𝒬 represents the set of transitions,
being Σ𝜏 = Σ ∪ {𝜏}. We will use the notation 𝑞 𝛼−−→ 𝑞′ to
express (𝑞, 𝛼, 𝑞′) ∈→.

The semantics of a timed automaton 𝒜 =
(𝒮, 𝑠0,Σ, 𝒞,𝒵, ℰ) is defined by its associated LTS
ℳ𝒜 = (𝒬, 𝑞0,Σ,→), where 𝒬 = {(𝑠, 𝜈) ∣ 𝑠 ∈ 𝒮 ∧ 𝜈 ∈
Ω(𝒞)∧𝑠 ⊢ 𝜈}, 𝑞0 = (𝑠0, 𝜈0), being 𝜈0(𝑐) = 0 for all 𝑐 ∈ 𝒞,
and we apply two rules in order to generate the elements
of→. For all (𝑠, 𝜈) ∈ 𝒬 we have:

∙ If for all 0 ≤ 𝑡′ ≤ 𝑡 we have 𝑠 ⊢ (𝜈 + 𝑡′), then
((𝑠, 𝜈), 𝑡, (𝑠, 𝜈 + 𝑡)) ∈→.

∙ If 𝑒 ⊢ 𝜈, for 𝑒 = (𝑠, 𝛼, 𝜑,𝒴, 𝑠′) ∈ ℰ , then
((𝑠, 𝜈), 𝛼, (𝑠′, 𝜈[𝒴 := 0])) ∈→.

In addition, we consider the following conditions: (a) If we

have 𝑞 𝑡−−→ 𝑞′ and 𝑞′ 𝑡′−−→ 𝑞′′, then we also have 𝑞
𝑡+𝑡′−−−−→ 𝑞′′

and (b) if 𝑞 0−−→ 𝑞′ then 𝑞 = 𝑞′, that is, a passage of 0 time
units does not change the state. ⊓⊔

Next, we introduce the notion of visible trace, or simply
trace. As usual, a trace is a sequence of visible actions and
time values.

Definition 3 Letℳ = (𝒬, 𝑞0,Σ, →) be a LTS and 𝑞, 𝑞′ ∈
𝒬. If there exist 𝑞1, . . . , 𝑞𝑛−1 ∈ 𝒬 such that 𝑞 𝜏−−→ 𝑞1

𝜏−−→
𝑞2, . . . , 𝑞𝑛−1

𝜏−−→ 𝑞′, then we write 𝑞
𝜖

==⇒ 𝑞′. Let us note
that if 𝑛 = 0 then 𝑞′ = 𝑞. Let 𝛼 ∈ Σ ∪ IR+. If 𝑞1

𝛼−−→ 𝑞2
and 𝑞

𝜖
==⇒ 𝑞1

𝛼−−→ 𝑞2
𝜖

==⇒ 𝑞′, then we write 𝑞
𝛼

==⇒ 𝑞′.
We say that (𝑞, ⟨𝛼1, . . . , 𝛼𝑛⟩, 𝑞′), where 𝑞, 𝑞′ ∈ 𝒬 and

for all 1 ≤ 𝑖 ≤ 𝑛 : 𝛼𝑖 ∈ Σ ∪ IR+, is a visible trace ofℳ
if there exist 𝑞1, . . . , 𝑞𝑛−1 ∈ 𝒬 such that 𝑞

𝛼1
==⇒ 𝑞1

𝛼2
==⇒

. . . 𝑞𝑛−1
𝛼𝑛
==⇒ 𝑞′. In this case we write 𝑞

𝜎
==⇒ 𝑞′; we write

𝑞
𝜎

==⇒ if we are not interested in the reached state.
The set of normalized visible traces of ℳ, denoted by

Norm_Traces(ℳ), is given by
⎧⎨
⎩𝜎 ∈ (Σ ∪ IR+)

∗

∣∣∣∣∣∣
𝜎 = ⟨𝛼1, 𝛽1, . . . , 𝛽𝑛−1, 𝛼𝑛⟩

∧ 𝑞0
𝜎

==⇒ ∧ ∀ 1 ≤ 𝑖 ≤ 𝑛 : 𝛼𝑖 ∈ Σ
∧ ∀ 1 ≤ 𝑖 ≤ 𝑛− 1 : 𝛽𝑖 ∈ IR+

⎫⎬
⎭

7575

End point A End point B

INIT

INIT-ACK

COOKIE-ECHO

COOKIE-ACK

SCTPSCTP End point A End point B

SYN-Request

SYN-ACK

ACK

TCPTCP

Figure 1. SCTP and TCP handshake diagram.

Finally, a log from a timed automaton𝒜 is a sequence of
actions and delays that belongs to Norm_Traces(ℳ𝒜),
beingℳ𝒜 the LTS associated to 𝒜. ⊓⊔

We will usually consider normalized visible traces
since this is what we observe from the execution of
a system. We cannot observe either internal activ-
ity (that is, the performance of internal actions) or dif-
ferent passages of time associated to different transi-
tions. For example, if a system performs the sequence
3, 2, !𝑎1, 1, 1, 𝜏, 2, ?𝑎2, 2, 2, 4, 𝜏, ?𝑎3, 3, 4, 𝜏, 1 then we will
observe the normalized visible trace ⟨!𝑎1, 4, ?𝑎2, 8, ?𝑎3⟩,
that is, we remove the initial and final lapses of time, and
consecutive time values, possibly interspersed with 𝜏 ac-
tions, are added (e.g. 1, 1, 𝜏, 2 becomes 4).

