SESAM - Simulating Software Projects

J. Ludewig, Th. Bassler, M. Deininger, K. Schneider, J. Schwille
Software Engineering Group, Dept. of Computer Science, University of Stuttgart, FRG
sesam@informatik.uni-stuttgart.de

Abstract

Teaching software engineering as well as researching in
this area is very tedious due to the length and costliness of
software projects. SESAM therefore is designed as a
simulator for software projects, allowing students to gain
reality-like experiences in project management and
researchers to evaluate hypotheses on the mechanisms in-
fluencing software projects. This paper focuses on the
basic assumptions for SESAM, its building blocks and
the way hypotheses are affecting the simulation.

After a short description of the requirements for
SESAM we introduce objects, attributes, actions, rela-
tionships between objects and hypotheses as its basic con-
cepts. We present attributed graph grammars as a means
for representing hypotheses. Finally we position our pro-
Jject with respect to related work, and we show its present
state and future development.

1 Introduction

1.1 SESAM: A simulator

The process of software development has not yet been
fully described and explained. There is no comprehensive
and generally accepted model for the process of software
development (Sommerville, [7], p. 6). Models exist only
for some classes of software projects (e. g. waterfall
model, rapid prototyping). The lack of a reliable basis
complicates any research attempt in the area of software
engineering. Software engineering knowledge consists of a
great number of tiny fragments; the glue for these frag-
ments, an overall model, has not yet been found.

What impact has this deficit in theory on the education
of new software engineers? Upon graduation, they first
have to gather experiences in different project tasks
(software development, design, systems analysis eic.), be-
fore they are able (and trusted) to lead a software project.
University education can shorten this “training on the
job”, but can never replace it.

SESAM (“Software Engineering Simulation by
Animated Models”) is intended to support both software
engineering researchers and teachers. SESAM is a tool for

0-8186-2830-8/92 $03.00 @ 1992 IEEE

608

simulating software projects. Its basic concept is borrowed
from adventure games with the player leading a fictitious
software project. The goal of the game is to successfully
carry out and finish the project. During the game, the
player will be confronted with complicating events: staff
members resign, important tools are delivered late or with
severe bugs, the client changes the requirements, and so
on. Time is passing and money is spent, with no way for
the player to cheat. There is no predefined path through
the game—the player has to find his or her own way to
project completion. It is left to him or her how to assign
the workload of the project to the staff members. Figure 1
shows a prototype of the player’s world (that is, the user
interface). At the end of the project the game is rated.
Strong and weak points of the player’s project
management are indicated—based on a scale that has been
set by the model builder, along with other parameters of

the game.
1.2 Aspects of SESAM

SESAM users belong 1o one of two groups. One group—
the model builders, who experiment using the parameters
provided by SESAM—aim at a better understanding and
explanation of the various aspects of the software
development process. The other group—the players—wish
to gain experience in project management. Typical players
are students, whereas the model builders are researchers.
Which gains can these groups expect from SESAM?

For the model builder, there are the following aspects:

¢+ SESAM contains a collection of precisely defined hy-
potheses about the software development process,
whereas in the software engineering literature rules and
causal correlations (hypotheses) generally are stated
rather vaguely and ambiguously.

s Assumptions can be validated using SESAM simula-
tion. This applies especially to the collection of
hypotheses mentioned above.

For a player, there are different benefits:

¢ He or she can undergo reality-like project management
experiences at low cost (simulation is inexpensive), in
short time (a game proceeds much faster than reality)
and at no risk (a failed SESAM project does no dam-

groesss [F
autoren Budget anzeigen

Projektabschluss—Zeitpunkt an
Mitarbeiter einstellen
entlassen
beiter auswaehlen

fertigstellu 3/4 }

ersballunis:

Besprechung vorbereiten

1/2 [Besprechung durchfuehren
Besprechungstermin vormerken

Cespraech fuehren

Bericht schreiben

Testplan erstellen

Benutzerhandbuch erstellen

Dokument lesen

Spezifizieren
Testen
Entwerfen
L J y .PrO_lIektlaltalr Codieren P rojekt'l eiter
iiark Carlos Cagliefl prototyping Ant
dauer Dora Dores =
ort
ende

Fig. 1 A game snapshot from SESAM:
To the top left a window shows the minutes of a meeting (In the aspect “profile”),
below another meeting Is just in progress (here showing the people invoived).
The player has opened a pop-up menu for executing Interactions.

age, while a failed project in reality might do immense
damage).

