arXiv:2304.01523v1 [cs.SE] 4 Apr 2023

Analysis of Software Engineering Practices in
General Software and Machine Learning Startups

Bishal Lakha
Computer Science Department
Boise State University
Boise, ID, USA
bishallakha@u.boisestate.edu

Abstract—Context: On top of the inherent challenges startup
software companies face applying proper software engineering
practices, the non-deterministic nature of machine learning
techniques makes it even more difficult for machine learning
(ML) startups. Objective: Therefore, the objective of our study is
to understand the whole picture of software engineering practices
followed by ML startups and identify additional needs. Method:
To achieve our goal, we conducted a systematic literature review
study on 37 papers published in the last 21 years. We selected
papers on both general software startups and ML startups.
We collected data to understand software engineering (SE)
practices in five phases of the software development life-cycle:
requirement engineering, design, development, quality assurance,
and deployment. Results: We find some interesting differences
in software engineering practices in ML startups and general
software startups. The data management and model learning
phases are the most prominent among them. Conclusion: While
ML startups face many similar challenges to general software
startups, the additional difficulties of using stochastic ML models
require different strategies in using software engineering prac-
tices to produce high-quality products.

Index Terms—Software Engineering, Machine Learning Star-
tups, Software Startups, Systematic Literature Review

I. INTRODUCTION

Machine learning is becoming ubiquitous in many software
applications. Startups and small companies are eagerly adopt-
ing this technology. They are the flag bearers for implementing
innovative and state-of-the-art ML solutions for different do-
mains [49]. The challenging nature of ML application and the
limitations and peculiarities of startups have resulted in using
slightly different software engineering practices. However,
such systems’ development, deployment, and maintenance still
suffer from the lack of best practices.

Due to the non-deterministic nature of machine learning, all
software engineering aspects for ML systems become compli-
cated [24]. They also lack proper and mature tools to test ML
systems [24]. So integrating ML in software applications has
forced organizations to evolve their development process [J3]].
In a research conducted by Amershi et al. [3[], they studied
methods followed by different software engineering teams
developing artificial intelligence (AI) products at Microsoft.
Their study suggested that Al components are inherently com-
plex than other software components, and while integrating
them, non-monotonic error behavior can arise. They proposed

Kalyan Bhetwal
Computer Science Department
Boise State University
Boise, ID, USA
kalyanbhetwal @u.boisestate.edu

Nasir U. Eisty
Computer Science Department
Boise State University
Boise, ID, USA
nasireisty @boisestate.edu

end-to-end pipeline support, data collection, cleaning, and
management tools, focusing on programming and model bugs,
and others to mitigate such problems. A few companies have
recently adopted new approaches like MLOps, but there still
are many challenges [52]]. These challenges become more
prominent in startups.

More than 60% of startups do not survive their first five
years, and 75% of the startups which venture capitalists back
meet failure [40] while more than 90% of startups go bankrupt
[20]. One of the crucial reasons for such situations is improper
software engineering practices resulting in faulty products
[14]. Moreover, many startups take more than a year to develop
a minimum viable product, and due to delay in the product
delivery, additional financial burden occurs resulting in startup
failure [32]. Similarly, the inability of organizations to actively
engage developers also results in the failure [1]. Again, these
manifestations are consequences of bad software engineering
practices.

Malpractices in software engineering do not always lead
to startup failure. Other factors include different technical
debt like code debt, architecture debt, or testing debt. These
debts could accumulate rapidly, impacting the performance
and growth of a startup [33]. AI/ML startups tend to fall more
than their traditional counterparts, and the cause mentioned
above also plays a role in their failure. That is why learning
about what software engineering practices they follow and
which best practices are crucial.

Various studies have been conducted about software engi-
neering practices in the tech industry. Also, there are many
studies conducted on software engineering practices in star-
tups. However, studies on ML startups and their software
engineering practices are scarce. This scarcity motivated us
to direct our study in that area. Moreover, it occurred to us
that since the ML field is evolving rapidly, the changes in
software engineering practices in those companies, especially
in startups, should be studied along with their difference from
general software startups.

Therefore the main objectives of our study are:

« Identify the key software engineering practices followed

by software startups in general

o Identify specific software engineering practices followed

by ML startups

II. BACKGROUND

The emergence of different electronic devices like smart-
phones, tablets, laptops, smartwatches, etc., has contributed to
the software industry’s manifold growth, resulting in a mul-
titude of software startups [9]. The success of deep learning,
a sub-field of ML, in a wide range of applications resulted
in the adoption of ML in multiple companies and pushed the
growth of startups rapidly [44] leading to billions of dollars
of contribution to the economy [12].

General Software Startups. Software startups small or
medium-sized enterprises distinct from traditional mature
companies which focus on developing innovative products in
a limited time frame and resources [S55]. Due to their inherent
characters, they face multiple challenges like little organi-
zation management experience, lack of financial and human
resources, influences from various sources like investors, cus-
tomers, partners, and continuous need of developing dynamic
and disruptive technologies [S0].