3 Specification of the SCTP

Next we present the SCTP protocol. As we have already
explained, we will use timed automata for modeling it. In
this case study we consider two of the three stages of this
protocol: The handshake and the disconnection.

Before we present the handshake automaton, we briefly
describe the security at startup of the SCTP by comparing it
with the one of TCP. Both protocols, SCTP and TCP, carry
out an exchange of messages to establish an end-to-end re-
lationship. However, the way these messages are sent is
different: TCP uses a three-way handshake whereas SCTP
uses a four-way one. In this case, a state cookie signed by
the first host is involved in the SCTP four-way handshake.
This helps to protect from denial of service attacks. Figure 1
illustrates the handshake procedures in TCP and SCTP.

A timed automaton model of the SCTP handshake is
depicted in Figure 2. Next, we describe a typical run of
this part of the protocol. In order to simplify the presenta-
tion we assume that we have two hosts. The generalization
to 𝑛 hosts essentially consists in labeling each message !𝑚
(resp. ?𝑚) as !𝑚𝑥𝑦 (resp. ?𝑚𝑥𝑦) to denote that host 𝑥 sends

𝑞𝑎start

𝑞𝑏
init<60

𝑞𝑐
init<60

𝑞𝑑
cookie<70

𝑞𝑒

𝑞𝑓
conn < 60

𝑞𝑔
conn < 60

𝑞ℎ
conn < 70

𝑒𝑎𝑏

𝑒𝑎𝑓

𝑒𝑏1, 𝑒𝑏3
𝑒𝑏2

𝑒𝑏𝑐

𝑒𝑐1
𝑒𝑐2
𝑒𝑐3

𝑒𝑐𝑑

𝑒𝑑1, 𝑒𝑑2, 𝑒𝑑3
𝑒𝑑𝑒

𝑒𝑒1, 𝑒𝑒2

𝑒𝑓1, 𝑒𝑓2, 𝑒𝑓3

𝑒𝑓𝑔

𝑒𝑔𝑓

𝑒𝑔ℎ

𝑒𝑔1
𝑒𝑔2
𝑒𝑔3

𝑒ℎ𝑒
𝑒ℎ1
𝑒ℎ2
𝑒ℎ3

𝑒𝑎𝑏 = (𝑞𝑎 , !INIT , true , {init} , 𝑞𝑏)
𝑒𝑎𝑓 = (𝑞𝑎 , ?INIT , true , {conn} , 𝑞𝑓)
𝑒𝑏1 = (𝑞𝑏 , 𝜏 , init ≥ 60 , {} , 𝑞𝑎)
𝑒𝑏2 = (𝑞𝑏 , !ABORT , true , {} , 𝑞𝑎)
𝑒𝑏3 = (𝑞𝑏 , ?ABORT , true , {} , 𝑞𝑎)
𝑒𝑏𝑐 = (𝑞𝑏 , ?INIT-ACK , init < 60 , {} , 𝑞𝑐)
𝑒𝑐1 = (𝑞𝑐 , 𝜏 , init ≥ 60 , {} , 𝑞𝑎)
𝑒𝑐2 = (𝑞𝑐 , !ABORT , true , {} , 𝑞𝑎)
𝑒𝑐3 = (𝑞𝑐 , ?ABORT , true , {} , 𝑞𝑎)
𝑒𝑐𝑑 = (𝑞𝑐 , !COOKIE-ECHO , init < 60 , {cookie} , 𝑞𝑑)
𝑒𝑑1 = (𝑞𝑑 , 𝜏 , cookie ≥ 70 , {} , 𝑞𝑎)
𝑒𝑑2 = (𝑞𝑑 , !ABORT , true , {} , 𝑞𝑎)
𝑒𝑑3 = (𝑞𝑑 , ?ABORT , true , {} , 𝑞𝑎)
𝑒𝑑𝑒 = (𝑞𝑑 , ?COOKIE-ACK , cookie < 70 , {} , 𝑞𝑒)
𝑒𝑒1 = (𝑞𝑒 , ?ABORT , true , {} , 𝑞𝑎)
𝑒𝑒2 = (𝑞𝑒 , !ABORT , true , {} , 𝑞𝑎)
𝑒𝑓𝑔 = (𝑞𝑓 , !INIT-ACK , conn < 60 , {} , 𝑞𝑔)
𝑒𝑓1 = (𝑞𝑓 , 𝜏 , conn ≥ 60 , {} , 𝑞𝑎)
𝑒𝑓2 = (𝑞𝑓 , !ABORT , true , {} , 𝑞𝑎)
𝑒𝑓3 = (𝑞𝑓 , ?ABORT , true , {} , 𝑞𝑎)
𝑒𝑔ℎ = (𝑞𝑔 , ?COOKIE-ECHO , conn < 60 , {conn} , 𝑞ℎ)
𝑒𝑔𝑓 = (𝑞𝑔 , ?INIT , true , {conn} , 𝑞𝑓)
𝑒𝑔1 = (𝑞𝑔 , 𝜏 , conn ≥ 60 , {} , 𝑞𝑎)
𝑒𝑔2 = (𝑞𝑔 , !ABORT , true , {} , 𝑞𝑎)
𝑒𝑔3 = (𝑞𝑔 , ?ABORT , true , {} , 𝑞𝑎)
𝑒ℎ𝑒 = (𝑞ℎ , !COOKIE-ACK , conn < 70 , {} , 𝑞𝑒)
𝑒ℎ1 = (𝑞ℎ , 𝜏 , conn ≥ 70 , {} , 𝑞𝑎)
𝑒ℎ2 = (𝑞ℎ , !ABORT , true , {} , 𝑞𝑎)
𝑒ℎ3 = (𝑞ℎ , ?ABORT , true , {} , 𝑞𝑎)

