
Assertion-based Slicing and Slice Graphs

José Bernardo Barros, Daniela da Cruz, Pedro Rangel Henriques, Jorge Sousa Pinto
Departamento de Informática / CCTC

Universidade do Minho
Braga, Portugal

{jbb,danieladacruz,prh,jsp}@di.uminho.pt

Abstract—This paper revisits the idea of slicing programs
based on their axiomatic semantics, rather than using criteria
based on control/data dependencies. We show how the forward
propagation of preconditions and the backward propagation of
postconditions can be combined in a new slicing algorithm that
is more precise than the existing specification-based algorithms.
The algorithm is based on (i) a precise test for removable
statements, and (ii) the construction of a slice graph, a program
control flow graph extended with semantic labels. It improves
on previous approaches in two aspects: it does not fail to
identify removable commands; and it produces the smallest
possible slice that can be obtained (in a sense that will be made
precise). The paper also reviews in detail, through examples,
the ideas behind the use of preconditions and postconditions
for slicing programs.

Keywords-Program slicing; program analysis; verification
conditions; control flow graphs.

I. INTRODUCTION

Program slicing [1] is a well-established activity in soft-
ware engineering. For instance it plays an important role in
program comprehension, since it allows software engineers
to focus on the relevant portions of code (with respect to
a given criterion). The basic idea is to isolate a subset of
program statements that
• either directly or indirectly contribute to the values of

a set of variables at a given program location, or
• are influenced by the values of a given set of variables.

Other statements are considered spurious with respect to the
given criterion and can be removed, enabling engineers to
concentrate on the analysis of just the relevant ones. The first
approach corresponds to backward forms of slicing, whereas
the second corresponds to forward slicing.

Work in this area has focused on the development of
progressively more effective, useful, and powerful slicing
techniques, and has led to the use of these techniques
in many application areas including program debugging,
software maintenance, software reuse, and so on. See for
instance [2] for a fairly recent survey of the area.

Program verification is an apparently unrelated activity
whose goal is to establish that a program performs according
to some intended specification. Typically, what is meant by
this is that the input/output behaviour of the implementation
matches that of the specification (this is usually called
the functional behaviour of the program), and moreover

the program does not ‘go wrong’, for instance no errors
occur during evaluation of expressions (the so-called safety
behaviour). Modern program verification systems are based
on algorithms that examine a program and generate a set of
verification conditions that are sent to an external theorem
prover for checking. If all the conditions generated from a
program can be proved, then the program is guaranteed to
be correct with respect to the specification.

In recent years program verification has been closely
linked with the so-called Design by Contract (DbC) ap-
proach to software development [3], which facilitates mod-
ular verification and certified code reuse. The contract for a
software component can be regarded as a form of enriched
software documentation that fully specifies the behavior
of that component. In terms of verification terminology, a
contract for a component is simply a pair consisting of
a precondition and a postcondition. It certifies the results
that can be expected after execution of the component, but
it also constrains the input values of the component. The
development and broad adoption of annotation languages for
the major programming languages reinforces the importance
of using DbC principles in program development. These
include for instance the Java Modeling Language (JML) [4];
Spec# [5], a formal language for C# API contracts; and the
ANSI/ISO C Specification Language (ACSL) [6].

There are several points of contact between slicing and
verification: first, traditional syntactic slicing, applied a pri-
ori, facilitates the verification of large programs. Secondly,
and this is what concerns us in this paper, it makes sense to
slice programs based on semantic, rather than syntactic, cri-
teria, and the contracts used in DbC and program verification
are excellent candidates for such criteria. A third point (see
Section VII) is that there is evidence that this kind of slicing
can also be of help in the verification of large programs.

We use here the expression “assertion-based slicing” to
refer to slicing methods based on the axiomatic semantics of
programs, taking as criteria assertions (preconditions and/or
postconditions) annotated in the programs. This includes
precondition-based slicing, postcondition-based slicing, and
specification-based slicing. The latter expression has been
used in previous work when both a precondition and a
postcondition (i.e. a specification) are given as criteria.



Assertion-based slicing is more powerful and flexible than
syntactic slicing, since the criteria can be as expressive as
any set of first-order formulas on the initial and final states
of the program. One of the first forms of slicing based on
program semantics was conditioned slicing [7], a form of
forward slicing. This was shown to subsume both static and
dynamic notions of syntax-based slicing, since the initial
state of execution is constrained by a first-order formula that
can be used to constrain the set of different admissible initial
states to exactly one (corresponding to dynamic slicing), or
simply to identify a relevant subset of the state to be used
as slicing criterion (as in static slicing). The same applies to
backward slicing: using a postcondition as slicing criterion
instead of a set of variables is clearly more expressive.
Naturally, this expressiveness comes at a cost, since semantic
forms of slicing are harder to compute.

A typical example of a situation in which one could wish
to calculate the slice of a program based on a specification
is the reuse of annotated code. Suppose one is interested
in reusing a module whose advertised contract consists of
precondition P and postcondition Q, in situations in which
a stronger precondition P ′ is known to hold, or else the
desired postcondition Q′ is weaker than the specified Q.
Then from a software engineering perspective it would be
desirable to eliminate, at source-level, the code that may be
spurious with respect to the specification (P ′, Q′).

Although the basic ideas have been published for over 10
years now, assertion-based slicing is still not very popular –
in particular we are not aware of working tools that imple-
ment the ideas. The widespread usage of code annotations
as explained above is however an additional argument for
promoting it. This work is part of an effort to construct a
complete toolset for assertion-based slicing.

