
Documentation Practices in Agile Software
Development: A Systematic Literature Review

Md Athikul Islam
Department of Computer Science

Boise State University
Boise, ID, USA

mdathikulislam@u.boisestate.edu

Rizbanul Hasan
Department of Computer Science

Boise State University
Boise, ID, USA

rizbanulhasan@u.boisestate.edu

Nasir U. Eisty
Department of Computer Science

Boise State University
Boise, ID, USA

nasireisty@boisestate.edu

Abstract—Context: Agile development methodologies in the
software industry have increased significantly over the past
decade. Although one of the main aspects of agile software
development (ASD) is less documentation, there have always been
conflicting opinions about what to document in ASD. Objective:
This study aims to systematically identify what to document
in ASD, which documentation tools and methods are in use,
and how those tools can overcome documentation challenges.
Method: We performed a systematic literature review of the
studies published between 2010 and June 2021 that discusses
agile documentation. Then, we systematically selected a pool
of 74 studies using particular inclusion and exclusion criteria.
After that, we conducted a quantitative and qualitative analysis
using the data extracted from these studies. Results: We found
nine primary vital factors to add to agile documentation from
our pool of studies. Our analysis shows that agile practitioners
have primarily developed their documentation tools and methods
focusing on these factors. The results suggest that the tools and
techniques in agile documentation are not in sync, and they
separately solve different challenges. Conclusions: Based on our
results and discussion, researchers and practitioners will better
understand how current agile documentation tools and practices
perform. In addition, investigation of the synchronization of these
tools will be helpful in future research and development.

Index Terms—Software Engineering; Agile Software Develop-
ment; Documentation; Systematic Literature Review

I. INTRODUCTION

Software documentation is an integral part of software
development. It works as a communication medium between
developers of a team and is utilized as an information reposi-
tory by maintenance engineers [76]. Documentation elucidates
how the system is structured, its functionalities, and the design
rationale [70]. Software documentation should be included as
part of software development and is sometimes called “com-
mon sense” [26]. Even outdated document serves a purpose
and may be helpful [26]. However, the incomplete, wrong,
clumsy, abstruse, outdated, and inadequate document often
leads to the unpopularity of software documentation among the
developers [4]. Regardless of the application type, almost all
medium to large software projects produces a certain amount
of documentation [76].

ASD is an iterative approach that helps teams deliver
value to their customers faster and more efficiently. It is
immensely applied in both industry and academia [54]. This
incremental approach maintains a strong focus on project goals

and customer involvement. Over the past decade, numerous
software developers have adopted the ASD model [33]. This
concept of agile is gained by different agile methodologies like
Scrum, eXtreme Programming (XP), Crystal, Lean, Dynamic
Systems Development Method (DSDM), and Feature-Driven
Development (FDD). Documentation has a lower priority
than working software in Agile practices [27]. Some agile
practitioners consider code as its documentation. As a result,
the information that is recorded in documentation (documented
information, henceforth) may not be well maintained, result-
ing in inadequate information for the team to understand
development tasks [40]. Another reason for less focus on
documentation is that it consumes time that could have been
allocated in development [70].

As modern software systems are complicated, developers
revisit the system more often. Trivial maintenance work is
assigned to junior developers who have little experience with
the code. As a result, lack of documentation hinders inter-
team building and knowledge loss [78]. In addition, users of a
software product expect quality results [2]. Considering these
scenarios, agile documentation plays a significant role in ASD
[70], [71]. Moreover, offshore agile development is widespread
nowadays, and documentation is one of the key factors to
make offshore agile development successful [58]. Therefore,
developers should document the features of each iteration to
help future developers refactor them into smaller tasks.

The practitioners working on agile documentation have
implemented different documentation strategies to overcome
the issues raised by the lack of documentation. They have
identified different key elements that developers should doc-
ument such as user stories, functional requirements, source
code, etc [10], [13], [43]. They have also developed various
tools and models such as wikis, simul loco, doxygen, etc to
document these elements effectively [9], [55], [66]. In this
paper, we focus on understanding the pivotal information to
document in agile and the existing techniques and tools that
result in document optimization. We conducted a systematic
literature review from existing research and analyzed them to
answer our research questions mentioned in section II. Our
findings will benefit any agile practitioners and developers to
optimize their documentation effort and help researchers in
further study.

ar
X

iv
:2

30
4.

07
48

2v
1 

 [
cs

.S
E

] 
 1

5 
A

pr
 2

02
3



II. RESEARCH METHODOLOGY

In our research methodology, we followed the directions
proposed by Kitchenham and Charters [45]. We have divided
our research review into four steps, namely planning, conduct-
ing, and reporting the review results.

A. Planning

We have planned this review by confirming the need for
such a review and have proposed our research questions ac-
cordingly. Our planning phase includes search strategy, search
string, and inclusion/exclusion criteria.

1) Research questions: We pose the following research
questions to drive this study.

• RQ1: Which information do agile practitioners doc-
ument?

• RQ2: Which documentation generation tools and
methods do agile practitioners use?

• RQ3: How can the tools and methods overcome the
documentation challenges in agile software develop-
ment?

2) Search strategy: After defining the need for this sys-
tematic review and research questions, we started to carry
out the formulation of a search strategy based on the guide-
lines provided by Kitchenham and Charters [45]. In Table
I we broke down the question into individual facets i.e.
population, intervention, and constructed search string using
Boolean ANDs and ORs. We initially fetched studies from the
electronic databases and then explored them through reference
searches (snowballing) to seek other meaningful studies. After
that, we applied our inclusion and exclusion criteria to the
fetched studies involving a different number of researchers, as
explained in Section II-A4.

