
SESAM - Simulating Software Projects

1. Ludewig. Th. Bassler. M. Deininger, K. Schneider, 1. SchwiUe
Software Engineering Group, Dept. of Computer Science. University of Stuttgan, FRG

sesam@informatik.uni-stuttgart.de

Abstract

Teaching softwau tnginuring as well as researching in
this area is ~ry tedious due to the length and cosdi~ss of
software projects. SESAM therefore is designed as a
simulator for software projects, allowing students to gain
reality·liu experiences in project management and
researchers fa evaluate hYJ1()theses on the ~chanisms in­
fluencing software projects. This papu focuses on the
bosic assu.mptions for SESAM, its building blocb and
the way hypotheses are affecting the simulation.

After a short description of the requirements for
SESAM we introduce objects. atlributes, actions. rela­
tionships berwun objects and hypotheses as its basic con­
cepts. We present attributed graph grammars as a melll1S
for representing hypotheses. Finally we position our pro­
ject with respect to refated work. and we show its present
state andjuJure rkveloptneflt.

1 Introduction

1.1 SESAM: A simulator

The process of software development has not yet been
fully described and explained. There is no comprehensive
and generally accepted model for the process of software
development (SommerviJIe, [7], p. 6). Models exist only
for some classes of software projects (e. g. waterfall
model, rapid prototyping). The lack of a reliable basis
complicates any research anempt in the area of software
engineering. Software engineering knowledge consists of a
great number of tiny fragments; the glue for these frag­
ments, an ovecall model, has not yet been foond.

What impact has this defiCit in theory on the education
of new software engineers? Upon graduation, they fll'St
have to gather experiences in different project tasks
(software development, design, systems analysis etc.), be­
fore they are able (and trusted) to Je.ad a software project.
University education can shorten this "uaining on the
job", but can never replace it

SESAM ("Software Engineering Simulation by
Animated Models") is intended to support both software
engineering researchers and teachers. SESAM is a tool for

0-8186-2.830-8.-")1 SO'J.OO C 1992 IEEE

simulating software projects. Its basic concept is borrowed
from adventure games with the player leading a fictitious
software project. The goal of the game is to successfully
carry out and finish the project. During the game. the
player wiU be confronted with complicating events: slaff
members resign, important tools are delivered late or with
severe bugs. the client changes the requirements, and so
on. Time is passing and money is spent., with no way for
the player to cheat. There is no predefined path through
the game-the player has to find his or her own way to
project completion. It is left to him or her how to assign
the workload of the project to the staff members. Figure 1
shows a prototype of the player's world (that is. the user
interface). At the end of the project the game is rated.
Strong and weak points of the player's project
management are indicated---based on a scale that has been
set by the model builder, along with other parameters of
the game.

1.2 Aspects of SESAM

SESAM users belong 10 one of 1wO groups. One group­
the model builders. who experiment using the parameters
provided by SESAM-aim at a better understanding and
explanation of the various aspects of the software
development process. The other group---the players-wish
10 gain experience in project management. Typical players
are students. whereas the model builders are researchers.

Which gains can these groups expect from SESAM?
For the model builder, there are the following aspects:
• SESAM contains a collection of precisely defmed hy­

potheses about the software development process,
whereas in the software engineering literature rules and
causal correlations (hypotheses) generally are stated
rather vaguely and ambiguously.

• Assumptions can be validated using SESAM simula­
tion. This applies especially to the collection of
hypotheses mentioned above.

For a player. there are different benefits:
• He or she can undergo reality-like project management

experiences at low cost (simulation is iReJtpensive), in
short time (a game proceeds much faster than reality)
and at no risk (a failed SESAM project does no dam·

erstellen
lesen

ende

FII/. f A game snapshot from SESAM:
To the top lott • window shows the minutes of • meeting (In the aspect "profile"),

below another meeting Is)ust In progre.. (here .howlng the people Involved).
The player has opened a pop-up menu tor executing Interactions.

age, while a failed project in rea1ity might do immense

~).
• SESAM addresses the human instinct of play. In

playing with SESAM, the student experiences the
effect of his or her decisions. Learning by experiences
js intuitive and therefore more efficient than teaching
project management in terms of "good advice" during a
cowse.