The paper reviews (and clarifies aspects of) previous
work in this area, and introduces new ideas which allow
us to develop an algorithm for specification-based slicing
that improves on previous algorithms in two aspects: the
identification of sequences of statements that can be safely
removed from a program (without modifying its semantics),
and the selection of the biggest set of such sequences. Note
that removable sequences may overlap, so this is not a trivial
problem. We claim that our algorithm produces minimal
slices (in a sense that will be made precise)

Structure of the Paper: Section II introduces the simple
language considered in the paper, and the definitions of
weakest precondition and strongest postcondition. In Sec-
tion III we review the previous work in this area including
a discussion of aspects of the extant algorithms regarding
their precision and minimality of the calculated slices, and
in Section IV we introduce formally the definitions used in
the rest of the paper. The next sections introduce a new test
for identifying removable chunks of code (Section V) and a
graph-based algorithm for actually computing the best pos-
sible slices of a program with respect to a given specification

Exp[int] 3 e ::= . . . | −1 | 0 | 1 | . . . | x |
−e | e + e | e− e | e ∗ e | e div e | e mod e

Exp[bool] 3 b ::= true | false | e = e | e < e | e ≤ e | e > e |
e ≥ e | e 6= e | b ∧ b | b ∨ b | ¬ b

Assert 3 A ::= true | false | e = e | e < e | e ≤ e | e > e |
e ≥ e | e 6= e | A ∧ A | A ∨ A | ¬A |
A→ A | ∀ x. A | ∃ x. A

Comm 3 C ::= skip | x := e | if b then S else S |
while b do {A}S

Prog 3 S ::= C | C ; S
Spec 3 S ::= {A}S {A}

Figure 1. Language syntax

wp(skip, Q) = Q
wp(x := e, Q) = Qx

e

wp(C1; C2, Q) = wp(C1, wp(C2, Q))
wp(if b then Ct else Cf , Q) = (b→ wp(Ct, Q))

∧ (¬ b→ wp(Cf , Q))
wp(while b do {I}C, Q) = I

sp(skip, P ) = P
sp(x := e, P ) = ∃ v. P x

v ∧ x == ex
v

sp(C1; C2, P ) = sp(C2, sp(C1, P ))
sp(if b then Ct else Cf , P ) = sp(Ct, b ∧ P )

∨ sp(Cf , ¬ b ∧ P )
sp(while b do {I}C, Q) = I ∧ ¬ b

Figure 2. Definition of weakest precondition and strongest postcondition.
Qx

e denotes the result of substituting e for x in Q; I is a loop invariant.

(Section VI). We conclude the paper in Section VII.

II. THE LANGUAGE, WP AND SP

To illustrate our ideas we use the syntax in Figure 1
for a core imperative language. Programs are non-empty
sequences of commands and specifications are programs
annotated with preconditions and postconditions.

We remark that the choice of language is not important,
and the ideas discussed scale up to realistic languages; the
only crucial requirements are the existence of an axiomatic
semantics (definitions of weakest precondition and strongest
postcondition), and an external proof tool that is capable
of reasoning about the data structures that are present in
the language. To illustrate our ideas we use a very simple
language with integer variables only; the syntax of assertions
(used as preconditions, postconditions, and loop invariants)
is obtained as an extension of boolean expressions with first-
order quantification.

The notions of weakest precondition and strongest post-
condition are certainly among the most important and popu-
lar in programming semantics. For such a simple language,
there is a nice symmetry between them, and both can be used
to calculate proof obligations (usually called verification
conditions) when verifying the correctness of programs. The
former is however much more widely used in verification
tools, because of the absence of quantifiers. The definition
of both notions for our language is given in Figure 2.



Notation: Let S = C1 ; . . . ; Cn, 1 ≤ k ≤ n, and
1 ≤ i ≤ j ≤ n. We will use the following notation for
the weakest precondition of a suffix of S; the strongest
postcondition of a prefix of S; and the sequence obtained
by removing a subsequence of S.
• wpk(S,Q) .= wp(Ck ; Ck+1 ; . . . ; Cn, Q)
• wpn+1(S,Q) .= Q
• sp0(S, P ) .= P
• spk(S, P ) .= sp(C1 ; . . . ; Ck−1 ; Ck, P )
• remove(i, j, S) .={

skip if i = 1 and j = n,
C1 ; . . . ; Ci−1 ; Cj+1 ; . . . ; Cn otherwise.

III. RELATED WORK

In this section we discuss the existent notions of slic-
ing based on the preconditions and postconditions of a
program, as well as algorithms that calculate them. The
notions of postcondition-based slice and precondition-based
slice (and the closed related notion of conditioned slice)
were introduced independently. It is important to distinguish
between these definitions (which admit many slices for
the same program and specification) and the corresponding
slices calculated by specific algorithms (in particular those
introduced in the same papers). But first we refer to semantic
forms of slicing not based on assertions.

A. Semantic Slicing

One of the most successful lines of work in the area of
slicing has been conducted by Ward and colleagues. This
line has focused on semantic forms of slicing, in the sense
that slices are obtained by combining syntactic operations
with classic semantics-preserving program transformations
such as loop unrolling and constant propagation. The results
are both practical (a commercially-available workbench has
been developed) and theoretical. In particular, the recent
paper [8] provides a clarifying analysis of slicing properties
and definitions proposed by different authors (both syntactic
and semantic). Our work in this paper clearly stands on the
semantic side, but a fundamental difference with respect to
other work on semantic slicing is that we focus on code
annotated with assertions. Our slicing criteria are exclusively
provided by such assertions. In the rest of this section we
review work on assertion-based slicing.

B. Postcondition-based Slicing

The idea of slicing programs based on their specifications
was introduced by Comuzzi et al. [9] with the notion of
predicate slice (p-slice), also known as postcondition-based
slice. To understand the idea of p-slices, consider a program
S and a given postcondition Q. It may well be the case that
some of the commands in the program do not contribute to
the truth of Q in the final state of the program, i.e. their
presence is not required in order for the postcondition to
hold. In this case, the commands may be removed.

�
1 x := x + 100 ;
2 x := x +50;
3 x := x−100� �

Program 1.

�
1 x := x−150;
2 x := x +100;
3 x := x+100� �

Program 2.

Consider for instance Program 1. The postcondition Q =
x ≥ 0 yields the weakest precondition x ≥ −50. If the
program is executed in a state in which this precondition
holds (i.e. it is a correct program with respect to the given
postcondition), and the commands in lines 2 and 3 are
removed from it, the postcondition Q will still hold. To
convince ourselves of this, it suffices to notice that after
execution of the instruction in line 1 in a state in which the
weakest precondition is true, the condition x ≥ 50 will hold,
which is in fact stronger than Q.

To be more systematic, for a program of the form
C1 ; . . . ; Cn with postcondition Q, if |= wpi(S,Q) → Q,
the sequence Ci ; . . . ; Cn can be removed. For the previous
example we have wp3(S,Q) = x ≥ 100, wp2(S,Q) =
x ≥ 50, and wp1(S,Q) = x ≥ −50. Now observe that
|= wp2(S,Q) → Q, which means that the instructions in
lines 2 to 3 can in fact be removed: the postcondition Q
will still hold for the sliced program.

P-slices are of course not unique. For instance since |=
wp3(S,Q) → Q as well, we could have chosen to remove
only the instruction in line 3. Informally we can say that
given a set of slices of a program with respect to the same
postcondition, the best slice is the one in which the highest
number of instructions are removed.

It is important to understand that not only suffixes of
a sequence of commands may be removed. Consider the
postcondition Q = x ≥ 0 for Program 2. Calculating the
weakest preconditions we have wp3(S,Q) = x ≥ −100,
wp2(S,Q) = x ≥ −200, and wp1(S,Q) = x ≥ −50 (the
weakest precondition of the program with respect to x ≥ 0).
Note that although 6|= wp1(S,Q) → Q, the commands in
lines 1 and 2 can be removed because |= wp1(S,Q) →
wp3(S,Q). Thus the postcondition will be preserved.

A Simple Linear Time Algorithm: It is easy to produce
p-slices. It suffices to perform a traversal of the syntax tree,
generating for each node a first-order proof obligation of
the form |= Q′ → Q, which is then used to decide if the
current node can be sliced off. If the proof obligation can be
discharged by some automatic proof tool, then the entire tree
whose root is the current node is sliced off; otherwise the
algorithm conservatively proceeds to the node’s descendants
and tries to slice at a deeper level. This algorithm runs in



linear time on the length of the program, as long as a time-
out limit is considered for the prover to discard obligations.

Problems of the Linear Time Algorithm: It is easy to un-
derstand from programs 1 and 2 that the same program may
contain removable prefixes, suffixes, and even removable
sequences that are neither prefixes nor suffixes. Moreover,
these removable sequences may well overlap. Thus it is clear
that no linear traversal of the syntax tree can possibly detect
all removable sequences: the traversal dictates the slice that
is calculated without any concern for minimality.

Better algorithms for computing p-slices of a command
sequence S = C1 ; . . . ; Cn can be synthesized by iterat-
ing the following basic step that removes the subsequence
Ci ; . . . ; Cj , with 1 ≤ i ≤ j ≤ n:
• If |= wpi(S,Q) → wpj+1(S,Q) then replace S by
C1 ; . . . ; Ci−1 ; Cj+1 ; . . . ; Cn.

Original Quadratic Time Algorithm: The algorithm
proposed by Comuzzi runs in quadratic time on the length
of the sequence. The algorithm first tries to slice the entire
program by removing its longest removable suffix, and
then repeats this task, considering successively shorter
prefixes of the resulting program, and removing their
longest removable suffixes. For instance in a program with
10 statements it would consider in this order the sequences
(1..10), (2..10), . . . , (10..10), (1..9), (2..9), . . . , (9..9), (1..8),
and so on. For each sequence a proof obligation (implication
involving two weakest preconditions) is generated; if it can
be proved then the sequence is removed.

The Quadratic Algorithm Fails to Remove the Longest
Sequence: Take a sequence of 1000 statements such that
|= wp1(S,Q) → wp800(S,Q) and |= wp700(S,Q) →
wp900(S,Q). Two subsequences may be sliced off, consist-
ing respectively of commands 1 to 799 and 700 to 899. The
algorithm will consider the shorter sequence first, and in
doing so will eliminate the possibility of the longer sequence
being removed, since line 800 will be removed (and it may
happen that wp1(S,Q) is not stronger than any remaining
wpk(S,Q)). The resulting slice is thus not minimal.

An Improved Quadratic Algorithm: An alternative to
Comuzzi’s algorithm can be described as follows. We start
with the entire program and consider in turn successively
shorter sequences to be sliced. Thus in the 10 state-
ment program one would consider sequences in the order
(1..10), (1..9), (2..10), (1..8), (2..9), (3..10), (1..7), . . . This
would certainly remove the longest removable sequence.

The Improved Quadratic Algorithm Is Not Optimal:
Consider the case in which |= wp1(S,Q) → wp400(S,Q),
|= wp600(S,Q) → wp1000(S,Q), and |= wp200(S,Q) →
wp800(S,Q). The longest sequence will be sliced off (600
program lines), but this will preclude the possibility of slic-
ing two shorter sequences that would together consist of 800
program lines. So overall removing the larger contiguous
sequence may not produce the smallest slice. In fact it should
now be clear that considering all sequences in any given

�
1 x := x +100;
2 x := x−200;
3 x := x+200� �

Program 3.

order cannot result in a minimal slice. The same is true for
postcondition-based and specification-based slices, discussed
below. In Section VI we will show that this problem can in
general be formulated as a graph problem.

C. Precondition-based Slicing

Canfora et al. [7] later introduced conditioned slicing,
which uses preconditions as a means to specify a set of initial
states for computing a forward slice, in which unreachable
code can be eliminated. The intention of the authors was to
obtain a form of forward slicing that subsumes both static
(all possible initial states considered) and dynamic slicing
(for a single initial state, i.e. a single run of the program).

Chung and colleagues [10] later introduced precondition-
based slicing as the dual notion of postcondition-based
slicing. Precondition-based and conditioned slicing are very
close notions, except that the latter is formalized in terms
of symbolic execution, whereas the former is formalized in
terms of strongest postconditions.

As an example of a precondition-based slice, consider
now Program 3, and the precondition P = x ≥ 0. The effect
of the first two instructions is to weaken the precondition, so
in fact they can be sliced off. The remaining instructions in
the program will still be executed with x ≥ 0, whereas with
the original program the instruction in line 3 was reached in
a state characterized by the weaker x ≥ −100. So whatever
postcondition was true after execution of the initial program,
it will still be true after execution of the sliced program.

To be more systematic, let the program S = C1 ; . . . ; Cn

be executed in a state in which the precondition P holds.
Then for the above fragment we have sp1(S, P ) = ∃v.v ≥
0 ∧ x = v + 100, sp2(S, P ) = ∃v.v ≥ 0 ∧ x = v − 100,
and sp3(S, P ) = ∃v.v ≥ 0 ∧ x = v + 100. We see that |=
P → sp2(S, P ), thus the first two commands can be sliced
off. Similarly to postcondition-based slicing, we are not
limited to removing prefixes (even though only prefixes are
considered by the algorithm proposed in [10]). In the same
example program, since in fact |= sp1(S, P ) → sp3(S, P ),
we could alternatively slice off lines 2 and 3 of the program,
which shows that removable sequences may overlap.

D. Specification-based Slicing

A specification-based slice can be calculated when both a
precondition P and a postcondition Q are given for program
S, i.e. S is supposed to be executed in initial states satisfying
P , and if execution stops the final state is known to satisfy Q.
Programs resulting from S by removing a set of statements,



�
1 i f ( y > 0) t h e n x := 100 ;
2 x := x +50;
3 x := x−100
4 e l s e x := x−150;
5 x := x−100;
6 x := x+100� �

Program 4.

�
1 i f ( y > 0) t h e n x := 100
2 e l s e s k i p� �

Program 5.

and for which this is still true, are said to be specification-
based slices of S with respect to (P,Q).

The method proposed in [10] to compute such slices is
based on a theorem proved by the authors, which states
that the composition, in any order, of postcondition-based
slicing (with respect to postcondition Q) and precondition-
based slicing (with respect to precondition P ) produces a
specification-based slice with respect to (P,Q).

As an example consider Program 4 and the specification
(y > 10, x ≥ 0). Precondition-based slicing will slice both
sequences inside the conditional by strengthening the pre-
condition y > 10 with the condition y > 0 and its negation
respectively. In the second case this yields false, which
will result in the else sequence being completely sliced off
(since false implies anything). Postcondition-based slicing
with x ≥ 0 will then produce the sliced Program 5 ([10]
advocates replacing the whole conditional command by the
first branch, but it is debatable whether this transformation
can still be called slicing).

But again it is very easy to show that the resulting slices
are not minimal, as can be seen by looking at Program 6
with specification (true, x ≥ 100). We have:

P = sp0(S, P ) = true
sp1(S, P ) = ∃v.x = v ∗ v
sp2(S, P ) = ∃v.x = v ∗ v + 100
sp3(S, P ) = ∃v.x = v ∗ v + 150

and

wp1(S, Q) = true
wp2(S, Q) = x ≥ −50
wp3(S, Q) = x ≥ 50
wp4(S, Q) = x ≥ 100 = Q

It is obvious that the postcondition is satisfied after execu-
tion of the instruction in line 2, which means that line 3 can
be removed and the sliced program will still be correct with
respect to (true, x ≥ 100). However, precondition-based
and postcondition-based slicing both fail in removing the
spurious instruction, since no forward implications are valid
among the spi(S, P ) or the wpi(S,Q). Composing both
slicing algorithms will of course not solve this fundamental

�
1 x := x∗x ;
2 x := x +100;
3 x := x+50� �

Program 6.

skip � C1 ; . . . ; Cn

C1 ; . . . ; Ci−1 ; Cj+1 ; . . . ; Cn � C1 ; . . . ; Ci ; . . . ; Cj ; . . . ; Cn

(1 < i ≤ j ≤ n or 1 ≤ i ≤ j < n)

C
′
i � Ci

(i ≤ i ≤ n)

C1 ; . . . C
′
i ; . . . ; Cn � C1 ; . . . ; Ci ; . . . ; Cn

S
′
1 � S1 S

′
2 � S2

if b then S
′
1 else S

′
2 � if b then S1 else S2

S
′ � S

while b do {I}S
′ � while b do {I}S

Figure 3. Definition of relation “is a portion of” on programs and
commands

flaw: trying to identify removable statements using only
preconditions or only postconditions may fail.

In Section V we show that the precise identification of
removable statements requires the use of both preconditions
and postconditions.