3) Search criteria: The search criteria used for this review
consist of three parts - C1, C2, and C3, defined as follows:

• C1: We constructed the C1 string, which enables the
keyword agile either in the title or abstract.

• C2: The C2 string is made up of keywords such as
document or document* either in title or abstract.

• C3: We constructed the C3 part, which enables keywords
such as tools or document* tools either in the title or
abstract.

The boolean expression: C1 AND C2 OR C3
We provided our search string in Table I.
Another key thing to note is that we have filtered out the

result fetched from the search query by applying the checkbox
feature of the IEEE Xplore database. In this case, we filtered
out publication topics such as internet, organizational aspects,
computer-aided instruction, DP industry, computer science ed-
ucation, educational courses, knowledge management, mobile
computing, security of data, business data processing, and
teaching not relevant to our research.

4) Inclusion and exclusion criteria: As per the guidelines
of Kitchenham and Charters [45] we have set inclusion and
exclusion criteria based on our research questions. Here, we
only considered papers that are in English, published in

TABLE I
SEARCH STRING

Search string

((("Document Title": "agile" OR "Abstract": "agile")

AND ("Document Title": "document*" OR "Abstract":

"document*")) OR ("Document Title": "document*

tools" OR "Abstract": "document* tools"))

conferences and journals, and published within the time frame
2010 - 2021. The published papers should describe the agile
documentation approach, tools, or knowledge relevant to our
RQs. Therefore, we did not include any opinion, viewpoint,
keynote, discussions, editorials, comments, tutorials, prefaces,
anecdote papers, and presentations. In addition, we excluded
the papers that did not discuss agile documentation or agile
documentation tools but may discuss agile software develop-
ment methods as a side topic.

B. Conducting the review

Once we agreed on the protocol, we started our review
properly. This section discusses the findings of our search and
extracted data from relevant databases and sources.

1) Study search and selection: We searched the IEEE
Xplore database against our search query and search criteria
and fetched 206 studies. In round 1, the first author immensely
analyzed the titles and abstracts of the fetched studies based
on the inclusion criteria. After the first round, we came out
with 77 papers, and most of these studies covered all the
inclusion criteria. A critical part was to ensure the papers did
not come from opinions, discussions, editorials, comments,
tutorials, prefaces, and presentations as per the exclusion
criteria. In round 2, we inspected the full-text review of the
papers based on all inclusion and exclusion criteria. We read
the papers fully a few times where there were disagreements
and required consensus. We excluded 23 papers based on the
exclusion criteria. Finally, to satisfy the inclusion of relevant
primary studies as much as possible, we performed backward
and forward snowballing following the guideline provided by
Wohlin [84] and included 20 more papers in our list of primary
studies. The final pool of selected papers was 77.

2) Data extraction: We followed the data extraction strat-
egy of Kitchenham and Charters [45] and came up with a data
extraction form that we designed to collect all the information
needed to address the review questions. We set a few quality
evaluation criteria, such as

• How well was data collection carried out?
• Is the research design defensible?
• How much are the findings credible?
• Is the research scope well addressed?
In addition to the RQs and quality evaluation criteria, the

form included the data as (i) name of the reviewer, (ii) date
of data extraction, (iii) title, (iv) authors, (v) journal, (vi)
publication details, (vii) future work, (viii) limitations, (ix)



year of publication, (x) methodology, (xi) data analysis, (xii)
validation technique, (xiii) relevancy and xiv) space for addi-
tional notes. This data extraction was performed independently
by the first and second authors.

3) Data synthesis: After the data extraction, we combined
and summarized the results of the included primary studies
according to the guidelines of Kitchenham and Charters [45].
Our data synthesis includes both quantitative and descriptive.
For the descriptive synthesis, we tabulated the data based on
research questions. In this case, we synthesized what type of
information and tools are used in agile documentation. On
the other hand for quantitative synthesis, we again developed
a tabular form for research questions. These tables were
structured to highlight similarities and differences between
study outcomes. Later the data of these tables were represented
by bar charts and pie charts.

III. RESULTS

In this section, we present our findings. We address each
research question from RQ1 to RQ3.

A. (RQ1) Which information do agile practitioners docu-
ment?

Table II summarizes our findings of documented informa-
tion. Our primary pool of studies consisted of interviews, sur-
veys, case studies, experiments, and statistical analysis. Many
agile practitioners, graduate students, and software engineers
directly participated in these studies. We collected the findings
from these studies and grouped them. The following sections
briefly describe each element of Table II.

1) User stories: User stories function as the shortcut for
more formal documentation and require more details [29]. On
the other hand, they represent the small, concise user-driven
features and hence need to be documented [56].

2) Functional requirements: End-users define these re-
quirements and expect them as facilities when they interact
with the system. Therefore, these functionalities focus more
on the technical aspects that need to be implemented [57].

3) Non-functional requirements: The success of an agile
project depends on the non-functional requirements, which
are also referred to as quality requirements [12]. These re-
quirements are quality constraints that must be satisfied by the
system. So, failure to meet these requirements compromises
the entire system and makes it useless [23].

4) Source code: The source code should be documented for
traceability and deriving the code that does not perform [10].

5) UI structure: These are wireframes and sometimes are
documented externally. However, they can be the basic layouts
of application screens and the product owner usually provides
these wireframes [13].

6) Technical debt: If a system needs fixes or updates, it
is best to document them currently. Similarly, it is best to
document them in the case of technical debt. As a result, future
developers will be aware of that technical debt. Therefore, all
instances of technical debt should be documented [36].

7) System architecture: Some documentation tools have
evolved to document architecture [10], [31]. Architecture
works as the backbone of the entire system [10]. Documenting
architecture is one of the most complicated and challenging
parts of software development [31].

8) API reference guides: To understand the usage and
integration of API, APIs should have comprehensive docu-
mentation. Good API reference guides make the APIs easier to
maintain and helps onboard new developers to the team [75].

9) Test specification: It is tough to demonstrate large-scale
systems solely using test cases in the industry. Testing needs
more mature documentation to keep track of the test cases,
user scenarios, and bugs [10].

B. (RQ2) Which documentation generation tools and meth-
ods do agile practitioners use?

In order to answer this research question, we first explored
the current tools and methods used in ASD from our primary
pool of studies and found a total of 23 tools and methods.
Next, we categorized them based on their document type and
found ten categories. Table III lists categories alongside their
tools and Figure 1 shows the percentage of tools under each
category. We also listed the studies that reported the tools and
methods. Moreover, we mentioned the role of each tool or
method in the right-most column of the table.

Fig. 1. Categorisation of documentation tools/methods

1) Source code based documentation: Source code-based
documentation can mitigate certain risks [32]. This category
consists of 6 tools, and these tools mainly focus on how
software practitioners can generate documentation from source
code comments. These tools cover the functionalities of some
of the popular documentation generation tools like JavaDoc or
Docstring and offer some additional features [44].

2) Wiki based documentation: When developers consider
straightforward and flexible documentation options in agile,
they consider wiki-based documentation in the first place
because the primary goal of the wiki is to minimize the devel-
opment–documentation gap by making documentation more
convenient and attractive to developers [80]. For example,
sprintDoc and XSDoc are tools based on wikis and can be
integrated with other tools such as the VCS IDE.



TABLE II
KEY ELEMENTS TO ADD IN AGILE SOFTWARE DOCUMENTATION

No. Information to document Studies that reported the information
1 User stories [10], [13], [20], [28], [30], [34], [37], [56], [57], [65], [78], [82]

2 Functional requirements [10], [31], [57], [65], [71]

3 Non-functional requirements [10], [12], [13], [23], [37], [47], [81]

4 Source code [10], [43], [44], [55], [66], [83]

5 UI structure [13], [34], [37], [57], [78]

6 Technical debt [12]

7 System architecture [10], [28], [31], [78]

8 API reference guides [38], [57], [75]

9 Test specification [10], [1], [71]

3) Scrum: Scrum is a lightweight framework for agile de-
velopment and is very popular. Scrumconix supporting scrum
proved to be a valuable and lightweight tool to document and
understand a software project [59].

4) User story: The user stories explain how the software
will work for the users and provide an essential source for the
design of the software according to user needs [1]. Methods
such as the COSMIC method [20], [65] can measure the
quality of user stories to generate high-quality documentation.

5) Traceability: Traceability tools like Trace++ support the
transition from traditional to agile methodologies. They offer
traceability between documents generated during conventional
software development and agile methods [28]. In addition,
TraceMan provides traces to critical agile artifacts [10].

6) API/Web service: In this category, we found a tool
called Docio which can generate API documents with I/O
examples [38]. This tool is more like the popular REST API
documentation generation tool Swagger but only supports the
C programming language [79].

7) Flow chart: A few tools emphasize providing mean-
ingful graphical diagrams either based on source code or
requirements [46], [69]. Flowgen, CLARET, and TCC are
some of the tools in this category.

8) Architectural: Experts ascertained the lack of documen-
tation and architectural design in agile projects [60]. Abstract
specification tool in this category assists the architects in or-
ganizing relevant information regarding the architecture while
creating design and architecture blueprints, thus reducing the
effort of documentation [31]. Also, Active Documentation
Software Design (ADSD) is an approach that enables incor-
porating domain documentation to agile development, while
having the processes adaptive [67].

9) View based: View-based software documentation en-
ables different perspectives on the software system and en-
ables the explicit and simultaneous modeling of all of those
viewpoints as views in the documentation [11].

10) NLP-based: Researchers are aware of integrating mod-
ern NLP-based techniques and tools into the source code
comments where documentation is only available in the
form of source code comments. As a result, these tools di-
rectly contribute to determining the quality of documentation.

JavadocMiner is one of such NLP-based tools that developers
can easily embed with Eclipse IDE [83].

C. (RQ3) How can the tools and methods overcome the
documentation challenges in agile software development?

Agile methods or tools that have tried to address the chal-
lenges in dynamic contexts have gained much interest among
practitioners and researchers [11]. Keeping that in mind,
different researchers attempted to identify those challenges and
built tools that provide on-demand solutions [25]. We listed
all agile challenges in table IV that our previously mentioned
tools and methods attempted to resolve. Figure 2 represents a
number of tools/methods that resolved a particular challenge.

Fig. 2. Number of tools/methods resolving a particular challenge

1) Minimal documentation: One of the primary challenges
in agile documentation is to keep the documentation minimal
[16], [21]. Many documentation generation tools that generate
documentation from source code and chart, diagram, and
flowchart-based documentation evolved to keep documentation
minimum and simple. Practitioners must keep minimal doc-
umentation to enhance agile software products, and the tool
simul loco comments may answer this problem. Simul loco
documentation is extremely useful [66]. Moreover, GitHub
plus Markdown support options so that reviewers can give a
quick review, and it only takes a few minutes for a minor



TABLE III
TOOLS AND METHODS USED IN AGILE SOFTWARE DOCUMENTATION

No. Documentation
type

Tools/Methods Studies that re-
ported the prac-
tice

Role

1 Source code based
documentation

simul loco [66] Creates a graphical comment layer over source code that can contain any
resource for documentation [66].

doxygen [55], [44] JavaDoc or docstring like documentation tool for Java, C++, Python, and
other languages [55].

JavadocMiner [44], [83], [43] Wrapper of JavaDoc and provides quality assessments and recommenda-
tions on how Javadoc comments can be improved [44].

GitHub plus mark-
down

[48] Agile ’Docs Like Code’ solution that puts documentation close to the code
while software development tools and techniques are applied [48].

Graphical UML
class models

[14], [77], [72],
[23], [15], [53],
[51], [64]

Graphical UML class models for source code in continuous agile develop-
ment [14].

XML_DocTracker [8] Produces the software requirements specification (SRS) from the source
codes if the SRS did not exist for that particular software [8].

2 Wiki based Wikis [9], [73], [41] Provides a collaborative environment that people use to co-author HTML-
based information [9].

sprintDoc [80] Works with issue tracker, wikis, VCS, IDE [80].
XSDoc [80], [5], [6] Minimizes the development–documentation gap by making documentation

more user-friendly and attractive to developers [5].

3 Scrum Scrumconix [59] Composition of scrum and ICONIX methods that uses a lightweight
approach to document in AGSD environments [59].

4 User stories COSMIC method [20], [24] Assesses the quality of the documentation by analyzing how functional
processes are documented in the requirements, such as in the user stories
[20].

CMMI [3], [52] Divides the goals into two parts and emphasizes that the product must be
delivered on time and meet all of the specified standards [3].

LAQF [42] Lightweight document oriented reusable agile quality framework [42].

5 Traceability TraceMan [10] Traces among user stories, traditional requirements documents, test speci-
fications, architecture design, and source code [10].

Trace++ [28] Inherits traditional traceability relationships in order to support the transi-
tion from traditional to ASD [28].

6 API/Web Service Docio [38] Documents API Input/Output with parameter and response type [38].

7 Flow chart or Dia-
grams

Flowgen [46] Generates flowcharts from annotated C++ source code and high-level UML
activity diagrams, one for each function or method in the C++ sources [46].

CLARET [39] Facilitates functionality to create the use case specifications using natural
language [39].

Ticket-commit
network chart
(TCC)

[68], [69] Visually represents time-series commit activities with issued tickets [68].

8 Architectural Abstract specifica-
tion tool

[31] Contains the most relevant and essential information on the architecture
solution [31].

Active
Documentation
Software Design
(ADSD)

[67] Provides an architectural design in which domain knowledge is represented
explicitly and is isolated from other segments of code [67].

9 View based View-based
software
documentation

[11] Utilizes existing software modeling techniques and improves the current
methods of software documentation [11].

10 NLP based JavadocMiner [83] Provides a complete environment for embedding NLP into software devel-
opment [83].



TABLE IV
THE SOLUTION PROVIDED BY TOOLS AND METHODS TO CERTAIN CHALLENGES

No. Challenge Description Tools/Methods Solutions
1 Minimal

documentation
[16], [21], [47]

The lack of documentation imposes
a variety of problems including the
inability to scale the software and add
new members. [16]

Source code based documentation
(simul loco [66], doxygen [44],
[55], JavadocMiner [43], [44], [83],
GitHub plus markdown [48], Graph-
ical UML class models [14], [15],
[23], [51], [53], [64], [72], [77],
XML_DocTracker [8]), Wiki based
(Wikis [9], [41], [73], sprintDoc [80],
XSDoc [5], [6], [80]), Flow chart or
Diagrams (Flowgen [46], CLARET
[39], Ticket-commit network chart
(TCC) [68], [69]), Abstract specifi-
cation tool [31]

Generates minimal documentation
with a very little effort. The doc-
umentation can be either generated
from the source code comments or
XML or YAML or JSON file.

2 Neglect of
non-functional
requirements
[16], [22], [47],
[49], [74]

Customers often prioritize core func-
tionality over non-functional require-
ments (NFRs) such as scalability,
maintainability, portability, safety, or
performance. [16], [50]

TraceMan [10] Enables traceability among non-
functional requirements.

3 Inadequate
Architecture [7],
[63]

As further requirements are known,
the architecture designed by the de-
velopment team during the initial
phases may become outdated or in-
adequate. [63]

Architectural (Abstract specification
tool [31], Active Documentation
Software Design (ADSD) [67])

Generate architecture design with rel-
evant and updated information.

4 Lack of
traceability
[18], [35], [61]

Tracing becomes challenging when
dealing with large scale or distributed
software development efforts. [18]

Traceability (TraceMan [10],
Trace++ [28])

Trace appropriate user stories or dif-
ferent artifacts even if the product
scales in the future.

5 Mediocre user
stories [17],
[19], [74]

Lack of proper user stories leads to
failure to achieve an overview of the
product for team members. [19], [62]

User stories based (COSMIC method
[20], [24], CMMI [3], [52], LAQF
[42]), TraceMan [10]

Measure the quality of user stories
and help to write high-quality user
stories.

6 Others [18] API/Web Service (Docio [38]), View
based (View-based software docu-
mentation [11]), Scrum (Scrumconix
[59])

Generate API documentation from
JSON file or supports view based
software documentation.

update. A document can be improved easily and continu-
ously [48]. Abstract specification tool proposes a considerably
shorter abstract specification document, requiring minimal
documentation efforts and resulting in shorter documentation
that is easier to review, update, and communicate [31].