Figure 2. Transitions of the handshake phase
automaton of the SCTP protocol.

the message 𝑚 to 𝑦 (resp. host 𝑥 receives the message 𝑚
from 𝑦). Obviously, both hosts are specified with the same
timed automata. As usual, inputs of one host will be the
outputs of the other one, and viceversa.

7676

𝑞𝑒
𝑞𝑖

dsic < 120

𝑞𝑗
dsic < 120

𝑞𝑘
dsic < 120

𝑞𝑙
dsic < 120

𝑞𝑚
dsic < 120

𝑞𝑛
dsic < 120

𝑞𝑜
dsic < 120

𝑞𝑝
dsic < 120

𝑞𝑞
dsic < 120

𝑞𝑎

𝑒𝑒𝑘
𝑒𝑒𝑖

𝑒𝑖𝑗
𝑒𝑖𝑙

𝑒𝑗𝑚

𝑒𝑘𝑚

𝑒𝑙𝑞
𝑒𝑚𝑛

𝑒𝑚𝑝

𝑒𝑛𝑜

𝑒𝑜𝑎

𝑒𝑝𝑎
𝑒𝑞𝑎

𝑒𝑒𝑖 = (𝑞𝑒 , !SHUTDOWN , true , {dsic} , 𝑞𝑖)
𝑒𝑒𝑘 = (𝑞𝑒 , ?SHUTDOWN , true , {dsic} , 𝑞𝑘)
𝑒𝑖𝑗 = (𝑞𝑖 , ?SHUTDOWN , true , {} , 𝑞𝑗)
𝑒𝑖𝑙 = (𝑞𝑖 , ?SHUTDOWN-ACK , true , {} , 𝑞𝑙)
𝑒𝑗𝑚 = (𝑞𝑗 , !SHUTDOWN-ACK , true , {} , 𝑞𝑚)
𝑒𝑙𝑞 = (𝑞𝑙 , !SHUTDOWN-COMPLETE , true , {} , 𝑞𝑞)
𝑒𝑘𝑚 = (𝑞𝑘 , !SHUTDOWN-ACK , true , {} , 𝑞𝑚)
𝑒𝑚𝑛 = (𝑞𝑚 , ?SHUTDOWN-ACK , true , {} , 𝑞𝑛)
𝑒𝑚𝑝 = (𝑞𝑚 , ?SHUTDOWN-COMPLETE , true , {} , 𝑞𝑝)
𝑒𝑛𝑜 = (𝑞𝑛 , !SHUTDOWN-COMPLETE , true , {} , 𝑞𝑜)
𝑒𝑜𝑎 = (𝑞𝑜 , 𝜏 , true , {} , 𝑞𝑎)
𝑒𝑝𝑎 = (𝑞𝑝 , 𝜏 , true , {} , 𝑞𝑎)
𝑒𝑞𝑎 = (𝑞𝑞 , 𝜏 , true , {} , 𝑞𝑎)
𝑒𝑖𝑎 = (𝑞𝑖 , 𝜏 , dsic ≥ 120 , {} , 𝑞𝑎)
𝑒𝑗𝑎 = (𝑞𝑗 , 𝜏 , dsic ≥ 120 , {} , 𝑞𝑎)
𝑒𝑘𝑎 = (𝑞𝑘 , 𝜏 , dsic ≥ 120 , {} , 𝑞𝑎)
𝑒𝑙𝑎 = (𝑞𝑙 , 𝜏 , dsic ≥ 120 , {} , 𝑞𝑎)
𝑒𝑚𝑎 = (𝑞𝑚 , 𝜏 , dsic ≥ 120 , {} , 𝑞𝑎)
𝑒𝑛𝑎 = (𝑞𝑛 , 𝜏 , dsic ≥ 120 , {} , 𝑞𝑎)

Figure 3. Transitions of the disconnection
phase automaton of the SCTP protocol.

Let us consider that host A starts at state 𝑞𝑎 by sending an
INIT message (!INIT) to host B; a clock named init is
activated (see transition 𝑒𝑎𝑏), its value is initialized to zero,
and host A moves to state 𝑞𝑏. While 𝜈(init) is less than
sixty time units, host A can remain in this state. If the val-
uation 𝜈(init) becomes greater than or equal to sixty, then
host A returns to 𝑞𝑎 by performing the transition 𝑒𝑏1, that is,
an internal transition.

