Abstract:
This paper presents a numerical simulation framework for the micro-glassblowing process to design three-dimensional (3D) resonant shells for inertial sensors, and non-res...Show MoreMetadata
Abstract:
This paper presents a numerical simulation framework for the micro-glassblowing process to design three-dimensional (3D) resonant shells for inertial sensors, and non-resonant cells for optical and atomic sensors. The micro-glassblowing of micro-spherical atomic cells out of Borosilicate Glass (BSG) and micro Hemi-toroidal shells out of Fused Quartz (FQ) are simulated to predict the resulting 3D geometries. Based on the presented simulation framework, strategies to modify the geometry of glassblown shells for improvement of optical and mechanical properties are presented. Micro-spherical BSG cells with >97% sphericity and improved thickness distribution for optical transmission, and low-frequency FQ micro-shell resonators with more than 6× modal separation were designed. The simulation-based approach in this study can be used for the optimization of the 3D shell geometry to achieve higher sphericity, an improved optical light transmission, structural rigidity in micro-spherical cells, and larger modal separation and decoupled mass and stiffness in micro shell resonator.
Published in: 2019 IEEE SENSORS
Date of Conference: 27-30 October 2019
Date Added to IEEE Xplore: 14 January 2020
ISBN Information: