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Abstract—The location fingerprinting method, which typically
utilizes supervised learning, has been widely adopted as a
viable solution for the indoor positioning problem. Many indoor
positioning datasets are imbalanced. Models trained on imbal-
anced datasets may exhibit poor performance on the minority
class(es). This problem, also known as the “curse of imbalanced
data,” becomes more evident when class distributions are highly
imbalanced. Motivated by the recent advances in deep generative
modeling, this paper proposes using Variational Autoencoders
and Conditional Variational Autoencoders as oversampling tools
to produce class-balanced fingerprints. Experimental results
based on Bluetooth Low Energy fingerprints demonstrate that
the proposed method outperforms SMOTE and ADASYN in
both minority class precision and overall precision. To promote
reproducibility and foster new research efforts, we made all the
codes associated with this work publicly available.

Index Terms—ADASYN, Bluetooth Low Energy, Conditional
Variational Autoencoders, Imbalanced Data, Indoor Positioning,
Location Fingerprints, Oversampling, Recurrence Plots, SMOTE,
Variational Autoencoders.

I. INTRODUCTION

Interest in indoor positioning research has substantially
grown in recent years due to the multitude of applications
enabled by indoor positioning, such as the Internet of Things
(IoT) [1], Indoor Location-based Services [2], and Ambient
Assisted Living [3]. Unlike outdoor positioning, where the
Global Navigation Satellite System (GNSS) is the de facto
standard for positioning, there is no universally agreed-upon
solution for the indoor positioning problem. Among the tech-
niques used for indoor positioning, location fingerprinting, or
simply fingerprinting, has received the most attention because
of its simplicity and ability to produce accurate positioning
estimates [4]. The concept of fingerprinting is to identify
indoor spatial locations based on location-dependent measur-
able features (i.e., location fingerprints) collected at predefined
reference points (RPs). Examples of location fingerprints in-
clude radio frequency fingerprints (e.g., WiFi [5], Bluetooth
[6], cellular [7]), magnetic field fingerprints [8], and hybrid fin-
gerprints [9]. Fingerprinting typically utilizes supervised learn-
ing and is inherently dependent on labeled datasets. However,
often real-world indoor positioning datasets are imbalanced,
meaning that the class distribution of fingerprint samples is
not uniform. For example, Table I illustrates discrepancies
between the number of samples in the minority and majority
classes of some publicly available indoor positioning datasets.

TABLE I
EXAMPLES OF IMBALANCED INDOOR POSITIONING DATASETS

Dataset Type Minority Majority Ratio

Dataset described in [17] WiFi 1 2 1 : 2
Dataset described in [18] BLE 36 78 ≈ 1 : 2
Dataset described in [19]
(fingerprints from 1st de-
ployment)

BLE 240 1, 680 ≈ 1 : 7

Miskolc IIS [20] Hybrid 18 208 ≈ 1 : 12
Dataset described in [21] BLE 2 34 1 : 17
Dataset described in [22] Magnetic 17 404 ≈ 1 : 24
UJIIndoorLoc [23] WiFi 2 139 ≈ 1 : 70
Dataset described in [24] LoRaWAN 1 398 1 : 398

Training on imbalanced data may result in a model biased
toward the majority class(es). The techniques used to address
this problem can be grouped into four main approaches: data
sampling [10], algorithmic modification [11], cost-sensitive
learning [12], and ensemble learning [13]. This paper deals
with data sampling and, in particular, with oversampling
data techniques. To the best of our knowledge, no study
exists that investigates the problem of imbalanced data in the
context of indoor positioning. The main contribution of this
paper is the application of a Variational Autoencoder (VAE)
[14] and a conditional variant, referred to as a Conditional
Variational Autoencoder (CVAE) [15], on a highly imbalanced
indoor fingerprinting dataset. By using various performance
evaluation metrics, the achieved results are compared to those
obtained by two state-of-the-art oversampling methods known
as Synthetic Minority Oversampling TEchnique (SMOTE)
[10] and ADAptive SYNthetic (ADASYN) sampling [16]. The
remainder of this paper is organized as follows: Section II
describes the dataset used in this study, Section III outlines
the experimental setup, and Section IV discusses the results
and future research directions.