2) Neglect of non-functional requirements: The effect of
requirements changes on the architecture is crucial. It was
difficult to trace precisely which architectural decisions had
to be reconsidered because of the lack of traceability between
the textual requirements specification documents and the archi-
tectural models. TraceMan fixes this since the trace links are
created during the artifacts’ creation. As a result, we can better
understand the functional and non-functional requirements
using TraceMan more accurately and consequently [10].

3) Inadequate Architecture: The primary goals of agile
development are flexibility, minimalism, and collaboration.
Abstract specification tool achieves these by creating a short
and focused architecture document [31].

4) Lack of traceability: Conventional agile projects entail
intensive labor work to generate and maintain traceable links.
Consequently, lack of traceability provides a weak layer over
the software system no matter how much flexible the system
is [18]. On the other hand, trace++ generates a large number

of traceability relations combining the various artifacts [28].
5) Mediocre user stories: Although user stories are essen-

tial for ASD, people struggle to document high-quality user
stories. Even user stories mentioned in the current dataset are
of poor quality [19]. TraceMan produces high-quality user
stories by having detailed traces of user store information [10].

6) Others: Some tools resolve the complex API documen-
tation challenges by creating API documentation with ease
[38]. In addition, there are some tools such as Scrumconix
[59], and view-based software documentation that cover chal-
lenges posed in the area of scrum and view-based [11].

IV. THREATS TO VALIDITY

The threats to our systematic literature review are the
specification of the candidate pool of papers and primary
study selection bias. We selected our primary pools of studies
through database searches and used keywords. Our keywords
were very precise, and we obtained a good number of papers.
However, we may missed some papers due to our specific
search string.

We also used a specific period to select our studies, which
might have discarded relevant papers. On the other hand,
we relied on IEEE Xplore for a primary pool of studies,



which threatens to have a complete set of primary studies. To
mitigate this risk, we performed both backward and forward
snowballing, which eventually resulted in a collection of
papers from other databases like ACM, Springer, etc. We
followed the standard inclusion and exclusion criteria, which
might still introduce some personal bias.

V. CONCLUSION

Working software gets priority over detailed documentation
in agile software development. Even though documentation is
less of a priority in ASD, studies have shown that a minimal
level of documentation is essential. This research aimed to
identify key elements to record in ASD and locate appropriate
tools to aid in documentation. We conducted a systematic
literature review to identify essential information in agile
documentation and the effectiveness of current methodologies
and tools in agile software development. As a result, we have
compiled a list of essential elements in agile documentation
and tools and approaches that can help alleviate the documen-
tation challenges.

Our findings will aid in understanding key aspects of agile
documentation and how agile documentation tools and ap-
proaches function. In the future, we want to map the relation-
ships between these technologies and develop a method that
can be used as a one-stop solution for agile documentation.
We also intend to conduct a multi-vocal literature review to
find more industry concerns and solutions. Finally, our future
plan also involves a survey of agile practitioners to see the
usefulness of this article.

REFERENCES

[1] . Iso/iec/ieee intl. standard - systems and software engineering –
developing user documentation in an agile environment. ISO/IEC/IEEE
26515 First edition 2011-12-01; Corrected version 2012-03-15, pages
1–36, 2012.

[2] . Iso/iec/ieee intl. standard - systems and software engineering —
developing information for users in an agile environment. ISO/IEC/IEEE
26515:2018(E), pages 1–32, 2018.

[3] S. K. Aggarwal, V. Deep, and R. Singh. Speculation of cmmi in
agile methodology. In 2014 Intl. Conf. on Advances in Computing,
Communications and Informatics (ICACCI), pages 226–230, 2014.

[4] E. Aghajani, C. Nagy, O. L. Vega-Márquez, M. Linares-Vásquez,
L. Moreno, G. Bavota, and M. Lanza. Software documentation issues
unveiled. In Intl. Conf. on Software Engineering (ICSE), 2019.

[5] A. Aguiar and G. David. Wikiwiki weaving heterogeneous software
artifacts. In Intl. Symposium on Wikis, WikiSym ’05, page 67–74, 2005.

[6] A. Aguiar, G. David, and M. Padilha. Xsdoc: an extensible wiki-based
infrastructure for framework documentation. In JISBD, 2003.

[7] F. Akbari and S. M. Sharafi. A review to the usage of concepts of
software architecture in agile methods. In Intl. Symposium on Instrumen-
tation Measurement, Sensor Network and Automation (IMSNA), 2012.

[8] H. Aman and R. Ibrahim. Xml_doctracker: Generating software re-
quirements specification (srs) from xml schema. In 2016 Intl. Conf. on
Information Science and Security (ICISS), pages 1–5, 2016.

[9] S. Ambler. Agile modeling: effective practices for extreme programming
and the unified process. John Wiley & Sons, 2002.

[10] P. O. Antonino, T. Keuler, N. Germann, and B. Cronauer. A non-invasive
approach to trace architecture design, requirements specification and
agile artifacts. In 23rd Australian Software Engineering Conf., 2014.

[11] J. Bayer and D. Muthig. A view-based approach for improving
software documentation practices. In Intl. Symposium and Workshop
on Engineering of Computer-Based Systems (ECBS’06), 2006.

[12] W. Behutiye, P. Rodríguez, M. Oivo, S. Aaramaa, J. Partanen, and
A. Abhervé. How agile software development practitioners perceive
the need for documenting quality requirements: a multiple case study.
In 2020 46th Euromicro Conf. on Software Engineering and Advanced
Applications (SEAA), pages 93–100, 2020.

[13] W. Behutiye, P. Seppänen, P. Rodríguez, and M. Oivo. Documentation of
quality requirements in agile software development. In Evaluation and
Assessment in Software Engineering, EASE ’20, page 250–259, 2020.

[14] E. Braude. Incremental uml for agile development: Embedding uml
class models in source code. In 2017 IEEE/ACM 3rd Intl. Workshop on
Rapid Continuous Software Engineering (RCoSE), 2017.

[15] E. Braude and J. Van Schooneveld. Poster: Incremental uml for agile
development with prexel. In 2018 IEEE/ACM 40th Intl. Conf. on
Software Engineering: Companion (ICSE-Companion), 2018.

[16] L. Cao and B. Ramesh. Agile requirements engineering practices: An
empirical study. IEEE Software, 25(1):60–67, 2008.

[17] F. E. Castillo-Barrera, M. Amador-García, H. Pérez-González, and F. E.
Martínez-Pérez. Agile evaluation of the complexity of user stories using
the bloom’s taxonomy. In 2017 Intl. Conf. on Computational Science
and Computational Intelligence (CSCI), pages 1047–1050, 2017.

[18] J. Cleland-Huang. Traceability in Agile Projects, pages 265–275.
Springer London, London, 2012.

[19] F. Dalpiaz and S. Brinkkemper. Agile requirements engineering with
user stories. In 2018 IEEE 26th Intl. Requirements Engineering Conf.
(RE), pages 506–507, 2018.

[20] J.-M. Desharnais, B. Kocaturk, and A. Abran. Using the cosmic method
to evaluate the quality of the documentation of agile user stories. In Intl.
Workshop on Software Measurement and the 6th Intl. Conf. on Software
Process and Product Measurement, 2011.

[21] A. Deuter. Slicing the v-model – reduced effort, higher flexibility. In
2013 IEEE 8th Intl. Conf. on Global Software Engineering, 2013.

[22] D. Domah and F. J. Mitropoulos. The nerv methodology: A lightweight
process for addressing non-functional requirements in agile software
development. In SoutheastCon 2015, pages 1–7, 2015.

[23] S. Dragicevic, S. Celar, and L. Novak. Use of method for elicitation,
documentation, and validation of software user requirements (medov) in
agile software development projects. In Intl. Conf. on Computational
Intelligence, Communication Systems and Networks, pages 65–70, 2014.

[24] J.-F. Dumas-Monette and S. Trudel. Requirements engineering quality
revealed through functional size measurement: An empirical study in an
agile context. In Intl. Workshop on Software Measurement and the Intl.
Conf. on Software Process and Product Measurement, 2014.

[25] W. R. Fitriani, P. Rahayu, and D. I. Sensuse. Challenges in agile software
development: A systematic literature review. In 2016 Intl. Conf. on
Advanced Computer Science and Information Systems (ICACSIS), 2016.

[26] A. Forward and T. C. Lethbridge. The relevance of software documen-
tation, tools and technologies: A survey. In Proceedings of the 2002
ACM Symposium on Document Engineering, DocEng ’02, 2002.

[27] M. Fowler, J. Highsmith, et al. The agile manifesto. Software
development, 9(8):28–35, 2001.

[28] F. Furtado and A. Zisman. Trace++: A traceability approach to support
transitioning to agile software engineering. In 2016 IEEE 24th Intl.
Requirements Engineering Conf. (RE), pages 66–75, 2016.

[29] W. Gerard, S. Overbeek, and S. Brinkkemper. Fuzzy artefacts: Formality
of communication in agile teams. In 2018 11th Intl. Conf. on the Quality
of Information and Communications Technology (QUATIC), 2018.

[30] D. D. Gregorio. How the business analyst supports and encourages
collaboration on agile projects. In Intl. Systems Conf. SysCon 2012,
2012.

[31] I. Hadar, S. Sherman, E. Hadar, and J. J. Harrison. Less is more:
Architecture documentation for agile development. In 2013 6th Intl.
Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE), 2013.

[32] M. Hammad, I. Inayat, and M. Zahid. Risk management in agile
software development: A survey. In 2019 Intl. Conf. on Frontiers of
Information Technology (FIT), pages 162–1624, 2019.

[33] P. Heck and A. Zaidman. A framework for quality assessment of
just-in-time requirements: the case of open source feature requests.
Requirements Engineering, 22(4):453–473, 2017.

[34] A. Hess, P. Diebold, and N. Seyff. Towards requirements communication
and documentation guidelines for agile teams. In 2017 IEEE 25th Intl.
Requirements Engineering Conf. Workshops (REW), 2017.

[35] N. N. Hidayati and S. Rochimah. Requirements traceability for de-
tecting defects in agile software development. In 2020 10th Electrical



Power, Electronics, Communications, Controls and Informatics Seminar
(EECCIS), pages 248–253, 2020.

[36] J. Holvitie, S. A. Licorish, R. O. Spínola, S. Hyrynsalmi, S. G.
MacDonell, T. S. Mendes, J. Buchan, and V. Leppänen. Technical debt
and agile software development practices and processes: An industry
practitioner survey. Information and Software Technology, 2018.

[37] A. Jarzębowicz and K. Połocka. Selecting requirements documentation
techniques for software projects: A survey study. In 2017 Federated
Conf. on Computer Science and Information Systems (FedCSIS), 2017.

[38] S. Jiang, A. Armaly, C. McMillan, Q. Zhi, and R. Metoyer. Docio:
Documenting api input/output examples. In 2017 IEEE/ACM 25th Intl.
Conf. on Program Comprehension (ICPC), pages 364–367, 2017.