• SESAM is a forecasting tool. Using SESAM, various
alternatives for a on-going project can be evaluated. In
real life, there is no way 10 roll back. time in order 10
alter a decision of the past.

1.3 Requirements for SESAM

From the aspecIS described above, we can conchde the fol­
lowing requirements for SESAM:
• SESAM has 10 provide the principal elements of a

software project (staff, time, budget etc.), together with

operations on these elements. Every important decision
of a software project must be modelled in SESAM.
Games have to proceed close to reality, i. e., if the
player makes the same decisions during the game as
were made in a real project. the results of the game
must be comparable 10 the results of the project.

• The user interface w to be attractive and must facili­
talC the use of SESAM. SESAM has to be setf-expla­
naJOry.

• Games must be repeatable, so that the player can try
different alternatives of managing the same projecL

• SESAM must give reasons for the rating of the
player's game.
SESAM must provide easY-l(ruse building blocks for
the construction of models for the software develop..
ment process.
The model buildec must be able 10 parameterize the
building blocks, using a mechanism much like the
effort multiplien of =MO (2).

2 Assumptions, concepts and roles

2.1 Basic assumptions

When building SESAM we assume that it is possible to
model the software development pucess using objects. re..
lationships between objects, actions and hypotheses,
where objects and relationships can be seen as nodes and
edges of a graph. Objects have attribUles to represent their
individual properties. TIle player can change relation­
ships-i. e .• the edges of the graph-by actions. Using
hypotheses, it is possible to defme changes for the strue­
ttue of the network as well as for attributes of objects.

Objects, attributes, relationships. and actions will be
discussed in the remainder of this chapter. Hypotheses and.
based thereon, the modelling of regularities in software
engineering are presented in chapter 3.

2.2 Building blocks

The objects to be found in a real life software project
include the peopie involved. the documents to be used and
produced. and all necessary operational reserves. People
may be clienlS, project managers, software developers and
so on. Documents comprise all of the software (i. e.,
specifications. design. code. testing plan, documentation
eIC .), but also any related contracts. standards. books.
Operational reserves are, amongst others, budget. off aces,
computers or tools.

However, objects are not sufficient by themselves; they
must have individual properties. Propenies are stored in
attributes. whose values may range fn:m rough ind)caLions
like "the design has a high degree of complexity" to e~t
quantities like "programmer X has a productivity of
2.3 LOC/h". Some examples for objects and altributes

"'" • a person "project staff membec" having the attributes
age (in years).
education ("8S", "MS", "PhD", ...),
design experience (measured by the number of pr0-

jects he or she was involved in as a designez),
design skill (a number on a scale from 0 to 10);

• a document "high level design" with its aUributes
size (number of characten).

- complexity ("k)w", "standard", "high''),
- qua!;,y C'low", "acceptable", "lUgh,,);

• a ''CASE tool" with its attributes
J)m'Cha$e-price (in cWTenCy units).

- design method supponed ("structured design",
"object oriented design" •...).

Objects may be connected by relationships, which are
symmetric or asymmetric (i. e . the corresponding edges

MO

Fig. 2 Effect of actions and hypotheses:
The starting situation.

Fig. 3 Effect ot actions and hypotheses:
The resulting situation after execution of
the actions "terminate meeting" and "pr.
pare low level design using CASE tool".

are non-directed or directed, respectively). In the course of
the software development process, relationships exist
mainly as relationships in communications and interac­
tions or as organizational relationships. Consider for
instance:
• "reads": a staff member reads a high level design

docwncn!,
• "manages": a CASE tool manages a high level design

docwncnt,
• "uses": a staff member uses a CASE 1001.
• "produces": a staff member produces a low level design

docwnent,
• "talks 10": a possibly symmetric relationship-two

staff members are talking to each other.
A distinct partial graph of the network of objects and rela­
tionships is called a situation. During a SESAM simula­
tion the state of the network will be changed. This is
achieved by actions and hypotheses. Both actions and
hypolheses apply to a particular situation . TIley change
relationships in that situation, i. e., establish a relation­
ship between objects or remove iL They may also gene­
rate new objects. Furthennore. hypotheses may change
attributes of objeclS in the situation considered. Actions
are triggered by the player, who wishes to influence the
proceeding of lhe game. Hypotheses are triggered by the
simulator and without any interVention by the player, if

there is a situation that matches the preconditions of the
hypothesis. Changes effected by a hypothesis are deter·
mined by the (assumed) rules applicable to the current
situatioo. We will clarify this by an example:

Starting situation: The project is in its design stage;
high level design (JILD) has been successfully comple­
ted. It bas been stored via a CASE 1001, which will be
used throughout the project Low level design (LLD)
has not yet started. Project membel's A and B are in a
meeting (i. e. are talking to each other). This state is
shown in figure 2.

The player now wishes to assign person A 10 LLD.
A shall use the lll..O document and the CASE tool. To
this end the player execuleS the actioo ''tcnninace mee-­
ting". which delelCS the relationship "talks to" that
connected A and B. A is now free and can work. on
UD. The action "Iow level design using CASE tool"
generates a new document "LLD" and establishes the
necessary relationships as shown in figure 3.

Based on this situation a hypothesis on the effect of
using CASE tools for LLD fires. It changes the
attributes of the objects involved, following the
assumptions stated in the hypothesis. This might mean
that the size of the UD document becomes four times
the size of the In.O document, and. because this is A's
fll'St project as a software designer. the quality attribute
is set to .. acceptable" although the quality of the HLO
document was "high".

A more detailed discussion of hypotheses and their influ·
ence on the elements of our software engineering simula·
lion follows in chapIu 3.

2.3 Player, model builder and developer

Three roles are to be considered in SESAM-player. me;
del builder and developer. The player gets a project gener­
ated by SESAM and has to use his or her acting a1tema·
lives as a project manager to successfuUy complete the
projecl He or she may apply actions to objects and thus
change the network of relationships; the player may not.
however. modify object aaributes oc relationships directly.
Depending on the state of the network SESAM identiflCS
situations and their ma1ching hypotheses. This leads to
changea or object attributes and rclationships.

Conscquoody, the "project manager's""'" is to seicet
an appropriate action for the actual state of the project
from the given set, and ID have it executed. This generates
a new state of the simulated project.. which may trigger
some hypotheses, again changing the state of the projecL
The action·hypotheses cycle will be repeated until the
software product in question is completed.t Based on the

t Of IlOUI'IC no real tofl,.-are product it proctuced iD SESAM. juat !he
model cl • producI that would have bcco produced. if one bad takep
!be lame dm:Uimu md aeaMd !he lame actiON in • real projea.

611

game hisrory and the final slate, the quality of the project
will be evaluaJed.

Objects and their attributes. relationships, and the me·
chanism to describe actions and hypotheses rogether form
a conSlrUCtion kit The model builder takes the elements
from the kit to determine the actions the player may use.
and to build the hypotheses to be triggered by the simula·
UJ'. The set of hypotheses and actions make up the model
of the software development process, which the model
builder wants to control the game. Besides describing
hypotheses and actions, the model builder generates the
starting situation the player wilt face in his or her game,
and sets up the rules foc the fmal evaluation of the game.

It is the developer's task to P'Ovide the construction kit
for the model builder and the mechanism of simulation for
the player.

Summarizing the roles in SESAM: the developer
produces the basic concepts. the model builder takes them
to construct hypotheses and actions and to provide a
starting situation for the game, the player uses the simula·
tion environment and the starting siwation to simulate a
software projecl

3 Hypotheses on software projects

3.1 What are hypotheses?

Objects and relationships build up the static structure of
our software project model But simulation of a software
project with its complex internal interrelationships re·
quires modelling irs dynamic structure, too--how 00es the
project proceed. how does the software product change?

Some reasons foc changes in the project state- are quite
obvious (e. g. the monthly payment of salary at a fued
dale decreasea the remaining budget) and may be hardwi1<d
within objects or the simulator. However. there are a large
number of other interrelationships that influence the
project Slate and thus the project evolution itself. In
software engineering literature many of these are refe­
renced. e. g., Sommerville ((7]. p. 43) cites from a study
scating that "the size of an organization correlales nega·
tively with job satisfaction and productivity. It correlates
positively with absenteeism and staff turnover." In
contrast 10 the obvious reasons for changes of the project
state mentioned above, such statements at fn have the
nature of a hypothesis--they are unproven scientifIC as-­
sumptions.

Only after validating these hypotheses empirically--cr
proving them in any other way--they may be taken for
cutain and built firmly into the model. In some cases. a

• "Projut Iwc." meaDI tbc: ,..-bole of Aa'" of all objectJ iD"oIved in
the projeel.

different wording or a variation of a hypothesis may prove
to be more reliable, comprehensive or simply more
corroct. It is for instance not ar. all obvious, whether there
exists a relation between the hypothesis above on corre-.
lation of job satisfaction and size of an organization, and
the well known "Brooks's law"; "Adding manpower to a
late software project makes it later'" «(3], p. 25). Do both
hypotheses explain a common phenomenon? Do they just
stress different aspects or are they in fact independent?
Maybe one is a special case of the other? A hypothesis
may also turn out to be obsolete, trivia] or plain wrong.

1berefore we treat such statements with caution and se­
parate them from "well proven" parts of the model. In
SESAM sunnises on interrelationships which are nOl pr0.­

ven are called what they are-hyporhtsts. We suppose
that the "treasure of software engineering knowledge"
mostly consists of such observations. sunnises and con­
clusions. so they have to be represented as such in our
model. But hypotheses are not always as explicitly stated
and easily recognized to be surmises of interrelationships
as the ones above. Sometimes they are contained impli­
citly in rules of etiqueue and practices of software engi­
neering-Structured Programming. Suuctured Analysis ~
object oriented methods are not used just for fun. but be­
cause they come with the promise of "improvement".
Wherever. beyond this promise, there is no concrete state­
ment of what kind of improvement is to be expected,
scepticism is indicated. We hope to clarify such cases by
building SESAM. SESAM will provide a facility for
gathering hypotheses from a variety of sources and for
studying their inlC'ZaCtion.

3.2 Hypotheses are vague

SESAM will provide quantitative statements on the de­
velopment and success of the software project simulated.
To achieve this objective, all parts of the simulation
model must be unambiguous, precise and quantifiable­
even hypotheses. Therefore. for the purpose of simulation.
each of the following questions must be answered for
every hypothesis:
• Which siwation must exist for the hypothesis to be

appticabIe?
• Who and what is important for the hypothesis. i. e.,

who is involved. who or what will be influenced?
• Which consequences arise from accepting the hypothe-

sis as an expression of a real life interrela1ionship?
Unfortunattly. hypotheses mostly are vague or not stated
explicitly at all. (E. g., what is the promise of structured
programming? If slated explicitly. new hypotheses might

612

show up.) Sometimes the author is 1101 obit to indicate
the consequences of a hypotheses in full detail, because
his or her observations are of only qualitative nature. In
such a case, it might indeed be the goal of simulation to
find a more precise wording for the hypothesis by nuing
and varying its paruneters-or to unmask it as inconsis­
tent or untenable.

3.3 Making hypotheses precise

11lc problem of finding an adequate representation for
hypotheses places us in a dilemma:
• On the one hand, statements are to be formulated in

accordance with their appUcation domain--the software
development process and its intemal interrelationships.

• On the other hand, a formal, computable representation
is indispensable.

Ignoring one of these two demands leads to unpleasant
ClOr'Igequence5:

• Too informal a representation is of no use for the pur­
pose of simulation-a computer cannot evaluate iL

• Too formal a representation renders Jwman handling of
hypotheses difrtcuh. It is hard to recognize whether a
set of fonnal expressions correlates with the hypothesis
it is derived from or whether some semantics have been
added or taken away. Are precision and certainty pre­
tended without a need for the simulation? What exactly
implies this set of expressions if we b'allslate it back ID
the language and manner of thinking of a software ~
i«G

It is necessary to fulfil both demands to avoid a Gordian
knot of assumptions and suppositions that is impossible
to validate. Therefore we decided to represent each hypo­
thesis at three levels of fonnalization.