Machine Learning Startups. Machine learning startups
provide different ML services like speech recognition, video
analysis, and others or use ML as a part of their product. Many
startups of different domains like health [22] [56]], finance [57]],
fashion [35], etc. are also adopting Al and ML in their product.
While developing such products, startups face multiple uncer-
tainties due to the gap between research and development [45].
As software startups are more prone to failure [10], these kinds
of uncertainties make ML startups more vulnerable. However,
collaboration, cooperation, and openness, which come from
good software engineering practices, can help such startups
succeed [8]).

A. Research questions

To fulfill our objectives, we formulated two research ques-
tions and conducted a systematic literature review of multiple
published papers in different venues.

RQ1: Which software engineering practices are followed
by general software startups?

With RQ1, we intend to find which SE practices do general
software startups follow and how they are similar or different
from traditional SE practices. These practices will illustrate the
characteristics of software startups along with reasons for their
choices of particular software design patterns and development
practices.

RQ2: Which additional software engineering practices
do machine learning startups follow?

With RQ2, we intend to differentiate general startups from
ML startups using SE practices. We also plan to learn different
steps involved in ML product development, what general
practices still hold their utility, and what modifications, im-
provements, and innovations are necessary to address those
steps.

III. RESEARCH METHODOLOGY

We collected published papers and manually went through
all the selected papers to collect data. To maintain the quality
of our study, the first and second authors individually went

through each of the papers. After collecting the data, we
analyzed and synthesized the data to answer our research ques-
tions. In this section, we discuss our research methodology in
detail.

A. Inclusion and Exclusion Criteria

We have included papers published only in English and
considered papers published in journals, conferences, or sym-
posium proceedings for general software startups. Since pub-
lished papers on ML startups were rare, we included a few
blogs. We avoided other gray literature like videos, podcasts,
news articles, interviews, etc. Also, we only considered papers
published until November 2021 for this systematic literature
review.

B. Database Search

We formulated our search strings to download papers to
fulfill our research objective. We then searched papers in
IEEE Xplore, ACM Digital Library, and Google Scholar using
our formulated search strings. At first, we used two search
strings on those online databases. The query 1 is “Software
Engineering and Startups”. The query 2 is “ML and Software
Engineering and Startups”. There was a high number of papers
returned but only few were relevant. We further searched on
Google Scholar to enrich our database of papers.

We further formulated sub-queries based on each stage
of the software development life-cycle (SDLC) for general
software startups. In Query 3, we searched “Software Engi-
neering and Startups and Requirement Analysis”. In Query
4, we searched for “Software Engineering and Startups and
Design”. In Query 5, we searched for “Software Engineering
and Startups and Implementation and sdlc”. In Query 6, we
searched for “Software Engineering and Startups and testing
and sdlc”. In Query 7, we searched for “Startups and Deploy-
ment and sdlc”. Then we downloaded the meta-data for further
processing.

Our goal was to collect papers for ML startups based on
software development life cycles; we did a similar query
search in IEEE Xplore and ACM Digital Library but did
not find relevant papers. We then use alternate terminologies
for machine learning like “Deep learning” and “Artificial
Intelligence” to enrich our database for ML startups and got
few additional useful papers.

C. Meta Data Collection

We collected metadata - title, author names, abstract, pub-
lished year, URL, citations, and other - of the papers from
the database search in a CSV file. We did this to identify
deduplication and validation of papers. This collection also
allows the filtering of the papers based on abstracts manually.
IEEE explorer has inbuilt features that enable us to export
metadata of all search results as a CSV file. However, those
features were not available in ACM Digital Library and
Google Scholar. So, we built a web scraper using the python
library BeautifulSoup and extracted the metadata from ACM
Digital Library search results.

D. De-duplication and Validation

We collected the metadata of 389 papers for general
software startups from IEEE explorer, 12,274 papers from
ACM Digital Library, and 9,640 papers from google scholar.
Similarly, we collected 13 papers for ML startups from IEEE
explorer, 10,040 papers from ACM Digital Library, and 2,380
papers from google scholar. We also collected 39 papers
curated in a site ml-ops.org. We then dropped all the duplicate
papers from the list using the metadata. We used a python
package called Pandas for this work.

We also noticed that the abstract of many papers collected
from the search doesn’t have the keywords used to search
them. In order to remove such papers, we used RegEx. It uses
a sequence of characters in order to find a specific pattern in
the text. We used it to search if all the required keywords were
present or not in the given abstract. We dropped the paper from
our list if we didn’t find one or more keywords in the abstract.
Figure [T] shows the number of papers belonging to different
software development life-cycle for general software startups
before and after filtration based on the presence of keywords.

E. Snowballing

Our database search for general software startups resulted
in enough papers for our research. However, we got very few
papers for ML startups. We, thus, used snowballing techniques
to increase our database for ML startups. We went through
the citations of the papers we found and checked if any of
those were relevant to us based on our inclusion-exclusion
criteria. We previously had sixteen relevant papers, and after
snowballing, we got twenty-one papers.

FE. Manual Selection and Finalization

After de-duplication and validation, we had 92 total papers,
where 72 papers belonged to general software startups, and
20 papers belonged to ML startups. The automatic filtration
did a good job in removing irrelevant papers, but several
papers contained required keywords but were not useful for
our research. So we went through the abstract of all the
remaining papers and manually selected papers. We finally
got 37 papers, 27 for general software startups and 10 for ML
startups distributed among different phases of SDLC as shown
in Table [l

TABLE I
FINAL PAPER COUNT BASED ON SDLC FOR GENERAL AND ML STARTUPS

Phase
Requirement Engineering
Design
Data Management
Development
Model Learning
Testing
Deployment

General Startup | ML Startup

3

N A X | O X |] w»
|| KX RAX

IV. RESULTS

We present our findings per research questions in this
section.

250
M Before Processing

B After Processing

Papers count

— — —
Design Deployment Requirement Testing Implementation

Phases of SDLC

Fig. 1. Number of papers per Software Development Life-Cycle phases before
and after filtration

A. RQI: Which software engineering practices are followed
by general software startups?

We summarized the various practices followed by general
software startups based on SDLC in Table [[] and discussed
them in detail in the following subsections. We also discuss
potential challenges and solutions found in the study.

1) Requirement Engineering: It is the first part of the
software development process. A well-placed requirement can
help solve problems better and develop efficient software with
the best quality. In this phase of SDLC, vague high-level user
requirements are translated into complete, precise, and formal
specifications for the further development of software [11]. It
involves interaction between both the producers and end users
of the software. There are various approaches for requirement
engineering. Startups also employ different techniques based
on their needs.

Most of the time, startups struggle not knowing what they
should develop because software requirements are not clearly
mentioned [38]. Melegati et al. [38]] conducted a total of nine
interviews with founders or managers from various Brazilian
startups using a grounded theory approach about requirement
engineering practices in startups. They found that founders or
managers play vital roles in selecting practices in startups.
They also observed different levels of maturity in requirement
engineering in software development. They found that some
startups did not have any formal process; some startups had
clear steps for requirements engineering. In cases where there
were matured requirement practices, it mainly occurred due to
market pressure or requirements. The requirement engineering
differs depending on the nature of the startup, such as client-
based or user-target-based startups. If it is a client-based
startup, the client sets all the requirements. But if it is a
user-target-based startup, the owners set the requirements. In
both cases, a validation step takes place to check for the
viability of the requirement. There can be no or little software
development in this phase. After development is completed, a
final validation step is taken to see if the requirements were
correctly implemented.

Rafiq et al. [43] studied three startups around the globe
about the requirement elicitation process. They found that
requirement engineering in startups is very primitive and
informal, and it continues to develop alongside product devel-
opment. The owners already have something in mind before
the requirements engineering process begins. Then it matures
as time evolves. The most common requirement elicitation
techniques are conducting interviews, prototyping, and brain-
storming. In addition, some unconventional methods such as
competitor analysis, collaborative team discussions, and model
users are also used.

Alves et al. [2]] conducted a literature review on requirement
engineering in startups. They found that startups use flexible
and informal requirement engineering. In addition, they ob-
served that startups are more concerned with evolution by
acquiring more customer base using pragmatic requirement
practices. They also conducted a case study on ten startups
based on the Digital Port ecosystem. They concluded that
startups use straightforward requirement engineering even they
mature by growing the customer base.

Gralha et al. [25] studied the evolution of requirements
engineering in 16 software startups using a grounded theory
approach. They found six key factors that evolve relevant to
requirement engineering: requirements artefacts, knowledge
management, requirements-related roles, planning, technical
debt, and product quality. Furthermore, they found that ad-
vances in one dimension often facilitate advances in other
dimensions. But the interesting conclusion is that evolution
in these dimensions is not fundamental to the success of
the startups. But they have a positive impact on the product,
employee, and company as a whole.

2) Design: Design is the 2nd phase of software develop-
ment and comes right after requirement engineering. In this
phase, software architects and developers design a high-level
system architecture based on requirements. Some software
startups follow design principles and methodology, while some
might not.

Startups present a founder-centric approach, and depending
on founders’ background; they might encourage some architec-
tural design before the development phase [23]]. Since founders
are the ones who have taken the risk, they have the upper hand
in deciding the design and other considerations. If startups fail
to generate revenue, they face enormous consequences.

Crowne et al. [15] found that startups don’t have experi-
enced developers, so they neglect non-coding issues like ar-
chitecture and design. Startups also have financial constraints.
So, it is challenging for them to hire experienced and quality
human resources that directly affect the architecture and design
of the software.

Duc et al. [[19] performed an empirical study on five early-
stage startups based on interviews, observation, and documen-
tation. They found that startups were unaware of Minimum
Viable Product (MVP). MVPs facilitate cost-effective product
design and bridge the communication gap.

Deias et al. [18]] found that there is a lack of well-written
architectural and design specifications in startups. This lack

is partly due to time and resource constraints. In addition,
startups have pressure to deliver products as soon as possible,
leading to design practices being compromised.

Souza et al. [48] observed that all of the startups they studied
construct a simple design of software in a quick session with
their customers since they closely work with them.

Paternoster et al. [41] in their systematic study concluded
that the use of well-known frameworks supports rapid product
change. Also, Jansen et al. [30] in their study on two startups,
found that opportunistic and pragmatic reuse of third party
software helped in the rapid development of software, hence
reducing time to market. In addition, code reuse reinforces
the architectural structure of the product and increases the
product’s ability to scale.

3) Development: In this phase of software development,
requirements and design are implemented into system com-
ponents. Developers write code and design databases along
with IT infrastructure to support them. Startups follow various
development practices to implement their product.

NicoloPaternoster et al. [41] conducted a systematic map-
ping study on software development practices in startups. They
found that startups don’t follow any standard software develop-
ment practices. This tendency is justifiable because startups are
primarily concerned with delivering their products in the mar-
ket as early as possible to start revenue generation. In addition,
they want to minimize the cost of development. Therefore,
both time and capital need to be invested in establishing a
formal process. But both of these are significant constraints
for startups. Therefore, startups mostly go after unpredictable,
responsive, and low precision software engineering [50]] [31].

Heitlager et al. [26] found that startups generally share
a common pattern: few individuals starting with scarce re-
sources. Coleman et al. [[13]] observed the same. Startups have
minimal resources and only use their limited resources to
support product development.

Dande et al. [17] studied working practices in startups in
Finland and Sweden. They found 63 common practices used
by software startups.

Souza et al. [48]] studied agile development in software
startups by conducting 14 interviews with the CTO and CEO
of startups. They found that tools and processes backed most
development activities to facilitate the software development
process. For example, using a version control system enables
the continuous integration and deployment of software.

4) Testing: Testing checks if the software does what it
is expected to do and ensures the overall quality. Although
quality assurance is essential in software development, it is
largely absent in most startups [46].

Pompermaier et al. [42] performed a study on eight startups
in Brazil at a tech park. They found that the software tech
teams did not use any testing in the first version. So, testing
was dependent on the end-users. But on the following version,
75% of the startups used some testing.

Similarly, Giardino et al. [23]] found that startups perceive
using standard software development practices as a waste of
time. So they ignore them to release the products as soon

Knowledge Area

Primary Study ID

Summary

Requirement Engineering

Chakraborty et al., 2012;
Melegati et al., 2016;
Rafiq et al., 2017,

Alves et al., 2020;
Gralha et al.,2018;

Startups generally didn’t have any formal process;

Some startups might have clear steps for requirements engineering;

In cases where there were matured requirement practices, it mostly occurred due to market pressure or requirement;
Founders play vital roles in what practice to choose;

Giardino et al., 2016;
Crowne et al., 2002;
Duc et al., 2016;

Startups present a founder centric approach

Design Deias et al., 2002; Founders are the ones who have taken huge risks, have the upper hand in deciding design
Souza et al., 2019; Startups don’t have experienced developers so they neglect non-coding issues like architecture and design
Paternoster et al.,2014;
Jansen et al., 2008;
Paternoster et al.,2014;
IS(l:liZg 2 211 38(())2 Most startups don’t follow any standard software development practices
. v . Founders want to minimize the cost of development.
Development Heitlager et al.,2007; . . }
Coleman et al.. 2008 To establish a process, both time and capital need to be invested, which are major constraints for startups.
Dande et al., 2014; Startups mostly go after unpredictable, responsive, and low precision software engineering
Souza et al.,2019;
Shikta et al., 2021;
Pompermaier et al., 2017;
Giardino et al., 2016; Startups generally ignore any quality assurance
Testing Unterkalmsteiner et al., 2016; The tepﬂtir% was Ze gendent o}; (ihe eZd-;Jser in the first versions
Mater et al., 2000; sing P ; T
Shikta et al.,2021;
Thongsukh et al., 2017;
Silva et al., 2005; Some use Manual Deployment
Deployment

Taipale et al., 2010;

Some use CI/CD pipelines

TABLE I

SUMMARY OF SE PRACTICES IN GENERAL SOFTWARE STARTUPS

Knowledge Area

Primary Study ID

Summary

Requirement Engineering

E.d. S. Nascimento et al. , 2019;

A. Banks et al., 2019;

ML applications have additional requirements that revolve around training data
Creating requirements based on business needs due to the inability of customers to understand
data and metrics requirements appropriately is challenging

Data Management

A.Hopkins et al., 2021;
A. Arpieg et al., 2018;

Different kinds of data bugs appear while preparing training data, and developers use various
verification tools.
Most startups struggle to standardize data, so they use a trusted subset.

Model Learning

A. Arpieg et al., 2018;
0. Simeone;
D.Fox et al, 2021;

Startups face challenges in experiment management and troubleshooting deep learning models
They also have the pressure of achieving a lot in a short period, so they might use multiple GPUs to train their model

Quality Assurance

L. E. Li et al., 2017;

E. d. S. Nascimento et al., 2019;

Startups tend to decompose large ML models into smaller models to avoid different defects during training
As new data is continuously inserted, models should be monitored regularly

Deployment

L. E. Li et al., 2017,
A.Arpteg et al., 2018
F. Ishikawa et al., 2019;

ML models have higher hardware dependency, and different locations might require different models
Since most customers of startups do not prefer model versioning, continuous engineering is still elusive.