Let us consider now host B, which starts also at state
𝑞𝑎 and receives the INIT message (?INIT). Then, this
host moves to 𝑞𝑓 by performing the transition 𝑒𝑎𝑓 , initial-

izes to zero the conn clock, and while 𝜈(conn) is less
than sixty time units, it can send an INIT-ACK message
(!INIT-ACK) and move to 𝑞𝑔 by performing the transi-
tion 𝑒𝑓𝑔. Let us note that host A has an activated clock
init. If 𝜈(init) is less than sixty time units and it re-
ceives an INIT-ACK message (?INIT-ACK), it moves
to 𝑞𝑐 (see transition 𝑒𝑏𝑐). Afterwards, host A can send
COOKIE-ECHOmessage (!COOKIE-ECHO) if 𝜈(init) is
less than sixty, and it would move to 𝑞𝑑 (see transition 𝑒𝑐𝑑).
If host A moves to 𝑞𝑑, then it will activate the cookie
clock; if 𝜈(init) is greater than or equal to sixty in state 𝑞𝑐
then host A returns to 𝑞𝑎 (see transition 𝑒𝑐1).

Host B remains in 𝑞𝑔 and receives a COOKIE-ECHO
message (?COOKIE-ECHO) (see transition 𝑒𝑔ℎ). If
𝜈(conn) in host B is less than seventy time units,
then host B can send a COOKIE-ACK message
(!COOKIE-ACK) and move to 𝑞𝑒, which is the estab-
lished communication state. On the contrary, if the conn
clock has a value greater than or equal to seventy time units,
then host B moves to 𝑞𝑎. Host A receives this message and
if the cookie clock is less than seventy time units, then it
moves to 𝑞𝑒.

Let us note that hosts A and B can abort the handshake
phase by sending the ABORT message (!ABORT) from any
state. These transitions (see 𝑒𝑏2, 𝑒𝑐2, 𝑒𝑑2, 𝑒𝑓2, etc) do not
have any associated time constraint, and both hosts are able
to, in any state, perform a transition ABORT to receive an
abort message (?ABORT) (see 𝑒𝑏3, 𝑒𝑐3, 𝑒𝑑3, 𝑒𝑓3, etc).

A timed automaton model for the SCTP disconnection
stage is shown in Figure 3. Let us remark that the com-
plete set of transitions are not drawn in Figure 3, but are
explicitly defined in the accompanying set of transitions
(see the last six transitions). As with the previous stage
of the protocol, let us describe a typical run of the dis-
connection phase. We consider that the two hosts are ini-
tially placed in the 𝑞𝑒 state. Let us note that 𝑞𝑒 corre-
sponds to the same state in Figures 2 and 3. Next, we con-
sider that host A wants to finish the connection with host
B. Host A sends the SHUTDOWN message (!SHUTDOWN)
and starts its dsic clock, changing its state to 𝑞𝑖 (see tran-
sition 𝑒𝑒𝑖). Host A can stay in 𝑞𝑖 while 𝜈(dsic) is less
than one hundred and twenty time units. If the valua-
tion of dsic is greater than or equal to this amount, then
host A performs the 𝑒𝑖𝑎 transition. Host B acknowledges
the reception of the SHUTDOWN message (?SHUTDOWN)
and changes to 𝑞𝑘, starting the counter of the dsic clock.
Next, host B generates the !SHUTDOWN-ACK output and
changes its state to 𝑞𝑚 (see transition 𝑒𝑘𝑚). Host A re-
ceives ?SHUTDOWN-ACK and changes its state to 𝑞𝑙. Then,
host A generates a !SHUTDOWN-COMPLETE (see transi-
tion 𝑒𝑙𝑞). Host B receives a ?SHUTDOWN-COMPLETEmes-
sage and changes to state 𝑞𝑝, finishing the transmission be-
tween hosts A and B.

7777

4 Definition of timed invariants

In this section we show how to define timed invariants in
our framework. First, we briefly discuss some approaches
on how to obtain the set of timed invariants. The first ap-
proach assumes that this set is supplied by the expert/tester.
Being provided with a specification, we determine the cor-
rectness of the set of timed invariants with respect to the
specification. Essentially, an invariant is correct if the prop-
erty that it describes does not contradict the specification.
Obviously, incorrect invariants are discarded. Another ap-
proach consists in automatically extract invariants from the
specification. In this case, we can adapt to our framework
the algorithms given in [CGP03]. The problem with this
approach is that the number of possible invariants is usually
huge, and we are not provided with a criterium to choose
one invariant instead of another. A third alternative is to
assume that invariants are correct by definition. In this situ-
ation, a specification is not needed and the invariants can be
considered as the requirements of the system to be imple-
mented. Next we define the formal syntax to express timed
invariants.

Definition 4 We say that 𝑝 = [𝑝1, 𝑝2] is a time interval if
𝑝1 ∈ IR+, 𝑝2 ∈ IR+ ∪ {∞}, and 𝑝1 ≤ 𝑝2. We assume
that for all 𝑡 ∈ IR+ we have 𝑡 < ∞ and 𝑡 +∞ = ∞. We
consider that ℐℛ denotes the set of time intervals. Let us
note that in the case of [𝑡,∞] we are abusing the notation
since this interval represents, in fact, the interval [𝑡,∞).

Let 𝒜 = (𝒮, 𝑠0,Σ, 𝒞,𝒵, ℰ) be a timed automaton. We
say that the sequence 𝜓 is a timed invariant for 𝒜 if the
following two conditions hold:

1. 𝜓 is defined according to the following EBNF:

𝜓 ::= 𝛼/𝑝, 𝜓 ∣ ★, 𝜓′ ∣ 𝛼′/𝑝 #→ 𝐴 ⊳ 𝑞
𝜓′ ::= 𝛼′/𝑝, 𝜓 ∣ 𝛼′/𝑝 #→ 𝐴 ⊳ 𝑞

In this expression we consider 𝑝, 𝑞 ∈ ℐℛ, 𝛼′ ∈ Σ,
𝛼 ∈ Σ ∪ {?}, and 𝐴 ⊆ Σ.

2. 𝜓 is correct with respect to 𝒜.

⊓⊔

Due to the space limitations we do not include the al-
gorithm to decide correctness. This algorithm is an adap-
tion of the one presented in [AMN08] for timed finite state
machines. Essentially, 𝜓 is correct for 𝒜 if its associated
LTSℳ𝒜 cannot produce a trace that contradicts the mean-
ing of 𝜓.

Intuitively, the previous EBNF expresses that an invari-
ant is a sequence of symbols where each component, but
the last one, is either a pair 𝛼/𝑝, with 𝛼 being an action or
the wild-card character ? and 𝑝 being a time interval, or an

expression ★. There are two restrictions to this rule. First,
an invariant cannot contain two consecutive ★’s since this
is the same as having just one. The second restriction is
that an invariant cannot have a ★ followed by ?, that is, the
action of the next component must be a real action belong-
ing to Σ. In fact, given an invariant . . . , ★, 𝛼′/𝑝2, . . . we
have that ★ represents any sequence of actions without oc-
currences of 𝛼′. Finally, the last component of an invariant,
𝛼′/𝑝 #→ 𝐴 ⊳ 𝑞, represents an action associated with a time
interval, followed by a set of actions and another time in-
terval. This last interval is used to control the sum of time
values associated to all the actions performed during match-
ing the invariant. For a more precise, and formal, expla-
nation of timed invariants the interested reader is referred
to [AMN08].

Example 1 Next we present two timed invariants for the
SCTP specification. A simple timed invariant is

𝜓1 = ?INIT/[0, 50] #→
{!ABORT,!INIT-ACK} ⊳ [0, 50]

This invariant represents that if we observe ?INIT and we
have a delay less than 50 time units before we observe the
next action, then this next action must be either !ABORT or
!INIT-ACK. Let us show an informal way to check the
correctness of 𝜓1 with respect to SCTP. If host A starts on
𝑞𝑎 and performs 𝑒𝑎𝑓 , then the action !INIT appears in the
trace. If host B starts on 𝑞𝑎 and receives ?INIT, then it
performs 𝑒𝑎𝑏 and the set of all possible actions that host A
can perform in a time belonging to [0, 50] are associated to
the transitions 𝑒𝑓2 and 𝑒𝑓𝑔. This means that either !ABORT
or !INIT-ACK are performed.

Next, we present another invariant using the wild-card
character ★. The invariant

𝜓2 = ?INIT/[0, 70], ★,!ABORT/[0, 60] #→
{!INIT,?ABORT} ⊳ [0,∞]

represents that when a host performs the action ?INIT (the
handshake stage have just started), we allow the trace to
perform actions (matching the ★ symbol) until the action
!ABORT appears in the trace. If this occurrence happens
before 70 time units and the next action is observed before
60 time units pass, then this last observed action must be
either !INIT or ?ABORT. The performance of all these
actions can take any time (since it belongs to the interval
[0,∞]). ⊓⊔

5 Application of our methodology to the
SCTP

In addition to our theoretical framework, and in order to
automatize the passive testing of the SCTP, we extended

7878

𝜓1 = ?INIT/[0, 50] #→ {!ABORT,!INIT-ACK} ⊳ [0, 50]

𝜓2 = !ABORT/[0, 60] #→ {!INIT,?ABORT} ⊳ [0,∞]

𝜓3 = !INIT/[0, 60],?INIT/[0, 60],!INIT-ACK/[0, 60],?INIT-ACK/[0, 60],!COOKIE-ECHO/[0, 60],
?COOKIE-ECHO/[0, 70],!COOKIE-ACK/[0, 70] #→ {!ABORT,?COOKIE-ACK} ⊳ [0, 130]

𝜓4 = !SHUTDOWN/[0, 120],?SHUTDOWN/[0, 120],!SHUTDOWN-ACK/[0, 120],?SHUTDOWN-ACK/[0, 120],
!SHUTDOWN-COMPLETE/[0, 120] #→ {!INIT,?SHUTDOWN-COMPLETE} ⊳ [0, 120]

𝜓5 = ?SHUTDOWN-ACK/[0, 120] #→ {!INIT,!SHUTDOWN-COMPLETE} ⊳ [0, 120]

𝜓6 = !SHUTDOWN/[121,∞] #→ {!INIT} ⊳ [121,∞]

Figure 4. Invariants used to analyze the disconnection and handshake phases of the SCTP.

our PASTE tool to deal with the new framework (some
experiments with the old tool are reported in [AMN09]).
The original tool was implemented in JAVA and it was
an isolated project. Later, it was decided to include our
academic tool as a module of a more important mon-
itoring tool, developed by the SME Peopleware, called
OSMIUS www.osmius.net. This is a monitoring tool
released under the GPLv2 license and available in the open
source repository Sourceforge. Osmius is designed to be ex-
tensible so that it can be used to monitor any device or soft-
ware connected to a network. Therefore, the new version of
PASTE represents the complete migration of the code from
JAVA to C++. This new version includes the timed frame-
work described in this paper, labeled transition systems and
timed invariants, as well as two algorithms to check the cor-
rectness of a timed invariant with respect to a specification
and of traces with respect to timed invariants.

In this paper we focus on a functionality of PASTE that
provides a monitor to check timed invariants, that is, a ser-
vice that reads a finite log and yields a certain verdict. Nor-
mally, monitors are classified either as online monitoring,
where the monitor should consider executions in an incre-
mental fashion and in an efficient manner, or as offline mon-
itoring, where the monitor works on a finite set of recorded
logs. PASTE is implemented by using an offline monitoring
paradigm.

Next we present the general scheme of all the experi-
ments performed with PASTE. They start with the insertion
in the system, by using an XML format file, of the specifica-
tion (in our case, the timed automata specifying the SCTP).
Next, we have to provide to PASTE the set of proposed
timed invariants. Invariants are automatically checked with
respect to the specification to determine their correctness.
After that, PASTE is ready to check the logs with respect to
the set of correct invariants. Real logs are files containing
the sequential interactions of systems under test perform-
ing the SCTP. We use the Wireshark sniffer for monitor-

ing tasks. As we have already mentioned, we use three
different sources to obtain traces. Wireshark allows us to
export the traces in an XML format file. Each XML file in-
cludes several XML-nodes which have the following fields:
N, Source, Destination, Protocol, and Info. N
represents the order into the XML file of this XML-node,
Source and Destination represent the Source IP and
the destination IP of the hosts involved in this communi-
cation, respectively, Protocol includes the name of this
XML-node protocol, and Info belongs to the Σ vocabu-
lary of the SCTP specification.

When we provide a set of logs to PASTE, the tool for-
mats them into its internal format. Essentially, irrelevant
information is removed in order to generate a normalized
visible trace (see Definition 3). In particular, PASTE fixes
an IP address as the observational host and then it formats
all XML-nodes in the log as outputs if the Source value
is the fixed IP (PASTE adds the ! character at the begin-
ning of Info). XML-nodes formats as inputs those mes-
sages whose Destination field value coincides with our
observational host IP (PASTE adds the ? character at the
beginning of the Info string).

In Figure 4 we enumerate the most relevant invariants
that we used to analyze the disconnection and handshake
phases of the SCTP. 𝜓1 and 𝜓2 were commented in the
previous section. 𝜓3 and 𝜓4 were informally introduced
in Section 3 and represent the most usual runs of the hand-
shake and disconnection phases, respectively. 𝜓5 represents
the idea that if a host finalizes the disconnection phase, by
sending ?SHUTDOWN-ACK, then its associated node must
perform either !INIT or ?SHUTDOWN-COMPLETE. Fi-
nally, 𝜓6 represents that if the timed constraint associated
with the dsic clock triggers, then the next observed action
will be !INIT.

Next we checked the correctness of logs with respect to
these invariants. Since we only have logs extracted from
correctly implemented systems, we implemented in PASTE

7979

Figure 5. Errors detected by using the invariants 𝜓1, . . . , 𝜓6.

a module to create mutated traces. The underlying idea of
mutating traces is to simulate a common error (e.g. gen-
erated from network delays, white noise, implementation
faults, etc). PASTE implements two mutation operators that
can be applied to logs. These operators are parameterized
so that we derive different mutated traces from the original
log.

∙ Sensitivity. It is used to set the percentage of variation
to be applied to a temporal value of the trace.

∙ Noise threshold. It simulates the white noise appearing
in networks. This noise produces errors in the bites of
the trace. For example, when we apply this operator to
a log, it may transform an action !𝛼 into ?𝛼, since the
bites associated with the IP source and IP destination
of this trace could be swaped. Other things that can
happen is that an action 𝛼 is transformed into a differ-
ent action 𝛼′. Finally, it may also happen that the noise
produces that the action is completely removed.

So, we consider that when there exists a set of correct
timed invariants and a set of logs extracted from a correct
implementation, we can simulate common implementation
errors by applying sensitivity and noise threshold over these
traces. This approach allows us to classify invariants with
respect to their error detection power. Therefore, if we have
to perform passive testing against an IUT, then we will ex-
ercise first those invariants having a better error detection
factor.

In Figure 5 we present our results after experiment-
ing with the set of proposed invariants and the SCTP. In
the 𝑋−axe we include the considered invariants. In the
𝑌−axe, the values #1, . . . ,#5 represent the number of
mutations introduced in the log. Finally, the 𝑍−axe con-

tains values to represent the percentage of errors found in
traces.