IV. ASSERTION-BASED SLICES

We now formalize the notions of slicing reviewed in the
previous section. A program S′ is a specification-based slice
of S if it is a portion of S (a syntactic notion, also known
as a reduction of S) and moreover S can be refined to S′

with respect to a given specification (a semantic notion). The
notions of precondition-based and postcondition-based slice
can be defined as special cases of this notion.

Definition 1 (Portion-of relation). The · � · relation is the
partial order generated by the set of axioms and rules given
in Figure 3.

Definition 2 (Assertion-based slices). Let S be a correct
program with respect to the specification consisting of pre-
condition P and postcondition Q. The program S′ is said
to be
• a specification-based slice of S with respect to (P,Q),

written S′ /(P,Q) S, if S′ � S and S′ is also correct
with respect to (P,Q);

• a precondition-based slice of S with respect to P if
S′ /(P,sp(S,P )) S;

• a postcondition-based slice of S with respect to post-
condition Q if S′ /(wp(S,Q),Q) S.



Incidentally, we remark that the names precondition- and
postcondition-based slice are not entirely adequate for de-
scribing the notions known under these names. They would
more accurately be described as condition-based forward
and backward slice, respectively, which not only establishes
a correspondence with the two classic approaches to syntac-
tic slicing, but also highlights the fact that conditions may
be propagated even when preconditions or postconditions
are not present. An example is a program that starts with
an assignment x := c with c a constant. Even without
an informative precondition, forward slicing will use the
information x = c, calculated as the strongest postcondition
of the command, and then propagated forward.

In this paper we propose a solution to the problems raised
in the previous section, in the form of an optimal slicing
algorithm. The algorithm builds on two basic ideas, that will
be explained in the next two sections. In abstract terms,
any slicing algorithm based on the axiomatic semantics of
programs must be able to

1) Identify subprograms that can be removed from the
program being sliced, without modifying its semantics.
More concretely, given a program S = C1 ; . . . ; Cn

with specification (P,Q), some test is used to allow
the algorithm to decide if remove(i, j, S) /(P,Q) S
holds. We have shown that the algorithm of [10]
fails to identify some subprograms; In Section V we
will show that using preconditions and postconditions
simultaneously allows for a precise identification of
removable subprograms.

2) Select, among the subprograms identified as remov-
able, the combination that produces the smallest sliced
program. In Section VI it will be shown that this may
be reduced to a graph problem that can be solved by
applying standard algorithms.

The algorithm can be applied to calculate precondition-,
postcondition-, and specification-based slices. We concen-
trate on the latter case, since the first two are particular
cases as shown before.

Note that the resulting algorithm is optimal in a relative
sense only. The test for removable subprograms involves
first-order formulas whose validity must be established exter-
nally by some proof tool. Undecidability of first-order logic
destroys any hope of being able to identify every removable
subprogram automatically, since some valid formulas may
not be proved.

V. REMOVABLE SUBPROGRAMS

We start by considering programs without iteration and
postpone the discussion of loops to the end of the section.
For such programs the following lemma is straightforward
to prove:

Lemma 1. For every precondition P , postcondition Q, and
program S,

1) |= P → wp(S, sp(S, P ))
2) |= sp(S, wp(S, Q))→ Q
3) |= P → wp(S, Q) iff |= sp(S, P )→ Q

Each of the implications mentioned in the third item in fact
corresponds to the verification condition for the program S:
it suffices to check the validity of this condition to ensure
that S is correct with respect to the specification (P,Q).

In this section we consider the following problem: given a
specification and a program S correct with respect to it, how
can it be decided if some subsequence of S can be removed,
resulting in a program that is still correct with respect to the
specification, i.e. it is a specification-based slice of S? Note
that we are not asking if the sequence should be sliced (since
this could prevent the minimal slice from being obtained);
we leave that question to the next section.

The following lemma establishes the implications that are
valid among the calculated preconditions and postconditions
calculated for a subsequence of a given correct program.

Lemma 2. Let (P,Q) be a specification; S = C1 ; . . . ; Cn

a program such that |= P → wp(S,Q), and i, j, k integers
such that 1 ≤ i ≤ j ≤ n and 0 ≤ k ≤ n. Then

1) |= spk(S, P )→ wpk+1(S,Q)
2) |= spi−1(S, P )→ wp(Ci ; . . . ; Cj ,wpj+1(S,Q))

Proof: 1 can be proved by induction from the correct-
ness of S. 2 is a consequence of 1 and the observation that

wpi(S,Q) = wp(Ci ; . . . ; Cj ,wpj+1(S,Q)) and
sp(Ci ; . . . ; Cj , spi−1(S, P )) = spj(S, P )

Observe that spi−1(S, P ) and wpj+1(S,Q) can be seen
respectively as the strongest precondition and the weakest
postcondition calculated for the sequence Ci ; . . . ; Cj w.r.t.
the specification (P,Q). Their significance is that, according
to the following proposition, they can be used to decide
exactly when the sequence Ci ; . . . ; Cj can be sliced off.