TABLE TIT

SUMMARY OF ADDITIONAL SE PRACTICES IN ML STARTUPS

as possible. Therefore, quality assurance is absent in the first
versions of the software. Unterkalmsteiner et al. [54] also
concluded that startups generally ignore any quality assurance
activities.

Mater et al. [37] concluded that startups could outsource
their quality assurance test from external experts if the re-
sources are not available in the organization itself. This out-
sourcing can be an effective alternative for maintaining quality.
It can also help in both cost reduction and save time.

Shikta et al. [46] based on their study on startups in
Bangladesh, proposed a seven-phase framework for quality
assurance. The phases are (1) introduce QA lead to achieving
quality assurance on requirements and unit testing, (2) lock
requirements and regression testing, (3) hire the first dedicated
tester, (4) implement test metrics, (5) hire a second dedicated
tester to handle new requirements and required bug fixes

from customers, (6) hire a third dedicated tester to implement
automatic testing, and (7) create a custom testing plan.

Thongsukh et al. [53] suggest that process quality and
product quality are closely related to the quality of the software
development process. Therefore, using an agile development
framework such as scrum methodology will help both startups
and big businesses to achieve quality in their product. .

5) Deployment: Software deployment consists of all the
activities that involve dispatching products or deliverables to
the end-users. It is the final phase of product development. At
this phase, the product is ready to be used in a production
environment. Startups follow various deployment models.

Silva et al. [[16] found that some software startups manually
deploy the code. While some others use continuous integration
tools for deployment, as Taipale et al. [51]] reported. We found
that studies about deployment practices are scarce.

B. RQ2: Which additional software engineering practices do
machine learning startups follow?

Though general software startups share similar software
development practices with ML startups, there are some dif-
ferences too. Table summarizes the additional practices
followed by ML startups. We discussed them in detail in
subsequent sections.

1) Requirement Engineering: At first, ML startups try to
understand problems and define a goal [39]]. The requirement
engineering process followed by general software startups
works for ML startups. However, ML applications have ad-
ditional requirements that revolve around training data. Alec
et al. [7] suggested nine additional considerations for training
data requirements. The authors suggested that the training
data should be related to high-level requirements, should not
contain bias, should be sufficient, self-consistent, reliable,
robust, and correct.

However, similar to general software startups, ML startups
face challenges while creating requirements out of business
needs [39]. The problem is mainly because of the inability of
their customers to properly understand what metrics and data
are required to address the goal. The challenge is also due to
the users’ high expectations [27]. Customers usually want their
products to perform on par with big technology companies like
Google. But they cannot meet the requirements due to their
data, computing, and expertise limitations.

2) Data Management: Data management is one of the main
differences between general software startups and ML startups.
Data is the point where they start their projects for ML
companies. Rob Ashmore et al. [6] pointed out four activities
that entail data management stages. The first activity is data
collection which involves either using existing databases or
creating a new one. The second activity is preprocessing.
In this phase, collected data is adjusted appropriately. The
third activity is augmentation. In this phase, the number of
data samples is increased using different techniques. And the
final step is an analysis of collected and augmented data.
Developers can build a data pipeline that deals with structured
or unstructured data to build the ML algorithm. Different kinds
of data bugs can appear during the activity mentioned above,
and data verification tools can be used by the developers [24].

Aspen et al. [28] found that nearly all small companies,
including startups, struggled to standardize data entry and
collect the correct data, so they tend to rely on a subset of
trusted data. However, these companies also found problems
with data labeled by the domain expert. And to address that,
most of them develop complex routines and reach consensus.
Besides that, due to the black-box nature of ML algorithms,
especially neural networks, there is an inherent challenge of
data safety, and privacy faced by ML companies [4].

3) Model Learning: The primary product of a ML startup
is trained ML models. In the model learning stage, a model
or ML algorithm is trained using training data [47]]. Rob et al.
[6] suggested four activities in this stage. The first activity is
selecting the model that fits from numerous available models.

The second activity is training which optimizes the perfor-
mance of the ML model. The third activity is hyperparameter
selection, which is concerned with choosing the parameters
with training activity. The fourth activity suggested by the
author is transfer learning which involves reusing ML models
across multiple domains.

Startups can face multiple challenges during this phase.
Anders et al. [4] suggested some key challenges for deep
learning applications during this phase. The first challenge is
experiment management. The author suggested tracking the
hardware, platform, source code configuration, training data,
and model state during this phase. Troubleshooting a deep
learning model is also one of the major challenges, as it is
difficult to estimate the results before a system has been fully
trained. Moreover, startups have the pressure of achieving a
lot of progress in a short period. Dylan et al. [21] suggested
training and retraining models quickly. Startups can train on
more GPUs or train with lower precision.

4) Quality assurance: One of the main goals of ML
applications is to make predictions and inferences which
make ML startups different from general startups [36]. Rob
et al. [6] suggested three activities for this phase. The first
activity is requirement encoding, which involves transforming
requirements to verifiable test and mathematical properties.
The second one is test-based verification which consists of
providing test cases to the trained model and checking whether
it outputs the expected outcome. The third one is formal
verification which is carried out by mathematical techniques
to provide sufficient evidence that the model satisfies the
requirements.

While training a ML model multiple times on the same
data, different defects can be observed [28]]. Aspen et al. [28]]
pointed out that big companies like Google and Microsoft
mitigate the problem by training the model multiple times,
but small companies and startups might not afford the resource
required to do so. In such cases, developers decompose larger
models into smaller models. Besides, the trained model should
behave the same way in both real-time mode and batch mode
[34]. Moreover, new data is continuously inserted into the
ML models in a production environment, so developers should
continue monitoring model performance [39].

5) Deployment: Rob et al. [6] suggested three activities
in the deployment phase of ML applications. The first is
integration, which involves integrating the ML models to wider
system architecture. The second is monitoring. It involves
monitoring inputs provided to the model, monitoring the en-
vironment, monitoring internals of the model, and monitoring
outputs of the model. Finally, the deployed model should be
updated regularly since distribution of data changes as time
passes. However, updating and model versioning is still elusive
for many startups [28]] as continuous engineering of imperfect
ML applications might not be favored by customers [29].

Unlike general software, ML applications have a higher
dependency on hardware as the ML models’ performance
depends on GPUs [5]. Besides that, various models need to be
deployed in different locations to address the customers [34].

V. THREATS TO VALIDITY

We discuss the limitations of our study in this section.

Construct Threat: We only considered papers from January
1, 2000, to November 30, 2021, for this study. This time-
frame excludes all the papers published before and after this
date, limiting our scope. Besides, we only considered papers
published in journals or conferences. We considered a few
blogs related to ML startups as papers on that topic were
quite rare. Also, as our priority database was IEEE Xplore,
we mostly used papers from that source which could have
created a bias. Besides that, we ignored all the gray literature
like news articles, videos, podcasts, interviews, etc. But we see
the risk associated with this study minimal as most startups
do not publish papers explaining their software engineering.

External Threat: We only used 37 papers for our study.
Though that number helped derive insight on software engi-
neering practices for general and ML software startups, it is
still a small sample. Also, as papers specifically mentioning
startups were rare, especially for ML startups, we used papers
about small teams or companies. Being a small company or
having a small team is a startup feature, but it does not always
represent startups. So, our findings might not be generalizable
to all the startups.

Internal Threat: The primary internal validity for our
study comes from our usage of a pool of papers which we
got from specific use of keywords and searching in reliable
databases like IEEE Xplore and ACM Digital Library. We
further validated the papers by automatically removing papers
that do not contain all the keywords in the abstract and then
manually verifying them by reading abstracts of the remaining
papers. We also enriched the database of papers from Google
Scholar and ml-ops.org. Finally, we also use snowballing
and manual search to add relevant papers to our collection.
Therefore we find this threat minimal.

VI. DISCUSSION AND CONCLUSION

Our study is the first to do a comparative study of software
engineering practices between general software startups and
machine learning startups. Our goal was to find out the
software engineering practices that predicted the success of
startups. It would be beneficial for new startups to follow
one such guideline that is more rigorous and proven. General
software startups would develop confidence in using those
techniques. But, our study showed that there is no such
process that predicted success, especially in terms of revenue
and longevity of the company. On the other hand, we found
that using software engineering practices improved the overall
quality of work and employee satisfaction. In the long run,
using proper software engineering practices helped better
deliver software.

Machine learning startups share similar software engineer-
ing practices with general startups and follow additional prac-
tices to address its peculiar challenges. The primary difference
comes from the data required for machine learning applica-
tions. This difference results in additional practices during
the requirement engineering and data management phase.

Similarly, the development phase followed by the general
startup is replaced by the model learning phase. Both general
and machine learning startups have time pressure to deliver
respective products quickly with limited resource availability.
Therefore, machine learning startups tend to decompose large
models into smaller ones and use multiple GPUs to meet the
deadline.

We also aimed to find the tools used in each phase of the
software development process. Unfortunately, our goal was
hindered by the lack of study in this area. In some literature,
we found that using tools helped enhance the software devel-
opment process. However, we did not find enough information
to suggest an exhaustive list of tools that could be used by
startups.

In the future, we plan to conduct case studies on se-
lected general and machine learning startups to understand the
difference in their software engineering practices as papers
based on startups are limited. Interviewing developers from
different startups could also be considered to gain insight into
how these startups implement software engineering practices
during various stages of SDLC. In addition to that, to mitigate
the lack of papers, gray literature like interviews of startups
founders, videos, and podcasts, medium blog posts could be
good resources to understand current software engineering
practices adopted by startups.

REFERENCES

[1] B. Akter and M. A. Igbal. Failure factors of platform start-ups: A
systematic literature review. Nordic Journal of Media Management,
1(3):433-459, 2020.

[2] C. Alves, J. Cunha, and J. Aradjo. On the pragmatics of requirements
engineering practices in a startup ecosystem. In 2020 IEEE 28th
International Requirements Engineering Conference (RE), pages 311—
321, 2020.

[3] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Na-
gappan, B. Nushi, and T. Zimmermann. Software engineering for
machine learning: A case study. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), pages 291-300. IEEE, 2019.

[4] A. Arpteg, B. Brinne, L. Crnkovic-Friis, and J. Bosch. Software engi-
neering challenges of deep learning. 2018 44th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), Aug 2018.

[5] A. Arpteg, B. Brinne, L. Crnkovic-Friis, and J. Bosch. Software engi-
neering challenges of deep learning. In 2018 44th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), pages 50—
59. IEEE, 2018.

[6] R. Ashmore, R. Calinescu, and C. Paterson. Assuring the machine
learning lifecycle: Desiderata, methods, and challenges. ACM Comput.
Surv., 54(5), may 2021.

[71 A.Banks and R. Ashmore. Requirements assurance in machine learning.
In SafeAl@ AAAI, 2019.

[8] L. Blake. The Success Factors Influencing Al Ecosystems and Al
Startups: A Multi-Level Analysis. PhD thesis, HEC MONTREAL, 2020.

[9] T. Buganza, C. Dell’Era, E. Pellizzoni, D. Trabucchi, and R. Verganti.

Unveiling the potentialities provided by new technologies: A process to

pursue technology epiphanies in the smartphone app industry. Creativity

and Innovation Management, 24(3):391-414, 2015.

M. Cantamessa, V. Gatteschi, G. Perboli, and M. Rosano. Startups’

roads to failure. Sustainability, 10(7):2346, 2018.

A. Chakraborty, M. Baowaly, U. A Arefin, and A. N. Bahar. The role of

requirement engineering in software development life cycle. Journal of

Emerging Trends in Computing and Information Sciences, 3:723-729,

05 2012.

M. Chui. Artificial intelligence the next digital frontier. McKinsey and

Company Global Institute, 47(3.6), 2017.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

G. Coleman and R. V. O’Connor. An investigation into software devel-
opment process formation in software start-ups. Journal of Enterprise
Information Management, 2008.

M. Crowne. Why software product startups fail and what to do about it.
evolution of software product development in startup companies. In
IEEE International Engineering Management Conference, volume 1,
pages 338-343. IEEE, 2002.

M. Crowne. Why software product startups fail and what to do about it.
evolution of software product development in startup companies. In
IEEE International Engineering Management Conference, volume 1,
pages 338-343 vol.1, 2002.

A. F. Da Silva, F. Kon, and C. Torteli. Xp south of the equator: An
experience implementing xp in brazil. In Intl. Conference on Extreme
Programming and Agile Processes in Software Engineering, pages 10—
18. Springer, 2005.

A. Dande, V.-P. Eloranta, H. Hadaytullah, A.-J. Kovalainen, T. Lehtonen,
M. Leppidnen, T. Salmimaa, M. Syeed, M. Vuori, C. Rubattel, et al.
Software startup patterns-an empirical study. 2014.

R. Deias, G. Mugheddu, and O. Murru. Introducing xp in a start-up. In
Proc. 3rd International Conference on eXtreme Programming and Agile
Processes in Software Engineering-XP, pages 62—65, 2002.

A. N. Duc and P. Abrahamsson. Minimum viable product or multiple
facet product? the role of mvp in software startups. In International
Conference on Agile Software Development. Springer, 2016.

V.-P. Eloranta. Patterns for controlling chaos in a startup. In Proceedings
of the 8th Nordic Conference on Pattern Languages of Programs
(VikingPLoP), pages 1-8, 2014.

D. Fox. How to Train Large Deep Learning Models as a Startup, 2021.
M. Garbuio and N. Lin. Artificial intelligence as a growth engine for
health care startups: Emerging business models. California Management
Review, 61(2):59-83, 2019.

C. Giardino, N. Paternoster, M. Unterkalmsteiner, T. Gorschek, and
P. Abrahamsson. Software development in startup companies: The
greenfield startup model. IEEE Transactions on Software Engineering,
42(6):585-604, 2016.

G. Giray. A software engineering perspective on engineering machine
learning systems: State of the art and challenges. Journal of Systems
and Software, page 111031, 2021.

C. Gralha, D. Damian, A. Wasserman, M. Gouldo, and J. Aratjo.
The evolution of requirements practices in software startups. In 2018
IEEE/ACM 40th International Conference on Software Engineering
(ICSE), pages 823-833, 2018.

I. Heitlager, R. Helms, and S. Brinkkemper. A tentative technique for
the study and planning of co-evolution in product. In Third Intl. IEEE
Workshop on Software Evolvability 2007, pages 42—47, 2007.

A. Hopkins and S. Booth. Machine learning practices outside big tech:
How resource constraints challenge responsible development. In Pro-
ceedings of the 2021 AAAI/ACM Conference on Al, Ethics, and Society,
AIES 21, page 134-145, New York, NY, USA, 2021. Association for
Computing Machinery.

A. Hopkins and S. Booth. Machine learning practices outside big tech:
How resource constraints challenge responsible development. 2021.

F. Ishikawa and N. Yoshioka. How do engineers perceive difficulties in
engineering of machine-learning systems? - questionnaire survey. In
2019 IEEE/ACM Joint 7th Intl. Workshop on Conducting Empirical
Studies in Industry (CESI) and 6th Intl. Workshop on Software Engi-
neering Research and Industrial Practice (SER IP), pages 2-9, 2019.
S. Jansen, S. Brinkkemper, I. Hunink, and C. Demir. Pragmatic and
opportunistic reuse in innovative start-up companies. IEEE Software,
25(6):42-49, 2008.