According to our experiments, the best invariants of this
set are 𝜓1 and 𝜓5. Our experiments showed that having
an empty preface, as these two invariants have, is good to
increase the error detection power of invariants. The rea-
son is that this type of invariants can detect an error already
after observing the occurrence of a message; other invari-
ants need to observe the whole preface before been able
to detect errors. However, an empty preface is not a suf-
ficient condition to have a good invariant. Let us comment
𝜓2 and 𝜓6. Both of them have empty prefaces. However,
in the case of 𝜓2 the occurrence frequency of the !ABORT
message is very low. In the case of 𝜓6, that contains usual
actions, we have that the frequency of observing a discon-
nection immediately followed by a request for connection
is also very low. Finally, even though 𝜓3 and 𝜓4 represent
the most common runs of the handshake and the disconnec-
tion phases, respectively, the percentage of errors detected
by these invariants is relatively low because before check-
ing the last component of the invariant, where we can claim
that an error has been detected, we must observe the whole
preface.

6 Conclusions and future work

In this paper we have presented a case study to show
the application of formal passive testing to a network pro-
tocol. We reviewed timed automata and adapted the notion
of timed invariants, presented in previous work in the con-
text of timed finite state machines, to deal with timed au-
tomata. We provided a complete specification of two stages
of the SCTP protocol: The handshake and disconnection

8080

phases. We presented a methodology to classify timed in-
variants with respect to their error detection power. In our
experiments we focused on properties related to temporal
behavior. After the performed experiments and the gained
experience, we consider that our technique can be used in
other complex network protocols.

We have two lines of future work. The first one, with a
theoretical component, consists in advancing in the study of
the error detection power of timed invariants. In particular,
we plan to study the relation between invariants and usual
test cases that can be generated from them. Moreover, we
plan to formally study the relation between the length of
invariants and their error detection power. A second line of
work, more practical, consists in analyzing other software
systems and real protocols. We are specially interested in
working with p2p protocols, and tools implementing them,
such as MANOLITO, SoulSeek and BitTorrent.

References

[AD94] R. Alur and D. Dill. A theory of timed
automata. Theoretical Computer Science,
126:183–235, 1994.

[AMM09] C. Andrés, M.G. Merayo, and C. Molinero.
Advantages of mutation in passive testing: An
empirical study. In 4th Workshop on Mutation
Analysis, Mutation’09, pages 230–239. IEEE
Computer Society Press, 2009.

[AMN08] C. Andrés, M.G. Merayo, and M. Núñez. Pas-
sive testing of timed systems. In 6th Int. Sym-
posium on Automated Technology for Verifica-
tion and Analysis, ATVA’08, LNCS 5311, pages
418–427. Springer, 2008.

[AMN09] C. Andrés, M.G. Merayo, and M. Núñez. For-
mal correctness of a passive testing approach
for timed systems. In 5th Workshop on Ad-
vances in Model Based Testing, A-MOST’09,
pages 67–76. IEEE Computer Society Press,
2009.

[BCNZ05] E. Bayse, A. Cavalli, M. Núñez, and F. Zaïdi.
A passive testing approach based on invariants:
Application to the WAP. Computer Networks,
48(2):247–266, 2005.

[BDS+07] A. Benharref, R. Dssouli, M.A. Serhani, A. En-
Nouaary, and R. Glitho. New approach for
EFSM-based passive testing of web services.
In Joint 19th IFIP TC6/WG6.1 Int. Conf. on
Testing of Software and Communicating Sys-
tems, TestCom’07, and 7th Int. Workshop
on Formal Approaches to Software Testing,

FATES’07, LNCS 4581, pages 13–27. Springer,
2007.

[BT01] E. Brinksma and J. Tretmans. Testing transi-
tion systems: An annotated bibliography. In
4th Summer School on Modeling and Verifica-
tion of Parallel Processes, MOVEP’00, LNCS
2067, pages 187–195. Springer, 2001.

[BU91] B.S. Bosik and M.Ü. Uyar. Finite state ma-
chine based formal methods in protocol con-
formance testing. Computer Networks & ISDN
Systems, 22:7–33, 1991.

[CGP03] A. Cavalli, C. Gervy, and S. Prokopenko. New
approaches for passive testing using an ex-
tended finite state machine specification. Infor-
mation and Software Technology, 45:837–852,
2003.

[EDK02] A. En-Nouaary, R. Dssouli, and F. Khendek.
Timed Wp-method: Testing real time systems.
IEEE Transactions on Software Engineering,
28(11):1024–1039, 2002.

[HBB+09] R.M. Hierons, K. Bogdanov, J.P. Bowen,
R. Cleaveland, J. Derrick, J. Dick, M. Ghe-
orghe, M. Harman, K. Kapoor, P. Krause,
G. Luettgen, A.J.H Simons, S. Vilkomir, M.R.
Woodward, and H. Zedan. Using formal meth-
ods to support testing. ACM Computing Sur-
veys, 41(2), 2009.

[HBH08] R.M. Hierons, J.P. Bowen, and M. Harman,
editors. Formal Methods and Testing, LNCS
4949. Springer, 2008.

[HMN09] R.M. Hierons, M.G. Merayo, and M. Núñez.
Testing from a stochastic timed system with a
fault model. Journal of Logic and Algebraic
Programming, 78(2):98–115, 2009.

[HNTC99] T. Higashino, A. Nakata, K. Taniguchi, and
A. Cavalli. Generating test cases for a timed
I/O automaton model. In 12th Int. Workshop on
Testing of Communicating Systems, IWTCS’99,
pages 197–214. Kluwer Academic Publishers,
1999.

[How82] W.E. Howden. Weak mutation testing and
completeness of test sets. IEEE Transactions
on Software Engineering, 8:371–379, 1982.

[HW05] G.-D. Huang and F. Wang. Automatic test case
generation with region-related coverage anno-
tations for real-time systems. In 3rd Int. Sym-
posium on Automated Technology for Verifica-

8181

tion and Analysis, ATVA’05, LNCS 3707, pages
144–158. Springer, 2005.

[Int07] International Engineering Consortium.
Stream control transmission protocol:
Definition and overview. Available at
http://www.iec.org/online/tutorials/sctp/, 2007.

[LCH+02] D. Lee, D. Chen, R. Hao, R. Miller, J. Wu, and
X. Yin. A formal approach for passive testing
of protocol data portions. In 10th IEEE Int.
Conf. on Network Protocols, ICNP’02, pages
122–131. IEEE Computer Society Press, 2002.

[LNR06] N. López, M. Núñez, and I. Rodríguez. Specifi-
cation, testing and implementation relations for
symbolic-probabilistic systems. Theoretical
Computer Science, 353(1–3):228–248, 2006.

[LNS+97] D. Lee, A.N. Netravali, K.K. Sabnani,
B. Sugla, and A. John. Passive testing and
applications to network management. In
5th IEEE Int. Conf. on Network Protocols,
ICNP’97, pages 113–122. IEEE Computer So-
ciety Press, 1997.

[LS09] M. Leucker and C. Schallhart. A brief ac-
count of runtime verification. Journal of Logic
and Algebraic Programming, 78(5):293–303,
2009.

[LY96] D. Lee and M. Yannakakis. Principles and
methods of testing finite state machines: A sur-
vey. Proceedings of the IEEE, 84(8):1090–
1123, 1996.

[Mil98] R.E. Miller. Passive testing of networks using a
CFSM specification. In IEEE Int. Performance
Computing and Communications Conference,
pages 111–116. IEEE Computer Society Press,
1998.

[MMM95] D. Mandrioli, S. Morasca, and A. Morzenti.
Generating test cases for real time systems
from logic specifications. ACM Transactions
on Computer Systems, 13(4):356–398, 1995.

[MNR08a] M.G. Merayo, M. Núñez, and I. Rodríguez.
Extending EFSMs to specify and test timed
systems with action durations and timeouts.
IEEE Transactions on Computers, 57(6):835–
848, 2008.

[MNR08b] M.G. Merayo, M. Núñez, and I. Rodríguez.
Formal testing from timed finite state ma-
chines. Computer Networks, 52(2):432–460,
2008.

[OL94] A.J. Offutt and S.D. Lee. An empirical evalu-
ation of weak mutation. IEEE Transactions on
Software Engineering, 20(5):337–344, 1994.

[OPTZ99] A.J. Offutt, J. Pan, K. Tewary, and T. Zhang.
An experimental evaluation of data flow and
mutation testing. Software: Practice and Ex-
perience, 26(2):165 – 176, 1999.

[Pet01] A. Petrenko. Fault model-driven test derivation
from finite state models: Annotated bibliogra-
phy. In 4th Summer School on Modeling and
Verification of Parallel Processes, MOVEP’00,
LNCS 2067, pages 196–205. Springer, 2001.

[RMN08] I. Rodríguez, M.G. Merayo, and M. Núñez.
ℋ𝒪𝒯 ℒ: Hypotheses and observations testing
logic. Journal of Logic and Algebraic Pro-
gramming, 74(2):57–93, 2008.

[SVD01] J. Springintveld, F. Vaandrager, and P.R.
D’Argenio. Testing timed automata. Theo-
retical Computer Science, 254(1-2):225–257,
2001. Previously appeared as Technical Re-
port CTIT-97-17, University of Twente, 1997.

[SXM+00] R. Stewart, Q. Xie, K. Morneault,
C. Sharp, H. Schwarzbauer, T. Tay-
lor, I. Rytina, M. Kalla, L. Zhang, and
V. Paxson. Stream control transmis-
sion protocol: RFC 2960. Available at
http://www.ietf.org/rfc/rfc2960.txt, 2000.

[TC99] M. Tabourier and A. Cavalli. Passive testing
and application to the GSM-MAP protocol. In-
formation and Software Technology, 41:813–
821, 1999.

[Tre96] J. Tretmans. Test generation with inputs, out-
puts and repetitive quiescence. Software – Con-
cepts and Tools, 17(3):103–120, 1996.

[UX07] H. Ural and Z. Xu. An EFSM-based pas-
sive fault detection approach. In Joint 19th
IFIP TC6/WG6.1 Int. Conf. on Testing of
Software and Communicating Systems, Test-
Com’07, and 7th Int. Workshop on Formal Ap-
proaches to Software Testing, FATES’07, LNCS
4581, pages 335–350. Springer, 2007.

[WZY01] J. Wu, Y. Zhao, and X. Yin. From active to pas-
sive: Progress in testing of internet routing pro-
tocols. In 21st IFIP WG 6.1 Int. Conf. on For-
mal Techniques for Networked and Distributed
Systems, FORTE’01, pages 101–116. Kluwer
Academic Publishers, 2001.

8282