SESAM addresses the human instinct of play. In
playing with SESAM, the student experiences the
effect of his or her decisions. Leamning by experiences
is intitive and therefore more efficient than teaching
project management in terms of “good advice” during a
course.

SESAM is a forecasting tool. Using SESAM, various
alternatives for a on-going project can be evaluated. In
real life, there is no way to roll back time in order to
alter a decision of the past.

operations on these elements. Every important decision
of a software project must be modelled in SESAM.
Games have to proceed close to reality, i. e., if the
player makes the same decisions during the game as
were made in a real project, the results of the game
must be comparable to the results of the project.

The user interface has to be attractive and must facili-
tate the use of SESAM. SESAM has to be self-expla-
natory.

Games must be repeatable, so that the player can try
different alternatives of managing the same project.
SESAM must give reasons for the rating of the

. player’s game.
1.3 Requirements for SESAM + SESAM must provide easy-to-use building blocks for
the construction of models for the software develop-

From the aspects described above, we can conclude the fol- ment process.

lowing requirements for SESAM: = The model builder must be able to parameterize the
s SESAM has to provide the principal elements of a building blocks, using a mechanism much like the
software project (staff, time, budget etc.), together with effort multipliers of COCOMO [2].

2 Assumptions, concepts and roles
2.1 Basic assumptions

When building SESAM we assume that it is possible to
model the software development process using objects, re-
lationships between objects, actions and hypotheses,
where objects and relationships can be seen as nodes and
edges of a graph. Objects have attributes to represent their
individual properties. The player can change relation-
ships—i. e., the edges of the graph—by actions. Using
hypotheses, it is possible to define changes for the struc-
ture of the network as well as for attributes of objects.

Objects, attributes, relationships, and actions will be
discussed in the remainder of this chapter. Hypotheses and,
based thereon, the modelling of regularities in software
engineering are presented in chapter 3.

2.2 Building blocks

The objects to be found in a real life software project
include the people involved, the documents to be used and
produced, and all necessary operational reserves. People
may be clients, project managers, software developers and
so on. Documents comprise all of the software (i. e.,
specifications, design, code, testing plan, documentation
elc.), but also any related contracts, standards, books.
Operational reserves are, amongst others, budget, offices,
computers or Lools.

However, objects are not sufficient by themselves; they
must have individual properties. Properties are stored in
attributes, whose values may range from rough indications
like “the design has a high degree of complexity” to exact
quantities like “programmer X has a productivity of
2.3 LOC/h", Some examples for objects and attributes
are:

« a person “project staff member” having the attributes

- age (in years),

- education (“BS", “MS", “PhD", ...),

- design experience (measured by the number of pro-

jects he or she was involved in as a designer),
- design skill (a number on a scale from 0 to 10);
¢ adocument “high level design™ with its attributes

- size (number of characters),

- complexity (“low", “standard”, “high"),

- quality (“low”, “acceptable”, “high™);

s a“CASE tool” with its attributes

- purchase-price (in currency units),
design method supported (“structured design”,
“object oriented design”, ...).

Objects may be connected by relationships, which are
symmetric or asymmetric (i. e. the corresponding edges

L

Fig. 2 Effect of actions and hypotheses:
The starting situation.

Fig. 3 Etfect of actlons and hypotheses:
The resulting sltuation after execution of
the actions “terminate meeting” and “pre-
pare low level design using CASE tool”.

are non-directed or directed, respectively). In the course of

the software development process, relationships exist

mainly as relationships in communications and interac-

tions or as organizational relationships. Consider for

instance:

e “reads”: a staff member reads a high level design
document,

« “manages™; a CASE tool manages a high level design
document,

e “uses”: a staff member uses a CASE tool,

¢ “produces™: a staff member produces a low level design
document,

¢ ‘“talks to”: a possibly symmetric relationship—two
staff members are talking to each other.

A distinct partial graph of the network of objects and rela-

tionships is called a situation. During a SESAM simula-

tion the state of the network will be changed. This is

achieved by actions and hypotheses. Both actions and

hypotheses apply to a particular situation. They change

relationships in that situation, i. e., establish a relation-

ship between objects or remove it. They may also gene-

rate new objects. Furthermore, hypotheses may change

attributes of objects in the situation considered. Actions

are triggered by the player, who wishes to influence the

proceeding of the game. Hypotheses are triggered by the

simulator and without any intervention by the player, if

there is a situation that matches the preconditions of the
hypothesis. Changes effected by a hypothesis are deter-
mined by the (assumed) rules applicable to the current
situation. We will clarify this by an example:
Starting situation: The project is in its design stage;
high level design (HLD) has been successfully comple-
ted. It has been stored via a CASE tool, which will be
used throughout the project. Low level design (LLD)
has not yet started. Project members A and B are in a
meeting (i. e. are talking to each other). This state is
shown in figure 2.