II. DATASET DESCRIPTION

Aranda et al. [19] introduced the dataset used in this
study and made it publicly available. We chose this dataset
because it is composed of Bluetooth Low Energy (BLE)
fingerprints. BLE is a recently introduced low-power com-
munication protocol. It was designed with the IoT in mind,
so it has received widespread adoption in indoor positioning
applications [25]. The data we used was collected from a three-
story Physics Department building. Each floor was comprised
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Fig. 1. A graphical representation of the collection environment showing 2D floor plans, RPs, and beacon locations

of two same-sized cubic structures joined by a hallway. Ten
multi-slot BLE beacons were deployed per floor, and three
different smartphones were used to collect fingerprints at
various RPs. This paper is concerned with users’ locations
expressed symbolically instead of physically, also known as
symbolic positioning [26]. Therefore, we treated each cubic
structure on each side of a floor as an independent symbolic
space. Since each symbolic space has different BLE signal
propagation characteristics, it can be considered a unique
class, and the symbolic positioning problem can be cast as a
classification problem. We preprocessed the dataset to exclude
any samples collected outside of the cubic structures and
create an initially balanced dataset. Additionally, to account
for differences in beacon transmission powers resulting from
multi-slot configuration, we transformed all fingerprints into
recurrence plots according to (1):

x = [x1, x2, · · · , xn];Ri,j = |xi − xj |;
x ∈ Rn : {xi, xj ∈ R | 0 ≤ xi, xj ≤ 1}

(1)

where x is a fingerprint vector of dimension n; xi, xj are
standardized Received Signal Strength (RSS) measurements
corresponding to beacons i and j, respectively; and Ri,j

represents the distance between two RSS measurements. After
preprocessing, the balanced dataset contained a total of 8, 500
samples per symbolic space. We allocated 80 % of those for
training and the remaining 20 % for testing. Fig. 1 presents
a 2D scheme depicting the collection environment, RPs, and
beacon locations, while Fig. 2 displays the recurrence plot of
a randomly selected fingerprint from each symbolic space.

III. EXPERIMENTAL SETUP

Q. Li et al. [27] demonstrated how site surveying costs can
be reduced through the incorporation of Generative Adver-
sarial Network (GAN)-synthesized fingerprints. In contrast,
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Fig. 2. Examples of fingerprints transformed into recurrence plots

this paper addresses the problem of imbalanced fingerprint
datasets using VAEs/CVAEs. In particular, our approach is
inspired by applying deep generative models for data over-
sampling in domains such as fraud detection [28] and image
processing [29]. We assessed the performance of VAEs and
CVAEs by creating imbalanced versions of the training set.
We applied these models to generate synthetic fingerprints of
the minority symbolic space(s) so that all symbolic spaces
are equally represented (i.e., an artificially balanced training
set is created). Since we are interested in highly imbalanced
data [30], we set the imbalance ratio to 1 : 100 using random
downsampling. We used the artificially balanced training set to
train a downstream classifier that acted as a positioning model
that distinguished between different symbolic spaces. For this
purpose, we chose a Support Vector Machine (SVM) since
SVMs are extensively used in indoor positioning [31]. We
used the scikit-learn implementation of SVM [32], with
default parameters that were kept fixed for all experiments.
We used the testing set, which is well-balanced and remains
the same for all experiments, to quantify the performance of
the classifier according to metrics Precision, Recall, and F1-
score as defined in [33]. The aim is to determine whether
VAEs and CVAEs can learn the distribution of the minor-
ity symbolic space(s) to generate synthetic fingerprints that
promote enhancements in the classifier’s performance. The
performance of the classifier trained on the imbalanced version
of the training set serves as the baseline. Performance results
are expressed as a relative change compared to the baseline
as calculated by (2):

CΦ =
ΨΦ −ΨIMBALANCED

ΨIMBALANCED
(2)

where CΦ is the relative change for a performance metric
Ψ obtained using an oversampling technique Φ. Since there
is a total of six symbolic spaces, we performed a total of
five experiments. Each experiment corresponds to a different
number of minority symbolic spaces ranging from 1 to 5.
We conducted three trials for a given number of minority
spaces (i.e., three imbalanced sets are constructed in which the
spaces constituting a set are randomly chosen). For example,
the experiment dealing with five minority spaces is composed
of sets {0, 1, 2, 3, 5}, {0, 1, 3, 4, 5}, and {0, 1, 2, 3, 4}. The
result is determined by averaging performance over all the
trials. Table II presents the results of the experiments and
compares them to those achieved by SMOTE and ADASYN as
implemented in the imbalanced-learn library [34]. We