[39] D. N. Jorge, P. D. L. Machado, E. L. G. Alves, and W. L. Andrade.
Integrating requirements specification and model-based testing in agile
development. In 2018 IEEE 26th Intl. Requirements Engineering Conf.
(RE), pages 336–346, 2018.

[40] R. Kasauli, G. Liebel, E. Knauss, S. Gopakumar, and B. Kanagwa.
Requirements engineering challenges in large-scale agile system devel-
opment. In Intl. Requirements Engineering Conf. (RE), 2017.

[41] R. Kavitha and M. Irfan Ahmed. A knowledge management framework
for agile software development teams. In 2011 Intl. Conf. on Process
Automation, Control and Computing, pages 1–5, 2011.

[42] M. A. Khalid, T. Anees, and A. Moeed. Laqf: Lightweight document
oriented, reusable agile quality framework. In 2019 Intl. Conf. on
Innovative Computing (ICIC), pages 1–8, 2019.

[43] N. Khamis, J. Rilling, and R. Witte. Assessing the quality factors found
in in-line documentation written in natural language: The javadocminer.
Data & Knowledge Engineering, 87:19–40, 2013.

[44] N. Khamis, R. Witte, and J. Rilling. Automatic quality assessment of
source code comments: The javadocminer. In C. J. Hopfe, Y. Rezgui,
E. Métais, A. Preece, and H. Li, editors, Natural Language Process-
ing and Information Systems, pages 68–79, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[45] B. Kitchenham and S. Charters. Guidelines for performing systematic
literature reviews in software engineering. 2007.

[46] D. A. Kosower, J. J. Lopez-Villarejo, and S. Roubtsov. Flowgen:
Flowchart-based documentation framework for c++. In 2014 IEEE 14th
Intl. Working Conf. on Source Code Analysis and Manipulation, 2014.

[47] M. Käpyaho and M. Kauppinen. Agile requirements engineering with
prototyping: A case study. In 2015 IEEE 23rd Intl. Requirements
Engineering Conf. (RE), pages 334–343, 2015.

[48] L. Lee. Extended abstract: Documentation development practice in
open source startups - take pingcap as an example. In 2019 IEEE Intl.
Professional Communication Conf. (ProComm), pages 255–256, 2019.

[49] R. R. Maiti and F. J. Mitropoulos. Capturing, eliciting, predicting
and prioritizing (cepp) non-functional requirements metadata during the
early stages of agile software development. In SoutheastCon 2015, 2015.

[50] R. R. Maiti and F. J. Mitropoulos. Capturing, eliciting, and prioritizing
(cep) nfrs in agile software engineering. In SoutheastCon 2017, 2017.

[51] D. Matheson. Modeling requirements: The customer communication.
In 2014 IEEE 5th Intl. Workshop on Requirements Prioritization and
Communication (RePriCo), pages 15–24, 2014.

[52] J. R. Miller and H. M. Haddad. Challenges faced while simultaneously
implementing cmmi and scrum: A case study in the tax preparation
software industry. In 2012 Ninth Intl. Conf. on Information Technology
- New Generations, pages 314–318, 2012.

[53] V. C. Nguyen and X. Qafmolla. Agile development of platform
independent model in model driven architecture. In 2010 Third Intl.
Conf. on Information and Computing, volume 2, pages 344–347, 2010.

[54] P. A. O. Salo. Agile methods in european embedded software develop-
ment organisations: a survey on the actual use and usefulness of extreme
programming and scrum. IET Software, 2:58–64(6), 2008.

[55] A. Oboler and I. Sommerville. Research documentation guidelines -
capturing knowledge, improving research. In Fourth Intl. Conf. on
Information Technology (ITNG’07), 2007.

[56] M. Ormsby and C. Busby-Earle. A standardized procedure to conceptu-
alizing and completing user stories. In 2017 Intl. Conf. on Computational
Science and Computational Intelligence (CSCI), pages 934–939, 2017.

[57] J. Pasuksmit, P. Thongtanunam, and S. Karunasekera. Towards just-
enough documentation for agile effort estimation: What information
should be documented? In 2021 IEEE Intl. Conf. on Software Mainte-
nance and Evolution (ICSME), pages 114–125, 2021.

[58] R. Phalnikar, V. Deshpande, and S. Joshi. Applying agile principles
for distributed software development. In 2009 Intl. Conf. on Advanced
Computer Control, pages 535–539, 2009.

[59] L. T. Portela and G. Borrego. Scrumconix: Agile and documented
method to agsd. In 2016 IEEE 11th Intl. Conf. on Global Software
Engineering (ICGSE), pages 195–196, 2016.

[60] C. R. Prause and Z. Durdik. Architectural design and documentation:
Waste in agile development? In 2012 Intl. Conf. on Software and System
Process (ICSSP), pages 130–134, 2012.

[61] A. Qusef. Test-to-code traceability: Why and how? In 2013 IEEE Jordan
Conf. on Applied Electrical Engineering and Computing Technologies
(AEECT), pages 1–8, 2013.

[62] I. K. Raharjana, D. Siahaan, and C. Fatichah. User story extraction
from online news for software requirements elicitation: A conceptual
model. In 2019 16th Intl. Joint Conf. on Computer Science and Software
Engineering (JCSSE), pages 342–347, 2019.

[63] B. Ramesh, L. Cao, and R. Baskerville. Agile requirements engineering
practices and challenges: an empirical study. Info Systems Journal,
20(5):449–480, 2010.

[64] A. S. B. Rani and A. R. N. B. Kamal. Text mining to concept mining:
Leads feature location in software system. In 2018 IEEE Intl. Conf. on
Computational Intelligence and Computing Research (ICCIC), 2018.

