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Abstract—One of the major healthcare challenges is elderly 

fallers. A fall can lead to disabilities and even mortality. With 

the current Covid-19 pandemic, insufficient resources could be 

provided for the care of elderlies, and care workers often may 

not be able to visit them. Therefore, a fall may get undetected or 

delayed leading to serious harm or consequences. Automatic fall 

detection systems could provide the necessary detection and 

warnings for timely intervention. Although many sensor-based 

fall detection systems have been proposed, most systems focus 

on the sudden fall and have not considered the slow fall scenario, 

a typical fall instance for elderly fallers. In this paper, a robust 

activity (RA) and slow fall detection system is proposed. The 

system consists of a waist-worn wearable sensor embedded with 

an inertial measurement unit (IMU) and a barometer, and a 

reference ambient barometer. A deep neural network (DNN) is 

developed for fusing the sensor data and classifying fall events. 

The results have shown that the IMU-barometer design yield 

better detection of fall events and the DNN approach (90.33% 

accuracy) outperforms traditional machine learning algorithms.  
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I. INTRODUCTION

During the current pandemic of Coronavirus disease 2019 
(Covid-19), social distancing is the main mitigation to contain 
the spread of the virus [1]. Due to the effects of aging, the 
musculoskeletal systems of the elderlies are often weakened. 
Thus, they are prone to fall. A fall could often lead to severe 
injuries and long recovery time. It could lead to bone fractures 
or muscle injuries restricting mobility. In some cases, the 
elderly fallers could not be able to get up after fall and seek 
for help, and in some instances the elderly fallers have died 
due to late response. Fall detection is an essential element of 
elderly care. Especially for those elderly or impaired who live 
alone, constant monitoring is required to detect fall instances. 
However, in the current Covid-19 pandemic, physical contact 
is being avoided which may lead to late intervention and 
threaten the health of the elderly population. An automatic fall 
detection system is needed to provide timely care for elderly 
fallers. In this paper, we propose a wearable sensing system 
with a deep learning algorithm for accurate fall detection. 

With recent advances in computer vision, the camera-
based system could provide accurate detection of falls. 
However, as Google Smart City project suggested: “Our 
society seeks to create a smart city of privacy instead of a 
smart city of surveillance.” Therefore, the privacy problem 
has become the main disadvantage of camera-based systems, 
especially for fall detection in the user’s home [2]. Thus, 
wearable sensors with accelerometer, gyroscope or 
barometers have been widely used to detect falls. However, 
previous research mainly focused on sudden falls, which 

includes slipping or tumbling. Nevertheless, many instances 
of the elderly falls are slow falls, where the fall happens slowly 
as the elderly tries to rebalance themselves during a fall.  

Accelerometers have been commonly used to detect body 
motion and recognize postures for fall detection. For instance, 
an accelerometer was used to detect falls and monitor 
activities. The Care-Net system applied a mercury tilt switch 
for detecting orientation information (i.e. from upright to 
lying), and a piezoelectric sensor for capturing impact 
information such as large negative acceleration (i.e. fall) [3]. 
An e-AR (Ear-worn Activity Recognition) sensor based on the 
Body Sensor Network (BSN) [4] was proposed for pervasive 
monitoring of gait and activities. Baek et al. [5] proposed a fall 
detection system based on a necklace sensor for posture and 
behavior detection. Kang et al. [6] proposed a wrist-worn 
device for health monitoring and fall detection. This device 
involved a custom-made posture sensor which included a 
photo-interrupter with a pendulum. Kerdjidjet al. [7] 
investigated three approaches for detecting: the absence of the 
fall, static or dynamic state, fall and six activities of daily 
living (ADL). Sun et al. [8] developed a waist-worn based fall 
detection system using barometric sensors. An additional 
reference barometer on the wall was also utilized to reduce the 
noise. Although most studies have shown promising results of 
using wearable sensors for detecting falls, previous studies 
mainly followed limited protocols where the targeted 
activities were distinctively different from fall events. The 
proposed approaches could mainly be applied for recognizing 
simple activities. Therefore, in real-life scenarios, such 
methods would fail due to false triggering of various 
confusing ADLs. Indeed, most prior works have not 
considered slow fall, a typical fall instance for elderly fallers. 
As slow falls often have similar sensing profiles as per normal 
ADL and especially for noised activities, conventional 
methods would fail to detect slow falls. Such limitations have 
hindered the practical use of fall detection systems to date.  