TABLE II
DOWNSTREAM CLASSIFIER RESULTS (RELATIVE TO THE BASELINE)

Minority Majority Overall

Minority Classes Method Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

1 SMOTE -0.1597 11.0763 7.3103 0.048 -0.0153 0.0255 0.0049 0.0813 0.1511
ADASYN -0.1628 11.3157 7.419 0.0486 -0.0164 0.0254 0.0047 0.0822 0.1529

VAE -0.0572 9.6271 5.9637 0.0297 -0.0537 -0.0444 0.0117 0.0305 0.0592
CVAE -0.0775 2.6687 2.2359 0.0106 0.0001 0.0078 -0.0077 0.0234 0.0462

2 SMOTE -0.1612 2.6073 1.7459 0.0552 -0.0731 0.0137 -0.0295 0.1778 0.2649
ADASYN -0.1619 2.6083 1.7461 0.0538 -0.0742 0.0129 -0.0306 0.1769 0.2643

VAE -0.0363 0.5386 0.5013 0.0128 -0.0001 0.0123 -0.0052 0.0504 0.0832
CVAE -0.0953 0.5552 0.4981 0.016 -0.0007 0.0141 -0.0268 0.0514 0.0843

3 SMOTE -0.1863 3.9258 2.4359 0.234 -0.1229 0.101 -0.0323 0.3697 0.6369
ADASYN -0.1876 3.9276 2.4334 0.234 -0.0663 0.1318 -0.0332 0.3692 0.636

VAE -0.0453 1.533 1.2109 0.0703 -0.0039 0.0508 -0.0029 0.1637 0.305
CVAE -0.077 1.3086 1.0386 0.0672 -0.0029 0.0473 -0.0242 0.1401 0.2644

4 SMOTE -0.0907 2.1388 1.5017 0.5263 -0.1097 0.2738 0.024 0.5032 0.8718
ADASYN -0.0932 2.1385 1.4979 0.5242 -0.1139 0.2703 0.0216 0.5001 0.8682

VAE 0.0282 0.9697 0.8676 0.1912 -0.0064 0.1279 0.0584 0.2597 0.4881
CVAE 0.0618 0.7553 0.6843 0.1363 -0.0045 0.0927 0.0756 0.2027 0.3808

5 SMOTE 0.012 0.2202 0.2808 0.1315 0.0601 0.3246 0.0283 0.1845 0.2881
ADASYN 0.0084 0.2119 0.2724 0.1245 0.0638 0.3231 0.0242 0.1789 0.2809

VAE 0.0705 0.1046 0.1461 0.0419 0.0477 0.1499 0.0666 0.0919 0.1468
CVAE 0.0782 0.1008 0.1433 0.0555 0.0423 0.1457 0.0751 0.0877 0.1438

used the default parameters for SMOTE and ADASYN and we
kept them fixed for all the experiments. Similarly, VAE and
CVAE architecture and hyperparameters implemented using
Keras [35] were kept fixed for all the experiments. The model
specifications for VAE and CVAE are provided in Table III and
a general scheme of the experimental setup is presented in Fig.
3.

IV. DISCUSSION AND CONCLUSION

The results in Table II show that, in all the experiments, us-
ing synthetic fingerprints generated by VAE, CVAE, SMOTE,
and ADASYN all lead to an improved F1-score for the mi-
nority symbolic space(s) compared with classifiers trained on
imbalanced datasets. Moreover, in all the experiments, every
oversampling technique also resulted in a better F1-score for
the majority symbolic space(s) and all spaces overall. This
suggests that these oversampling techniques can enhance a
classifier’s overall learning ability, given that improvements
are not isolated to the performance on the minority space(s).
Finally, in general, SMOTE and ADASYN outperform VAE
and CVAE. However, unlike VAE and CVAE, SMOTE and
ADASYN are algorithms specifically designed to handle im-
balanced data. Additionally, we expect that by fine-tuning VAE
and CVAE architecture and hyperparameters, we can achieve
comparable results to, if not better than, those obtained by
SMOTE and ADASYN. Confirming this conjecture is a topic
for future research. Furthermore, as part of future research, we
intend to undertake a more in-depth analysis of the results to
answer questions such as “Why does VAE generally produce
better overall F1-scores than CVAE?” and “Why does VAE
yield better minority space Precision and overall Precision
when the minority spaces represent 50 % or less of the overall
spaces, while CVAE performs better on these metrics when the
minority spaces represent over 50 % of the overall spaces?”.
In addition, we would like to apply VAE and CVAE to other
fingerprint types and investigate the effectiveness of other
deep generative models such as GANs and Conditional GANs
(CGANs) for oversampling fingerprint data. Computing scripts
associated with this work are publicly available in our GitHub
repository [36].
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Fig. 3. Scheme of the experimental setup

TABLE III
VAE/CVAE SPECIFICATIONS. THE CODE FOR VAE AND CVAE IS

INSPIRED BY [37] AND [38], RESPECTIVELY, AND EXECUTED ON GOOGLE
COLAB IN A GRAPHICS PROCESSING UNIT (GPU) RUNTIME.

Order Layer type Output size Filters Kernel size Strides Activation
VAE (encoder)

1 Input (recurrence plot) (30,30) - - - -
2 Convolution (15,15) 8 (4,4) (2,2) ReLu
3 Convolution (8,8) 16 (4,4) (2,2) ReLu
4 Convolution (8,8) 16 (4,4) (2,2) ReLu
5 Flatten - - - - -
6 Dense 8 - - - ReLu
7(a) Dense (µ) 2 - - - Linear
7(b) Dense (σ) 2 - - - Linear

VAE (decoder)
1 Input (sample from distribution) 2 - - - -
2 Dense 1, 024 - - - ReLu
3 Reshape (8,8,16) - - - -
4 Deconvolution (15,15) 16 (4,4) (2,2) ReLu
5 Deconvolution (30,30) 8 (4,4) (2,2) ReLu
6 Deconvolution (recurrence plot) (30,30) 1 (3,3) (1,1) Sigmoid
optimizer: Adam (lr = 1e−4); batch size: 23; objective function: binary cross-entropy + Kullback–Leibler divergence

CVAE (encoder)
1(a) Input (recurrence plot) (30,30) - - - -
1(b) Input (label) 6 - - - -
2 Dense 900 - - - Linear
3 Reshape (30,30,1) - - - -
4 Concatenate (recurrence plot & label) (30,30,2) - - - -
5 Convolution (15,15) 16 (4,4) (2,2) ReLu
6 Convolution (8,8) 32 (4,4) (2,2) ReLu
7 Flatten - - - - -
8 Dense 16 - - - ReLu
9(a) Dense (µ) 2 - - - Linear
9(b) Dense (σ) 2 - - - Linear

CVAE (decoder)
1(a) Input (sample from distribution) 2 - - - -
1(b) Input (label) 6 - - - -
2 Concatenate (sample & label) 8 - - - -
3 Dense 2, 048 - - - ReLu
4 Reshape (8,8,32) - - - -
5 Deconvolution (15,15) 32 (4,4) (2,2) ReLu
6 Deconvolution (30,30) 16 (4,4) (2,2) ReLu
7 Deconvolution (recurrence plot) (30,30) 1 (4,4) (1,1) Sigmoid
optimizer: Adam (lr = 1e−4); batch size: 64; objective function: binary cross-entropy + Kullback–Leibler divergence
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and J. Huerta, “Wi-fi crowdsourced fingerprinting dataset for
indoor positioning,” Data, vol. 2, no. 4, 2017. [Online]. Available:
https://www.mdpi.com/2306-5729/2/4/32

[18] G. M. Mendoza-Silva, M. Matey-Sanz, J. Torres-Sospedra, and
J. Huerta, “Ble rss measurements dataset for research on accurate
indoor positioning,” Data, vol. 4, no. 1, 2019. [Online]. Available:
https://www.mdpi.com/2306-5729/4/1/12

[19] F. J. Aranda, F. Parralejo, F. J. Álvarez, and J. Torres-Sospedra,
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