1be most infonnal level is a simple citatio~very
hypothesis is stored in its original wording. The citation
is indispensable for future validation, as the representa­
tions at more formal levels need a baseline to which they
can be compared. This is the only way to avoid an inad­
vertent change in meaning. Of course, the reference f~ the
citation has to be stored, too--this is not only a question
of scientific honesty. but also facilitates later checking of
the context of the hypothesis. Sometimes the traded apho­
risms-called hypotheses--can be fully understood on1y
in their JrOper conlCAt!

1be intennediate level uses a formatted representation.
The stalement is split in its main components in order to
remove any grammatical wrapping. The aspects repre­
sented in this format are shown in figure 4. its use is illu­
strated in figure S.

attribul_ ~ transformation
used ",10

triggering
condition

attribut_
modWiod

Fig. 4 Formatted repr ... ntatlon of
hypoth •••••

A.Knowlodgo

B.K"-

B.Know1edge
asyrnplotlcal~
approaches

A.KnowIedge

B.Knowledge

A talks to B and
A.KnowIedge,. B.KnowIedge

FIll. 5 FOl"matted r.re tatlon of ttM,
hypol_lo: .H A 10.0 10 B ond 11.'0 know­

ledg' .xc ... B'., then B'. knowledge will
ooymptOllcaUy opproach 11.'0.·

Wherever possible, we identify objects as well as their
aaributes that are considered in the statemcnL Apart from
these we coUcct Ibose objocu and aaribu1eS which are in·
fluenced by the interrdalionship swed. A trigge-rillg COli'
ditioll dctc:rmines wbicb circumstances must exist ror the
hypothesis 10 ""f1l'C", i. e. . ror which situalion it fits. Such
cirtumSlaDCeS include the project slalc, certain events. a
specified point of time. or lI'Iy combination of these. The
interrelation of the objects involved is described as a
transformolioll nIk (e. g. linear or exponential correlabon,
or just a qualitative description). It is important at this
point not 10 introduce one's own assumptions, panwneter
ratings or anempts at precision, which are not fully ccr
vered by the hypothesis.

The __ formallevd mcJudes deIailing !be effect of
the hypothesis in full detail, establishing parameter
values. and resolving all inconsisrcncies dw may have
been discovered at the inlelmCdia1e level. This implies
decisions on all aspectS that camot be taken directly from
the hypothesis-and to document them! Finally the
hypolbes.is is represenlCd by one or more productions of
an Aunl>ulod Gnoph G (AGG).

The SIaIC of a simula1ed project is rqwesentcd as an
__ IP'IPL explained Ut ehapCcr 2.1, tlUs graph

c:m5isu of objects (nodes) and 1heir .. I""-hips (odaes)·
Hypodleses ellons< !be project swc and thus !be graph.
Starting situation and resulting silUllion of a hypothesis

are partial grIIlIts of !be project graph. In AGas !be
corresponding aransition is rqJf'C9CIIlCd direcdy as a gnph
production. The following paragraphs present the basic
conceptS behind AGGs: a more detailed discussion is
given Ut [4) and [6).

Attributed Graph Grammars are a generalization of
Chomsky grammars. The latter deal with sequences of
symbols, 10 whieh the following opcnbons .. '!'Plied:
I Identify a part of !be sequco<e of symbols that maIdIes

!be left ,;de of !be grarnn.-- procb:lion.
1 Substitute the subsequence of symbols identified in 1

with !be right side of !be produetion.
J In attributed grammars, attributes of all symbols con­

tained Ut !be produetion (both leIl and right side) may
be modified.

Graph Grammars deal with graphs consisting of nodes and
edges instead or sequences of symbols, 10 which anal0-
gous operaIions apply:

613

I Identify a part of !be gntIlII that matches !be left,;de of
the graph grammar produetion (i. e., fo< whieh !hero is
an isomorphic mapping to the left side of the ~
cb:1ion).

1 Substitute the partial graph identified in 1 with the
right side of the production (i. e .• cut out that partial
graph and insert !be graph on !be right ,;de of !be pr0-

duction in ilS place).
J In an AGG. attributes of all nodes and edges contained

in the producOOn (right side only!) may be modiflCd.
Nocc Ihat. in SIep I, for AGGs auribulCS of nodes or edges
may also be used in the identiftCation of a matching par­
tial graph (i. e. the xarch is not restricted to struc:twaJ
tip<ClS of !be graph).

Hypotheses .. formally .. proseolOd b,- gntIlII ~
produetions. The left side of a produetion-the preeoodi­
lion of a hypothesis-shows the situation that C8U9CS the
hypothesis 10 be applied, i. e .• the project state triMcring
the hypolhesis and the objects and relationships to be
identiflCd. Many bypotheses will not affect the structure
(stq> 2), whereas _ all of them will ehlnge object It­
tributes. If DO substitution of partial graphs is necessary,
step 2 is omiued; however. there are cues which require
changes to the graph . c. g., ir communication relation­
ships have 10 be eslablished or removed.

Two examples illustrIIC the diffcrenc:e. Figure 6 shows
the changing or communication relationships. The
Slafting situation is a meeting of three staff members, onc
of whom '1w a headache". The production applied 10 this
situation, however, does not state anything about mc:e­
tings, just about. the relationship " A and B are talking 10
c:och ochtr". This .. _p will be disrupted, if A has •
_lie. The ruult of _ apptiea<ions of dUs same pr0-

duction leads 10 a situation. in which the person with a

Starting situation Graph Grammar Production

er
®

A.Health _ "Headache-

The project staff members
X. Y and Z are in a meeting;
Z is taking notes. V has a

Any person A having a headache and at the
same time talking 10 a person e, will stop the

conversation.

Y has left the
meeting.

headache.

FIQ. 6 Changing (communication) relationshIps using Attributed Graph Grammars.

Starting aHuatlon Graph Grammar Production Resulting situation

A.Knowledge :>

B. Knowledge

a.Knowledge' _

B.Knowledge +

k'.o.t'(1 -

The project staff
members X, Y and Z
are in a me9ling ; Z is
taking notes. X and Y

If A and B are talking 10 each other, and A's
knowledge exceeds 8'5, then 8's knowledge will

asymptotically approach A's.

Same communication
strUC1ure as before, but
X and Y now have (say)

(k ... 8's learning parameter; 83% of Z's
understanding of the

problem.
have 80 % of Z's

understanding of the
protHem.

.6.1 ... simulated time between two
evaluations 01 the graph grammar)

Fig. 7 Changing object attributes using Attributed Graph Grammars.

headache is no longer in a communication relationship
with the othc:n---to be interpreted as "left the meeting".

The other eumple (fIgure 7) shows the mere changing
of Object attributes. The hypothesis of asymptotically ap­
proaching knowledges, which has already been shown in
figure 5, is represented here as a production of an AGG. It
applies to a similar situation as in the preceding example
(this time there is no headache involved), The result is an
increase of knowledge that depends on the duration of the
meeting (more precisely, on the simulated time that has
passed since the last evaluation of the graph grammar) and

614

the individualleaming capability (which is assumed equal
for person X and Y in this example).

Apart from the situation itself, events and the simu­
lated time may have an impact on the applicability of a
hypothesis/production (i.e., may be part of the triggering
condition of a hypothesis).

Attributed Graph Grammars provide an easy way of re­
presenting hypotheses fonnally. but nevertheless in an in­
luitive way. 'They allow 10 do this in tenns of the applica·
tion domain-an immediate graphical representation of
software project situatiom.

The formally defmed semantics of AGGs [4] pennit an
automatic genentioo of production rules for a ru1e-based
inference tool &om graph grammar productims. e.' to have
gJap/ll!JlIIIU!IIr proWaions inl<r]ftlOd righl away.

Wc sce !his mdhod or SIepwisc rormalization of hypo­
theses as a promising way to a more precise and compre­
hensive notion of the presently vague and not inlClTelatod
suppositions of sortw.e engineering.

4 Present state and future development

4.1 Related work

Simulating software projects is not a new idea.
COCOMO [2] shows how development effort and deve­
lopment time correlate with program size and other influ­
encing parameters. The COCOMO model can (and must)
be calibrated by setting Ihese influencing parameterS. the
so~alled effort multipliers. We adopted this idea fe.'
SESAM. McKeeman [5] reportS a tutoring program for
the lraining or softwlle dcvelopcn. Using the program.
developers learn bow to conduct a review. This program
has the nature of a game, much like SESAM. Abdel­
Hamid [1] cksaibes • simulalion model for the software
development process tha1 is based on Sys&em Dynamics.
As with SESAM, this model aIJows conclusions about
software projects. However. all of Ihese approaches are
restricted to certain aspects of software development,
whereas SESAM is based on a comprehensive approach.
Dcpcncfu1g on the hypotheses and od...- elements used by
Ihe model builder diffc:rcnt aspects may be investigalt.d.

4.2 Present state of SESAM

So far two prototypes of SESAM have been developed.
'The rust one was based on COCOMO and turned out not

u> be exlalSibk:. The sc:cond proU>type already implcmenlS
most of the concepts presented in this paper. The exam­
ples for the user interface given in chapter I w~ ~
using this prototype. At the same time, a collection of
hypotheses from available softw.e engineering lilCnWre
was initiaIt.d. resulting in a list of 242 hypotheses. We are
currently working on an implementation. of Ihe simulalor
kernel for SESAM, to be completed gradually 10 a fuDy

'15

operational system. The implementation environment is
Smalltalk-80 on UNIX wortswions.

4.3 What remains to be done?

The second protoC.ype we have available now is used to il­
lusaracc and validate our concepts. M .. y aspects are not
yet consMSeted in this protOtype. Following is a list of lO­

pics we will address next. ordered chronok>gical1y:
• The collection or hypotheses must be sepanued from

the SESAM simulator. To this end. we have 10 imple­
ment a procedure to conven hypotheses from natural
language to productions of an Attributed Graph
Gnunmar.

• We need la develop a model for the software develop­
ment process, implement it using SESAM and validate
it. This model determines the actions available to a
player. Furthermore we will identify shortcomings of
SESAM while developing the process model, and we
wiD be able 10 specify the necessary improvements and
eJ.1ensions.

• At the cnd or a SESAM game. the project IUstory mUSl
be ra1Cd and the player must be given a helpful founda­
tion of the rating.

• During the game. the player will be able 10 access a
software engineering data base giving descriptions of
methods and t<ehniqucs for software engineering. He or
she shall have the chance to learn about possible alter­
natives belCR making a decision.

5 Bibliography

[11 Abdel ·Hamid. T.K., "lnvesti,ating the Cosl/Schedule
Tru.{)ff in Software Development." IEEE Softwtu~, vo!.
7. no. I, pp. 97· IOS, January 1990.

(21 Boehm, B.W., Soflwar~ ElIgillurillg Ecollomics,
Englewood Cliffs, New Jeney: Prentice Hall. 1981.

(3) Brooks, F. p" The Mythical Mall MOllt",
Retd.inglMu •. : Addison Wesley. 1975.

[4] Goaler, H .• GrGpllgrtll1lmQJiUlI Us ur SoftwQT~t~clutik..
Balin: Sprin,er. 1988.

[5] McKeeman. W.M .. ''Graduation Talk at Wmg Institute."
IEEE Computer. vol. 22, no. 5. pp. 78·80. May 1989.

[6] Nagl, M .• GrGp"-Grammtltiu_TJs~oru. ImplefMlI.
tWilit,. A1I~Ol, BraunJChweia: Viewe,. 1979.

[7] Sommerville., I .• Software ElI,iltUrm,. Wokinlham:
AddiJon-Wesley, 3" Edition, 1989.