The player now wishes to assign person A to LLD.
A shall use the HLD document and the CASE tool. To
this end the player executes the action “terminate mee-
ting”, which deletes the relationship “talks to” that
connected A and B. A is now free and can work on
LLD. The action “low level design using CASE tool”
generates a new document “LLD” and establishes the
necessary relationships as shown in figure 3.

Based on this situation a hypothesis on the effect of
using CASE tools for LLD fires. It changes the
attributes of the objects involved, following the
assumptions stated in the hypothesis, This might mean
that the size of the LLD document becomes four times
the size of the HLD document, and, because this is A’s
first project as a software designer, the quality attribute
is set to “acceptable” although the quality of the HLD
document was “high™.

A more detailed discussion of hypotheses and their influ-
ence on the elements of our software engineering simula-
tion follows in chapter 3.

2.3 Player, model builder and developer

Three roles are to be considered in SESAM—player, mo-
del builder and developer. The player gets a project gener-
ated by SESAM and has to use his or her acting alterna-
tives as a project manager to successfully complete the
project. He or she may apply actions to objects and thus
change the network of relationships; the player may not,
however, modify object attributes or relationships directly.
Depending on the state of the network SESAM identifies
situations and their matching hypotheses. This leads to
changes of object attributes and relationships.
Consequently, the “project manager’s” task is to select
an appropriate action for the actual state of the project
from the given set, and to have it executed. This generates
a new state of the simulated project, which may trigger
some hypotheses, again changing the state of the project.
The action-hypotheses cycle will be repeated until the
software product in question is completed.! Based on the

1'Ofocu.memrmiwl’lume1:b|'mi|.mi.lpmdlmm:li:'uSESA.M.jumli:e
model of a product that would have been produced, if one had taken
the same decisions and executed the same actions in a real project.

611

game history and the final state, the quality of the project
will be evaluated.

Objects and their attributes, relationships, and the me-
chanism to describe actions and hypotheses together form
a construction kit. The model builder takes the elements
from the kit to determine the actions the player may use,
and to build the hypotheses to be triggered by the simula-
tor, The set of hypotheses and actions make up the model
of the software development process, which the model
builder wants to control the game. Besides describing
hypotheses and actions, the model builder generates the
starting situation the player will face in his or her game,
and sets up the rules for the final evaluation of the game.

It is the developer’s task to provide the construction kit
for the model builder and the mechanism of simulation for
the player.

Summarizing the roles in SESAM: the developer
produces the basic concepts, the model builder takes them
to construct hypotheses and actions and to provide a
starting situation for the game, the player uses the simula-
tion environment and the starting situation to simulate a
software project.

3 Hpypotheses on software projects

3.1 What are hypotheses?

Objects and relationships build up the static structure of
our software project model. But simulation of a software
project with its complex internal interrelationships re-
quires modelling its dynamic structure, too—how does the
project proceed, how does the software product change?

Some reasons for changes in the project state” are quite
obvious (e. g. the monthly payment of salary at a fixed
date decreases the remaining budget) and may be hardwired
within objects or the simulator. However, there are a large
number of other interrelationships that influence the
project state and thus the project evolution itself. In
software engineering literature many of these are refe-
renced, e. g., Sommerville ([7], p. 43) cites from a study
stating that “the size of an organization correlates nega-
tively with job satisfaction and productivity. It correlates
positively with absenteeism and staff turnover.” In
contrast to the obvious reasons for changes of the project
state mentioned above, such statements at first have the
nature of a hypothesis—they are unproven scientific as-
sumptions.

Only after validating these hypotheses empirically—or
proving them in any other way—they may be taken for
certain and built firmly into the model. In some cases, a

® “Project state” means the whole of states of all objects involved in
the project.

different wording or a variation of a hypothesis may prove
to be more reliable, comprehensive or simply more
correct. It is for instance not at all obvious, whether there
exists a relation between the hypothesis above on corre-
lation of job satisfaction and size of an organization, and
the well known “Brooks’s law™: “Adding manpower to a
late software project makes it later” ([3], p. 25). Do both
hypotheses explain a common phenomenon? Do they just
stress different aspects or are they in fact independent?
Maybe one is a special case of the other? A hypothesis
may also turn out to be obsolete, trivial or plain wrong.

Therefore we treat such statements with caution and se-
parate them from “well proven” parts of the model. In
SESAM surmises on interrelationships which are not pro-
ven are called what they are—hypotheses. We suppose
that the “treasure of software engineering knowledge”
mostly consists of such observations, surmises and con-
clusions, so they have to be represented as such in our
model. But hypotheses are not always as explicitly stated
and easily recognized to be surmises of interrelationships
as the ones above. Sometimes they are contained impli-
citly in rules of etiquette and practices of software engi-
neering—Structured Programming, Structured Analysis or
object oriented methods are not used just for fun, but be-
cause they come with the promise of “improvement”.
Wherever, beyond this promise, there is no concrete state-
ment of what kind of improvement is to be expected,
scepticism is indicated. We hope to clarify such cases by
building SESAM. SESAM will provide a facility for
gathering hypotheses from a variety of sources and for
studying their interaction.

3.2 Hypotheses are vague

SESAM will provide quantitative statements on the de-
velopment and success of the software project simulated.
To achieve this objective, all parts of the simulation
model must be unambiguous, precise and quantifiable—
even hypotheses. Therefore, for the purpose of simulation,
each of the following questions must be answered for
every hypothesis:
« Which situation must exist for the hypothesis to be
applicable?
« Who and what is important for the hypothesis, i. e.,
who is involved, who or what will be influenced?
« Which consequences arise from accepting the hypothe-
sis as an expression of a real life interrelationship?
Unfortunately, hypotheses mostly are vague or not stated
explicitly at all. (E. g., what is the promise of structured
programming? If stated explicitly, new hypotheses might

show up.) Sometimes the author is not able to indicate
the consequences of a hypotheses in full detail, because
his or her observations are of only qualitative nature. In
such a case, it might indeed be the goal of simulation to
find a more precise wording for the hypothesis by rating
and varying its parameters—or to unmask it as inconsis-
tent or untenable.

3.3 Making hypotheses precise

The problem of finding an adequate representation for

hypotheses places us in a dilemma:

s On the one hand, statements are to be formulated in
accordance with their application domain—the software
development process and its internal interrelationships.

s On the other hand, a formal, computable representation
is indispensable.

Ignoring one of these two demands leads to unpleasant

consequences:

+ Too informal a representation is of no use for the pur-
pose of simulation—a computer cannot evaluate it.

+ Too formal a representation renders human handling of
hypotheses difficult. It is hard to recognize whether a
set of formal expressions correlates with the hypothesis
it is derived from or whether some semantics have been
added or taken away. Are precision and certainty pre-
tended without a need for the simulation? What exactly
implies this set of expressions if we translate it back to
the language and manner of thinking of a software pro-
ject?

It is necessary to fulfil both demands to avoid a Gordian

knot of assumptions and suppositions that is impossible

to validate. Therefore we decided to represent each hypo-
thesis at three levels of formalization.

The most informal level is a simple citation—every
hypothesis is stored in its original wording. The citation
is indispensable for future validation, as the represenia-
tions at more formal levels need a baseline to which they
can be compared. This is the only way to avoid an inad-
vertent change in meaning. Of course, the reference for the
citation has to be stored, too—this is not only a question
of scientific honesty, but also facilitates later checking of
the context of the hypothesis. Sometimes the traded apho-
risms—called hypotheses—can be fully understood only
in their proper context!

The intermediate level uses a formatted representation.
The statement is split in its main components in order to
remove any grammatical wrapping. The aspects repre-
sented in this format are shown in figure 4, its use is illu-
strated in figure 5.

attributes N transformation > attributes
used rule modified
triggering
condition

Fig. 4 Formatted representation of
hypotheses.

B.Knowledge
asymptotically
approaches
A.Knowledge

A.Knowledge —
—» B.Knowledge
B.Knowledge —»

Atalks to B and
A.Knowledge > B.Knowledge

Fig. 5 Formatted representation of the
hypothesis: ,If A talks to B and A’s know-
ledge exceeds B’s, then B’'s knowledge will
asymptotically approach A’'s.”