II. METHODS

A. Protocol Design and Human Experimental Trial

In planning a robust fall detection system, an extensive
ADL protocol is designed. More variety of activities with 
confusing ADLs such as sitting on the floor, squatting down, 
low impact fall with fast recovery, and noised ADLs have 
been considered in the design of this protocol. These activities 
are common in ADL and are similar to fall, especially slow 
fall, which will cause false alarms. This system also has added 
sudden falls and slow falls caused by muscle weakness, leg 
fatigue, etc. 11 subjects (seven males, four females, Table. 1) 
were recruited and consented in our study. Each subject was 
required to perform two groups: ADL group and fall group 
(each group contains 15 events) shown in Table 2.  
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TABLE I.  STUDY PARTICIPANTS CHARACTERASTICS 

Characteristics  Training set (n=600) Testing set (n=300) 

No. Subjects 1 10 

Age (years)a 23 24 ± 2 

Sex, No. (%) M M (6), F (4) 

Height (cm)a 178 172 ± 9 

Weight (kg)a 72 65 ± 12 

a.
  Data are expressed as mean ± std, dev 

TABLE II.  TYPES OF FALLS AND ADLS IN THE PROPOSED 

EXPERIMENTAL PROTOCOL DATASET 

Types of ADLs Trialsb 

Basic ADLs 240 
E1 Sitting down on a chair  30 

E2 Standing up from a chair  30 

E3 Lying down on the bed 30 

E4 Getting up from the bed 30 

E5 Picking up items from the floor 30 

E6 Standing (lower bunk is stable) 30 

E7 Walking (forward, backward, lateral, turning) 30 

E8 Jumping (1-4 times) 30 

Confusing ADLs (RA) 120 
E9 Low impact fall with fast recovery 30 

E10 Squatting down to tie the shoelaces 30 

E11 Kneeling down to find items on the floor 30 

E12 Sitting down on a floor  30 

Noised ADLs (RA) 90 
E13 Sitting down on a chair when opening the window 30 

E14 Sitting down when using the hairdryer 30 

E15 Lying down on the bed with tapping on sensors 30 

Type of falls Trialsb 

Basic Falls 240 
E16 Forward fall, end with kneeling 30 

E17 Forward fall, end with lying down 30 

E18 Forward fall, end with attempting to get up 30 

E19 Backward fall, end with sitting 30 

E20 Backward fall, end with lying down 30 

E21 Backward fall, end with attempting to get up 30 
E22 Lateral fall, end with lying (left/right) 30 

E23 Lateral fall, end with sitting (left/right) 30 

Transitional Falls 120 

E24 Fall from the bed when getting up 30 

E25 Fall from jumping (1-4 times) 30 

E26 Fall from turning (1-2 turning circles) 30 

E27 Failed to stand up from the chair or toilet (fast fall) 30 

Slow Falls 90 
E28 Failed to stand up from the chair or toilet (slow fall) 30 

E29 Failed to stand up from squatting (slow fall) 30 

E30 Fall from squatting down (slow fall) 30 

b.
  Trained and test trials (2:1) 

B. A Wearable System Design  

Our wearable sensor system was designed on an IMU with 
two barometric pressure sensors. The sensor prototype is of 

size 7 cm × 3.4 cm and it is designed as waist-worn device, 
and it mainly consists of a 6-axis motion tracking IMU 
(MPU6050, InvenSense, U.S.A.) with a digital barometric air 
pressure sensor, and another barometric air pressure sensor 
can be placed on a desk or mounted onto a wall as a reference 
(as shown in Fig. 1). One barometric sensor on the body can 
detect the bodily movement and a sensor on the wall/desk will 
be used as a global reference to help eliminate environmental 
noises which can be caused by opening doors/windows, etc. 
[8]. The barometric sensor has a pressure precision of ± 
0.002hPa and an operation range of 300-1200 hPa. 

C. Classification  

To detect fall events, a DNN approach was designed. The 

DNN approach has four main stages in Fig. 2. The first and 

second stages contain two convolutional neural network 

(CNN) layers. Each CNN has a convolutional layer for 

feature detection with a pooling layer for down-sampling [9]. 

As sensor signals are time-series signals where the signal 

features are temporally correlated. The third stage contains a 

bidirectional long short-term memory (bi-LSTM) layer. Bi-

LSTM duplicates the raw inputs side by side in two ways. 

Information gains from the past (backward) and future 
(forward); thus, the future input information can be reached 

from the current states [10]. The last stage has a Softmax 

layer which infers the probability of the result classes. Hence, 

the Softmax layer outputs the likelihood of the detected event 

belonging to either fall or no fall event.  

For detecting falls, eight features from the wearable 

sensors are chosen empirically, including acceleration with 

X, Y, Z directions, angular velocity along X, Y, Z directions 

and two barometer pressure recordings. These sensor signals 

are fed directly to the DNN for classification.  

 To optimize the training of the DNN, Adam is used as an 
adaptive learning rate (LR) optimizer where the squared 

gradients are used to scale the learning rate and momentum 

[11]. The training based on the subject-independent dataset is 

sensitive to the initial choice of learning rate. Instead of 

monotonically decreasing the learning rate, cyclical learning 

rate (CLR) [12] is introduced in our DNN. Results show that 

CLR can improve classification accuracy without a need to 

tune, and reduce iterations, saddle points and local minima.  

To validated the proposed DNN approach, we compared 

our method with traditional threshold methods [13] and 

conventional machine learning algorithms [14, 15], including 

K-Nearest Neighbor (KNN), Support Vector Machine 
(SVM), Decision Tree (DT), Logistic Regression (LR), and 

Random Forest (RF). 

Fig. 1. Experimental configuration: (a) shows the details of the waist-worn sensors. (b) shows the coordinates of IMU and its relative location to the center 

of the body (a flexible angle of 𝜃 between 20-70 degrees from front and right side) which is adjustable to improve the wearability of the device. (c) shows the 

reference sensor on the wall. (d) shows the general location and orientation of the waist-worn sensor.  

 



III. RESULTS AND DISSUSION 

 Fig. 3. shows the results of applying the proposed DNN 

approach with different sensor combinations (i.e. a single 

IMU, a single barometer, and a hybrid of IMU with 

barometer). While a single sensor system results shows low 

accuracy in subject-independent testing based on challenging 

protocols, IMU-Barometer combinations improved accuracy 

significantly with minor errors increasing in some confusing 

and noised ADLs such as hairdryer effects. As we expected, 

the results have shown that confusing ADLs, noised ADLs, 

transitional falls and slow falls induced most errors which is 

the most challenging part of current research. Thus, it has 

further proved that the proposed protocols are practical and 

can be used to build a robust fall detection system. Fig.4. 

shows the performance of different classification algorithms 

based on the IMU-Barometer sensor system. Although 

machine learning algorithms like decision tree and gradient 

boosting have generally improved threshold algorithms 
performance, errors are still high for fall detection. The 

proposed deep neural network outperformed other 

algorithms. More advanced learning algorithms can be 

applied to reduce training loss and increase accuracy in the 

future. This detection system can be considered as a node in 

a health monitoring internet of things system, and which can 

be deployed to retirement homes, hospitals and residential 

homes to provide the needed monitoring for elderlies.  
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Fig. 2. Schematic of the proposed deep neural network approach. With an 8-dimensional raw sensor signal as the input vector, we first used two stages of 1D 

CNN to extract its activity-related features and then effective features were flattened and transferred to a bi-LSTM layer which then was used to find the hidden 

correlations both from past and future events. Finally, Softmax was used to compute the likelihood of fall/non-fall.  

Fig. 3. Comparative study with different sensors. Using the proposed DNN method, the signals from a single IMU, a single Barometer and a hybrid IMU with 

a barometer system were processed, and the respective results are shown as black, green and red bars. The left diagram shows the detection result of ADLs 

and the right figure shows the detection results of fall events.  

Fig. 4. (a) shows the accuracy of applying different classification algorithms to the IMU-Barometer sensor system. (b) shows the confusion matrix of different 

classification algorithms (label 0 represents a non-fall event and label 1 represents a fall event).  
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