Proposition 1. In the conditions of the previous lemma,

|= spi−1(S, P )→ wpj+1(S,Q) iff remove(i, j, S) /(P,Q) S

Proof: remove(i, j, S) is clearly a portion of S. Now
applying repeatedly Lemma 1(3) and the definitions of
weakest precondition and strongest postcondition one can
prove

|= sp(C1 ; . . . ; Ci−1, P )→ wp(Cj+1 ; . . . ; Cn, Q) iff
|= P → wp(remove(i, j, S), Q)

We remark that the following are implications but not
equivalences:

|= wpi(S,Q)→ wpj+1(S,Q) implies
|= P → wp(remove(i, j, S), Q)

|= spi−1(S, P )→ spj(S, P ) implies
|= P → wp(remove(i, j, S), Q)



Both conditions would also imply S′/(P,Q)S. However, note
that the latter conditions are both stronger than the one in the
proposition (as a consequence of Lemma 2(1)), which means
that using them as tests would not allow for all removable
subprograms to be identified. This is in accordance with
the examples in Section III, which have shown that simply
propagating P forward and Q backward, and checking
for implications between the propagated spk(S, P ) and
then for implications between the propagated wpk(S,Q),
while sound, may result in slices that are not minimal.
We turn back to Program 6 to illustrate our point. Since
|= sp2(S, P ) → wp4(S,Q), the command C3 ≡ x := 50
can be removed according to our test.

For commands containing sequences of commands, illus-
trated here with conditional, the following proposition states
that slicing both branches results in a slice of the structured
command. It suffices to propagate the postcondition inside
both branches, as well as the precondition strengthened with
the boolean condition and its negation, respectively.

Proposition 2. If S′t /(P∧b,Q) St and S′f /(P∧¬ b,Q) Sf , then

if b then S′t else S′f /(P,Q) if b then St else Sf

Proof: The portion requisite is immediate, and by
Proposition 1 we have |= P ∧ b → wp(S′t, Q) and |=
P ∧ ¬ b→ wp(S′f , Q), from which it follows that:
|= P → ((b→ wp(S′t, Q)) ∧ (¬ b→ wp(S′f , Q))).

The treatment of loops introduces a few subtleties. First,
if S contains loops the implication |= P → wp(S,Q) is
no longer the only verification condition: other conditions
must be introduced related to the preservation of the loop
invariant, as well as its relation with the loop’s desired
postcondition (or precondition, if strongest postconditions
are used). The notion of refinement, required by the def-
inition of specification-based slicing, will now incorporate
the preservation of these additional conditions. Moreover,
in a total correctness setting other conditions are involved,
regarding the strictly decreasing value of a loop variant.
Slicing the body of a terminating loop should not result in a
non-terminating loop, which is granted by the preservation
of the verification conditions involving the loop variant. Full
details will be given in a long version of this paper.

VI. SLICE GRAPHS

We define below a notion of control graph for a program,
labeled with respect to a given specification, and the notion
of slice graph, in which removable sequences of commands
will be associated with edges added to the initial control
flow graph.

Definition 3 (Labeled Control Flow Graph). Given a pro-
gram S, precondition P and postcondition Q such that
S = C1 ; . . . ; Cn and |= P → wp(S,Q), the labeled

control flow graph LCFG(S, P,Q) of S with respect to
(P,Q) is a weighted directed acyclic graph (WDAG) whose
weights are pairs of logical assertions on program states.
To each command C in program S we associate its input
node IN (C) and its ouput node OUT (C) in the graph
LCFG(S, P,Q). The graph is constructed as follows:
• Each command Ci in S will be represented by one (in

the case of skip and assignment commands) or two
nodes (for conditional and loop commands).

– If Ci is skip or an assignment command, let there
be a new node labeled Ci in the graph. We set
IN (Ci) = OUT (Ci) = Ci.

– If Ci = if b then St else Sf , let there be two
new nodes, labeled C

if (b)
i and Cfi

i in the graph.
We set IN (Ci) = C

if(b)
i and OUT (Ci) = Cfi

i .
– If Ci = while b do {I}S, let there be two new

nodes, labeled C
do(b)
i and Cod

i in the graph. We
set IN (Ci) = C

do(b)
i and OUT (Ci) = Cod

i .
• Let LCFG(S, P,Q) also contain two additional nodes

labeled START and END .
• Let LCFG(S, P,Q) contain an edge

(OUT (Ci), IN (Ci+1)) for i ∈ {1, . . . , n − 1},
and two additional edges (START , IN (C1)) and
(OUT (Cn),END). The weights of these edges are set
as follows

w(START , IN (C1)) = (sp0(S, P ),wp1(S,Q));
w(OUT (Ci), IN (Ci+1)) = (spi(S, P ),wpi+1(S,Q))

for i ∈ {1, . . . , n− 1};
w(OUT (Cn),END) = (spn(S, P ),wpn+1(S,Q)).

• For i ∈ {1, . . . , n}, if Ci = if b then St else Sf , we
recursively construct the graphs
LCFG(St, b ∧ spi−1(S, P ),wpi+1(S,Q)) and
LCFG(Sf , ¬ b ∧ spi−1(S, P ),wpi+1(S,Q)). These
graphs are grafted into the present graph by removing
their START nodes and setting the source of the
dangling edges to be in both cases the node IN (Ci),
and similarly removing their END nodes and setting
the destination of the dangling edges to be the node
OUT (Ci).

• For i ∈ {1, . . . , n}, if Ci = while b do {I}S, we
construct the graph LCFG(S, I∧b, I) recursively. This
graph is grafted into the present graph by removing its
START node and setting the source of the dangling
edge to be the node IN (Ci), and similarly removing its
END node and setting the destination of the dangling
edge to be the node OUT (Ci).

Informally, the idea is that the weight of an edge Ci −→
Cj represents the strongest postcondition spi(S, P ) of (the
sequence ending with) the command Ci and the weakest
precondition wpj(S,Q) of (the sequence beginning with)
the command Cj , calculated from the initial specification
(P,Q) taking into account the structure of the program.



Lemma 3. Let G = LCFG(S, P,Q), and Ŝ =
Ĉ1 ; . . . ; Ĉm any subprogram of S. Then for any i,j such
that 1 ≤ i ≤ j ≤ m and the edge (OUT (Ĉi), IN (Ĉj))
exists in G, we have w(OUT (Ci), IN (Cj)) =
(sp(Ĉ1 ; . . . ; Ĉi, P̂ ),wp(Ĉj ; . . . ; Ĉm, Q̂))
where P̂ is the first component of the weight of the incoming
edge into the node IN (Ĉ1), and Q̂ is the second component
of the weight of the outgoing edge from the node OUT (Ĉm).

Proof: It suffices to observe that the local definition
of the weights (from the weights of neighbouring edges)
corresponds to the definition of strongest postconditions and
weakest preconditions.

It is crucial that sequences that are branches of a condi-
tional are generated using the appropriate strongest postcon-
dition and weakest precondition, in accordance with Propo-
sition 2. The same applies to the body of loop commands.
Together with Lemma 3 this means that the graph is anno-
tated exactly with the strongest postconditions and weakest
preconditions that are calculated recursively throughout the
structure of the graph, following the definition of Figure 2.
The labelled CFG can thus be seen as a “verification graph”
for a program; in particular, the program is correct if
|= P → wp1(S,Q), where (P,wp1(S,Q)) is the weight
of the outgoing edge from the START node or equivalently
if |= spn(S, P ) → Q, where (spn(S, P ), Q) is the weight
of the incoming edge into the END node.

An algorithm for constructing the graph could first build
the unweighted graph from the syntax tree of the program,
then assign the first component of the weights by traversing
the graph from START to END , and finally assign the
second component by traversing the graph in the reverse di-
rection. Note that the weight of each edge can be calculated
locally from the weights of the (one or two) previous edges.
In particular, note that for 1 ≤ k ≤ n,

spk(S, P ) = sp(Ck, spk−1(S, P ))
wpk(S,Q) = wp(Ck,wpk+1(S,Q))

The worst-case execution cost of constructing the graph
is apparently linear on the program size. However, weakest
preconditions are potentially of exponential size on the
length of the program [11], so this is not so. Fortunately
this size can be corrected to quadratic (see Section VII).

Definition 4 (Slice Graph). Given a program S, pre-
condition P and postcondition Q such that |= P →
wp(S,Q), the slice graph SLCG(S, P,Q) of S with respect
to (P,Q) is obtained from the labeled control flow graph
LCFG(S, P,Q) by inserting additional edges as follows.

Let Ŝ = Ĉ1 ; . . . ; Ĉm be any maximal sequence of
commands in S, i.e. Ŝ is a branch of a conditional
command in S, or the body of a loop command in S,
or else Ŝ = S. Then for any two edges (Ĉi−1, Ĉi)
with weight (spi−1(S, P ),wpi(S,Q)) and (Ĉj , Ĉj+1) with

weight (spj(S, P ),wpj+1(S,Q)) in LCFG(S, P,Q) such
that i < j, if |= spi−1(S, P )→ wpj+1(S,Q),

• if i 6= 1 or j 6= m, an edge (Ĉi−1, Ĉj+1) with weight
(spi−1(S, P ),wpj+1(S,Q)) is inserted;

• otherwise if i = 1 and j = m a new skip
node is inserted in the graph, together with two
edges (Ĉi−1, skip) and (skip, Ĉj+1), both with weight
(spi−1(S, P ),wpj+1(S,Q)).

The time required to insert the additional edges into the
graph is again quadratic on the length of the program,
since for each sequence of commands it is necessary to
generate slicing conditions for every pair of edges such that
the first precedes the second in the graph. We remark that
this presupposes that the external theorem prover checks the
validity of formulas in constant time, which is a reasonable
assumption since automatic tools are typically used with a
time out limit, after which a condition is treated as invalid.
Also, the construction depends on the particular external tool
used to decide which edges should be inserted, and may in
fact result in different graphs if different tools are used.

As an example, Figure 4 shows the slice graph for
program 4 with respect to the specification (y > 10, x ≥ 0).
It is clear that removable sequences are signaled by the
edges (and possibly skip nodes) that are added to the
initial labeled CFG. The following proposition states that
all admissible slices are represented in the slice graph.

Proposition 3. Let S′ � S. Then S′ /(P,Q) S iff the control
flow graph LCFG(S′, P,Q) is a spanning subgraph (i.e.
a subgraph with the same set of nodes) of the slice graph
SLCG(S, P,Q).

Proof: (Sketch) First observe that by Lemma 3, Defini-
tion 4, and the subsequent observations, the weights of the
edges in the slice graph SLCG(S, P,Q) correspond to the
preconditions and postconditions required by Propositions 1
and 2. If S′ is a slice of S then the commands that
have possibly been removed are described by those two
propositions, so appropriate “short-circuit” edges have been
inserted in the slice graph. Moreover, the CFG of S′ must
also contain those edges. For the reverse implication, we
note that any spanning subgraph of the slice graph that is not
the full graph will contain edges corresponding to removable
sequences, and in fact the CFG of the graph obtained by
actually removing those sequences must coincide with the
said subgraph.

Thus for any given sequence of commands σ inside S,
the graph contains a path that represents every subsequence
σ′ of σ such that substituting σ′ for σ results in a slice of
S. The slice graph represents the entire set of specification-
based slices of S, and obtaining the minimal slice is simply
a matter of selecting the shortest subsequences using the
information in the graph.