Wherever possible, we identify objects as well as their
attributes that are considered in the statement. Apart from
these we collect those objects and attributes which are in-
fluenced by the interrelationship stated. A triggering con-
dition determines which circumstances must exist for the
hypothesis to “fire”, i. e., for which situation it fits. Such
circumstances include the project state, certain events, a
specified point of time, or any combination of these. The
interrelation of the objects involved is described as a
transformation rule (e. g. linear or exponential correlation,
or just a qualitative description). It is important at this
point not to introduce one’s own assumptions, parameter
ratings or attempts at precision, which are not fully co-
vered by the hypothesis.

The most formal level includes detailing the effect of
the hypothesis in full detail, establishing parameter
values, and resolving all inconsistencies that may have
been discovered at the intermediate level. This implies
decisions on all aspects that cannot be taken directly from
the hypothesis—and to document them! Finally the
hypothesis is represented by one or more productions of
an Attributed Graph Grammar (AGG).

The state of a simulated project is represented as an
attributed graph. As explained in chapter 2.1, this graph
consists of objects (nodes) and their relationships (edges).
Hypotheses change the project state and thus the graph.
Starting situation and resulting situation of a hypothesis

613

are partial graphs of the project state graph. In AGGs the

corresponding transition is represented directly as a graph

production. The following paragraphs present the basic
concepts behind AGGs; a more detailed discussion is

given in [4] and [6].

Attributed Graph Grammars are a generalization of
Chomsky grammars. The latter deal with sequences of
symbols, to which the following operations are applied:
1 Identify a part of the sequence of symbols that matches

the left side of the grammar production.

2 Substitute the subsequence of symbols identified in 1

with the right side of the production.

In attributed grammars, attributes of all symbols con-

tained in the production (both left and right side) may

be modified.

Graph Grammars deal with graphs consisting of nodes and

edges instead of sequences of symbols, to which analo-

gous operations apply:

1 Identify a part of the graph that matches the left side of
the graph grammar production (i. e., for which there is
an isomorphic mapping to the left side of the pro-
duction).

2 Substitute the partial graph identified in 1 with the
right side of the production (i. e., cut out that partial
graph and insert the graph on the right side of the pro-
duction in its place).

3 In an AGG, attributes of all nodes and edges contained
in the production (right side only!) may be modified.
Note that, in step 1, for AGGs attributes of nodes or edges
may also be used in the identification of a matching par-
tial graph (i. e. the search is not restricted to structural

aspects of the graph).

Hypotheses are formally represented by graph grammar
productions. The left side of a production—the precondi-
tion of a hypothesis—shows the situation that causes the
hypothesis to be applied, i. ., the project state triggering
the hypothesis and the objects and relationships to be
identified. Many hypotheses will not affect the structure
(step 2), whereas almost all of them will change object at-
tributes. If no substitution of partial graphs is necessary,
step 2 is omitted; however, there are cases which require
changes to the graph, e. g., if communication relation-
ships have to be established or removed.

Two examples illustrate the difference. Figure 6 shows
the changing of communication relationships. The
starting situation is a meeting of three staff members, one
of whom “has a headache”. The production applied to this
situation, however, does not state anything about mee-
tings, just about the relationship “A and B are talking to
each other”. This relationship will be disrupted, if A has a
headache. The result of two applications of this same pro-
duction leads to a situation, in which the person with a

3

Starting situation

Graph Grammar Production

Resulting sluation

A.Health = "Headache"

®
®

The project staff members
X, Y and Z are in a mesting;
Z is taking notes. Y has a
headache.

Any person A having a headache and at the
same time talking to a person B, will stop the
conversation,

Y has left the
meeting.

Fig. 6 Changing (communication) relationships using Attributed Graph Grammars.

Starting situation Graph Grammar Production Resuiting situation
A.Knowledge > B.Knowledge' =
B. Knowledge B.Knowledge +
- B.Kn
k* 8 (1 - Rinowadas)
The project staff if A and B are talking to each other, and A's Same communication

members X, Y and Z
are in a meeting; Z is

knowledge exceeds B's, then B's knowledge will
asymptotically approach A's.

structure as before, but
X and Y now have (say)

taking notes. X and Y (k ... B's learning parameter; 83%of Z's
have 80 % of Z's At ... simulated time between two understanding of the
understanding of the evaluations of the graph grammar) problem.
problem.

Fig. 7 Changing object attributes using Attributed Graph Grammars.

headache is no longer in a communication relationship
with the others—to be interpreted as “left the meeting”.
The other example (figure 7) shows the mere changing
of object attributes, The hypothesis of asymptotically ap-
proaching knowledges, which has already been shown in
figure 5, is represented here as a production of an AGG. It
applies to a similar situation as in the preceding example
(this time there is no headache involved). The result is an
increase of knowledge that depends on the duration of the
meeting (more precisely, on the simulated time that has
passed since the last evaluation of the graph grammar) and

614

the individual learning capability (which is assumed equal
for person X and Y in this example).

Apart from the situation itself, events and the simu-
lated time may have an impact on the applicability of a
hypothesis/production (i.e., may be part of the triggering
condition of a hypothesis).

Attributed Graph Grammars provide an easy way of re-
presenting hypotheses formally, but nevertheless in an in-
tuitive way. They allow to do this in terms of the applica-
tion domain—an immediate graphical representation of
software project situations.

The formally defined semantics of AGGs [4] permit an
automatic generation of production rules for a rule-based
inference tool from graph grammar productions, or to have
graph grammar productions interpreted right away.

We see this method of stepwise formalization of hypo-
theses as a promising way to a more precise and compre-
hensive notion of the presently vague and not interrelated
suppositions of software engineering.

4 Present state and future development

4.1 Related work

Simulating software projects is not a new idea.
COCOMO [2] shows how development effort and deve-
lopment time correlate with program size and other influ-
encing parameters. The COCOMO model can (and must)
be calibrated by setting these influencing parameters, the
so-called effort multipliers. We adopted this idea for
SESAM. McKeeman [5] reports a tutoring program for
the training of software developers. Using the program,
developers leam how to conduct a review. This program
has the nature of a game, much like SESAM. Abdel-
Hamid [1] describes a simulation model for the software
development process that is based on System Dynamics.
As with SESAM, this model allows conclusions about
software projects. However, all of these approaches are
restricted to certain aspects of software development,
whereas SESAM is based on a comprehensive approach.
Depending on the hypotheses and other elements used by
the model builder different aspects may be investigated.

4.2 Present state of SESAM

So far two prototypes of SESAM have been developed.
The first one was based on COCOMO and turned out not
10 be extensible. The second prototype already implements
most of the concepts presented in this paper. The exam-
ples for the user interface given in chapter 1 were prepared
using this prototype. At the same time, a collection of
hypotheses from available software engineering literature
was initiated, resulting in a list of 242 hypotheses. We are
currently working on an implementation of the simulator
kemel for SESAM, to be completed gradually to a fully

615

operational system. The implementation environment is
Smalltalk-80 on UNIX workstations.

4.3 What remains to be done?

The second prototype we have available now is used to il-
lustrate and validate our concepts. Many aspects are not
yet considered in this prototype. Following is a list of to-
pics we will address next, ordered chronologically:

» The collection of hypotheses must be separated from
the SESAM simulator. To this end, we have to imple-
ment a procedure to convert hypotheses from natural
language to productions of an Attributed Graph
Grammar.

* We need to develop a model for the software develop-
ment process, implement it using SESAM and validate
it. This model determines the actions available to a
player. Furthermore we will identify shoricomings of
SESAM while developing the process model, and we
will be able to specify the necessary improvements and
extensions.

« At the end of a SESAM game, the project history must
be rated and the player must be given a helpful founda-
tion of the rating.

« During the game, the player will be able to access a
software engineering data base giving descriptions of
methods and techniques for software engineering. He or
she shall have the chance to learn about possible alter-
natives before making a decision.

5

[1] Abdel-Hamid, T.K., “Investigating the Cost/Schedule
Trade-Off in Software Development,” IEEE Software, vol.
7, no. 1, pp. 97-105, January 1990.

Boehm, B.W., Software Engineering Economics,
Englewood Cliffs, New Jersey: Prentice Hall, 1981.
Brooks, F. P., The Mythical Man Month,
Reading/Mass.: Addison Wesley, 1975.

Gétiler, H., Graphgrammatiken in der Softwaretechnik,
Berlin: Springer, 1988.

McKeeman, W.M., “Graduation Talk at Wang Institute,”
IEEE Computer, vol. 22, no. 5, pp. 78-80, May 1989.
Nagl, M., Graph-Grammatiken—Theorie, Implemen-
tierung, Anwendungen, Braunschweig: Vieweg, 1979.
Sommerville, 1., Software Engineering, Wokingham:
Addison-Wesley, 3 Edition, 1989.

Bibliography

(2]
3]
[4]
(5]
(6]
(7