[65] A. Read and R. O. Briggs. The many lives of an agile story: Design
processes, design products, and understandings in a large-scale agile
development project. In 2012 45th Hawaii Intl. Conf. on System
Sciences, pages 5319–5328, 2012.

[66] S. G. Rojas and J. M. C. Mora. Source code documentation simul loco.
In 7th Iberian Conf. on Info Systems and Tech (CISTI 2012), 2012.

[67] E. Rubin and H. Rubin. Supporting agile software development through
active documentation. Requirements Engineering, 16(2), Jun 2011.

[68] S. Saito, Y. Iimura, A. K. Massey, and A. I. Antón. Discovering undocu-
mented knowledge through visualization of agile software development
activities. Requirements Engineering, 23(3):381–399, 2018.

[69] S. Saito, Y. Iimura, A. K. Massey, and A. I. Antón. How much
undocumented knowledge is there in agile software development?: Case
study on industrial project using issue tracking system and version
control system. In 2017 IEEE 25th Intl. Requirements Engineering Conf.
(RE), pages 194–203, 2017.

[70] B. Selic. Agile documentation, anyone? IEEE Software, 26(6), 2009.
[71] M. Shafiq and U. s. Waheed. Documentation in agile development

a comparative analysis. In 2018 IEEE 21st Intl. Multi-Topic Conf.
(INMIC), pages 1–8, 2018.

[72] A. K. Sharma, V. Deep, and N. Garg. An efficient way of articulation
or suppression in agile methodologies. In Confluence 2013: The Next
Generation Information Technology Summit (4th Intl. Conf.), 2013.

[73] C. Silveira, J. P. Faria, A. Aguiar, and R. Vidal. Wiki based requirements
documentation of generic software products. In Australian Workshop on
Requirements Engineering (AWRE), 2005.

[74] H. F. Soares, N. S. Alves, T. S. Mendes, M. Mendonça, and R. O.
Spínola. Investigating the link between user stories and documentation
debt on software projects. In 2015 12th Intl. Conf. on Information
Technology - New Generations, pages 385–390, 2015.

[75] S. M. Sohan, F. Maurer, C. Anslow, and M. P. Robillard. A study of
the effectiveness of usage examples in rest api documentation. In 2017
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pages 53–61, 2017.

[76] I. Sommerville. Software documentation. Software engineering, 2, 2001.
[77] C. J. Stettina, W. Heijstek, and T. E. Fægri. Documentation work in agile

teams: The role of documentation formalism in achieving a sustainable
practice. In 2012 Agile Conf., pages 31–40, 2012.

[78] C. J. Stettina and E. Kroon. Is there an agile handover? an empirical
study of documentation and project handover practices across agile
software teams. In 2013 Intl. Conf. on Engineering, Technology and
Innovation (ICE) IEEE Intl. Technology Management Conf., 2013.

[79] V. Surwase. Rest api modeling languages-a developer’s perspective. Int.
J. Sci. Technol. Eng, 2(10):634–637, 2016.

[80] S. Voigt, D. Hüttemann, and A. Gohr. sprintdoc: Concept for an agile
documentation tool. In 2016 11th Iberian Conf. on Information Systems
and Technologies (CISTI), pages 1–6, 2016.

[81] S. Voigt, J. von Garrel, J. Müller, and D. Wirth. A study of documen-
tation in agile software projects. In Proceedings of the 10th ACM/IEEE
Intl. Symposium on Empirical Software Engineering and Measurement,
ESEM ’16, 2016.



[82] M. K. Wadiwala and A. F. M Ishaq. Use of design and modeling in
agile software development. In 2010 Second Intl. Conf. on Engineering
System Management and Applications, pages 1–5, 2010.

[83] R. Witte, B. Sateli, N. Khamis, and J. Rilling. Intelligent software
development environments: Integrating natural language processing with
the eclipse platform. In C. Butz and P. Lingras, editors, Advances
in Artificial Intelligence, pages 408–419, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[84] C. Wohlin. Guidelines for snowballing in systematic literature studies
and a replication in software engineering. In Proceedings of the 18th
Intl. Conf. on evaluation and assessment in software engineering, 2014.


	I Introduction
	II Research Methodology
	II-A Planning
	II-A1 Research questions
	II-A2 Search strategy
	II-A3 Search criteria
	II-A4 Inclusion and exclusion criteria

	II-B Conducting the review
	II-B1 Study search and selection
	II-B2 Data extraction
	II-B3 Data synthesis


	III Results
	III-A (RQ1) Which information do agile practitioners document?
	III-A1 User stories
	III-A2 Functional requirements
	III-A3 Non-functional requirements
	III-A4 Source code
	III-A5 UI structure
	III-A6 Technical debt
	III-A7 System architecture
	III-A8 API reference guides
	III-A9 Test specification

	III-B (RQ2) Which documentation generation tools and methods do agile practitioners use?
	III-B1 Source code based documentation
	III-B2 Wiki based documentation
	III-B3 Scrum
	III-B4 User story
	III-B5 Traceability
	III-B6 API/Web service
	III-B7 Flow chart
	III-B8 Architectural
	III-B9 View based
	III-B10 NLP-based

	III-C (RQ3) How can the tools and methods overcome the documentation challenges in agile software development?
	III-C1 Minimal documentation
	III-C2 Neglect of non-functional requirements
	III-C3 Inadequate Architecture
	III-C4 Lack of traceability
	III-C5 Mediocre user stories
	III-C6 Others


	IV Threats to Validity
	V Conclusion
	References