Figure 4. Example slice graph. Thick lines represent edges that were added to the initial CFG, corresponding to “shortcut” subprograms that do not
modify the semantics of the program. These paths have the same source and destination nodes as other longer paths corresponding to removable sequences

Slicing Algorithm: Figure 5 shows the slice graphs for
the two problematic examples presented in Section III. It
is now quite clear that the notion of minimal slice with
respect to a given slice graph is simply given by a read-
back from the graph to the program. For each command
sequence represented in the graph, we apply an (unweighted)
shortest paths algorithm (basically a breadth-first traversal,
linear on the size of the graph) to find a minimal slice of
that sequence. Nodes that are not traversed correspond to
commands that can be removed. This notion of minimality
is relative since it is meant with respect to a slice graph:
the proof tool may have failed or timed out in checking
some valid conditions (and signaling them in the graph);
the resulting slice will thus only be as good as the graph.

Slicing a loop involves slicing the loop’s body recursively,
with respect to the specification (I, I ∧ ¬ b)). We remark
however that the usefulness of this approach may be limited
without human intervention. If the program is being sliced
with a specification that has been weakened with respect to

an initial, full specification, it makes sense to weaken the
loop invariant accordingly, otherwise slicing the loop may
result in no commands being removed at all inside its body.

VII. CONCLUSION

We are developing a laboratory1 for experimenting with
the ideas exposed here [12]. This is an online front-end
for implementations of the algorithms reviewed and intro-
duced in this paper. The user can choose between different
precondition-based, postcondition-based, and specification-
based slicing algorithms; the laboratory also offers standard
verification capabilities (verification condition generation)
and a visual representation of the LCF graphs introduced
in the previous section. We find that many academic works
in this area could and should have greater impact if prototype
tools were offered to the community, and we are committed
to developing such a tool, including the implementation of
algorithms described in the literature in addition to our own.

1Available at http://gamaepl.di.uminho.pt/gamaslicer.



Figure 5. Example slice graphs

While the front-end is meant to allow for experimenta-
tion and comparison of different algorithms, we intend to
optimise and test the graph-based algorithms with realistic
code. One obligatory step will be to calculate weakest
preconditions using Flanagan and Saxe’s algorithm [11],
which avoids the potential exponential explosion in the size
of the conditions generated, keeping our algorithm within
quadratic time.

As future work it will also be interesting to compare our
approach with the work of Fox and colleagues [13], who
introduced the backward conditioning technique, based on
symbolic execution. The goal of this related approach is to
remove from a program statements which, when executed,
always lead to the negation of a given postcondition. The
interest of this work is that it indicates that the interaction
between slicing and verification happens in both directions:
verification offers the tools used for implementing assertion-
based slicing (of correct programs), but slicing can also be
used to facilitate program verification.

Finally, we are convinced that the notion of control flow
graph labeled with semantic information is of independent
interest and may have other applications in program analysis,
verification, and of course visualization.

Acknowledgment: This work was supported by project
RESCUE, funded by FCT (PTDC/EIA/65862/2006).

REFERENCES

[1] M. Weiser, “Program slicing,” in ICSE ’81: Proceedings of
the 5th international conference on Software engineering.
Piscataway, NJ, USA: IEEE Press, 1981, pp. 439–449.

[2] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen, “A brief survey
of program slicing,” SIGSOFT Softw. Eng. Notes, vol. 30,
no. 2, pp. 1–36, 2005.

[3] B. Meyer, “Applying “Design by Contract”,” IEEE Computer,
vol. 25, no. 10, 1992.

[4] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll, “An overview
of JML tools and applications,” Int. J. Softw. Tools Technol.
Transf., vol. 7, no. 3, pp. 212–232, 2005.

[5] M. Barnett, K. Rustan, M. Leino, and W. Schulte, “The Spec#
programming system: An overview.” in CASSIS : construction
and analysis of safe, secure, and interoperable smart devices,
vol. 3362. Springer, Berlin, March 2004, pp. 49–69.

[6] P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy,
and V. Prevosto, ACSL: ANSI/ISO C Specification Language,
CEA and INRIA, preliminary design (version 1.4, October
29, 2008).

[7] G. Canfora, A. Cimitile, and A. D. Lucia, “Conditioned pro-
gram slicing,” Information and Software Technology, vol. 40,
no. 11-12, pp. 595–608, November 1998, special issue on
program slicing.

[8] M. Ward, “Properties of slicing definitions,” in SCAM ’09:
Proceedings of the 2009 Ninth IEEE International Working
Conference on Source Code Analysis and Manipulation.
Washington, DC, USA: IEEE Computer Society, 2009, pp.
23–32.

[9] J. J. Comuzzi and J. M. Hart, “Program slicing using weakest
preconditions,” in FME ’96: Proceedings of the Third Inter-
national Symposium of Formal Methods Europe on Industrial
Benefit and Advances in Formal Methods. London, UK:
Springer-Verlag, 1996, pp. 557–575.

[10] I. S. Chung, W. K. Lee, G. S. Yoon, and Y. R. Kwon, “Pro-
gram slicing based on specification,” in SAC ’01: Proceedings
of the 2001 ACM symposium on Applied computing. New
York, NY, USA: ACM, 2001, pp. 605–609.

[11] C. Flanagan and J. B. Saxe, “Avoiding exponential explosion:
generating compact verification conditions,” in POPL ’01:
Proceedings of the 28th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. New York, NY,
USA: ACM, 2001, pp. 193–205.

[12] D. da Cruz, P. R. Henriques, and J. S. Pinto, “Gamaslicer: an
Online Laboratory for Program Verification and Analysis,” in
proceedings of the 10th. Workshop on Language Descriptions
Tools and Applications (LDTA’10), 2010, to appear.

[13] C. Fox, S. Danicic, M. Harman, and R. M. Hierons, “Back-
ward conditioning: A new program specialisation technique
and its application to program comprehension,” in IWPC.
IEEE Computer Society, 2001, pp. 89–97.