M. Kakati. Success criteria in high-tech new ventures. Technovation,
23(5):447-457, 2003.

G. Kalyanasundaram. Why do startups fail? a case study based empirical
analysis in bangalore. Asian Journal of Innovation and Policy, 2018.
E. Klotins, M. Unterkalmsteiner, P. Chatzipetrou, T. Gorschek, R. Prik-
ladnicki, N. Tripathi, and L. Pompermaier. Exploration of technical
debt in start-ups. In 2018 IEEE/ACM 40th International Conference on
Software Engineering: Software Engineering in Practice Track (ICSE-
SEIP), pages 75-84, 2018.

L. E. Li, E. Chen, J. Hermann, P. Zhang, and L. Wang. Scaling machine
learning as a service. In Intl. Conference on Predictive Applications and
APIs, pages 14-29. PMLR, 2017.

L. Luce. Artificial intelligence for fashion: How Al is revolutionizing
the fashion industry. Apress, 2018.

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

S. Masuda, K. Ono, T. Yasue, and N. Hosokawa. A survey of software
quality for machine learning applications. In 2018 IEEE Intl. Conference
on Software Testing, Verification and Validation Workshops (ICSTW),
pages 279-284, 2018.

J. L. Mater and B. Subramanian. Solving the software quality manage-
ment problem in internet startups. Keynote Address—October 17, 2000.
J. Melegati and A. Goldman. Requirements engineering in software star-
tups: a grounded theory approach. In 2016 International Conference on
Engineering, Technology and Innovation/IEEE International Technology
Management Conference (ICE/ITMC), pages 1-7, 2016.

E. d. S. Nascimento, I. Ahmed, E. Oliveira, M. P. Palheta, 1. Stein-
macher, and T. Conte. Understanding development process of machine
learning systems: Challenges and solutions. In 2019 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM), pages 1-6, 2019.

C. Nobel. Why companies fail-and how their founders can bounce back.
Harvard Business School Boston, MA, 2011.

N. Paternoster, C. Giardino, M. Unterkalmsteiner, T. Gorschek, and
P. Abrahamsson. Software development in startup companies: A sys-
tematic mapping study. Information and Software Technology, 2014.
L. Pompermaier, R. Chanin, A. H. C. de Sales, K. Fraga, and R. Priklad-
nicki. An empirical study on software engineering and software startups:
findings from cases in an innovation ecosystem. org. crossref. xschema.
_1. Title@ 1ff57c40, 2017, Brasil., 2017.

U. Rafig, S. S. Bajwa, X. Wang, and I. Lunesu. Requirements elicitation
techniques applied in software startups. In 2017 43rd Euromicro Con-
ference on Software Engineering and Advanced Applications (SEAA),
pages 141-144, 2017.

M. Schulte-Althoff, D. Fiirstenau, and G. M. Lee. A scaling perspective
on ai startups. In Proceedings of the 54th Hawaii International
Conference on System Sciences, page 6515, 2021.

R. Shams. Developing machine learning products better and faster at
startups. [EEE Engineering Management Review, 46(3):36-39, 2018.
S. Shikta, H. M. Mahir Shahriyar, S. K. Das, S. N. Mahal, K. B.
Al Jannat, and S. Alam. Quality assurance guidelines for successful
startups. In 2021 IEEE/ACIS 19th International Conference on Software
Engineering Research, Management and Applications (SERA), pages
81-85, 2021.

O. Simeone. A very brief introduction to machine learning with
applications to communication systems. /EEE Transactions on Cognitive
Communications and Networking, 4(4):648-664, 2018.

R. Souza, L. Rocha, F. Silva, and I. Machado. Investigating agile
practices in software startups. In Proceedings of the XXXIII Brazilian
Symposium on Software Engineering, SBES 2019, page 317-321, New
York, NY, USA, 2019. Association for Computing Machinery.

J.-C. Spender, V. Corvello, M. Grimaldi, and P. Rippa. Startups and open
innovation: a review of the literature. European Journal of Innovation
Management, 2017.

S. Sutton. The role of process in software start-up. IEEE Software,
17(4):33-39, 2000.

M. Taipale. Huitale—a story of a finnish lean startup. In Intl. Conference
on Lean Enterprise Software and Systems, pages 111-114. Springer,
2010.

D. A. Tamburri. Sustainable mlops: Trends and challenges. In 2020
22nd International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC), pages 17-23, 2020.

S. Thongsukh, S. D. N. Ayuthaya, and S. kiattisin. Startup framework
based on scrum framework. In 2017 International Conference on Digital
Arts, Media and Technology (ICDAMT), pages 458463, 2017.

M. Unterkalmsteiner, P. Abrahamsson, X. Wang, A. Nguyen Duc,
S. Shah, S. Sohaib, G. Baltes, K. Conboy, E. Cullina, D. Dennehy,
H. Edison, C. Ferndndez, J. Garbajosa, T. Gorschek, E. Klotins,
L. Hokkanen, F. Kon, M. 1. Lunesu, M. Marchesi, and A. Yagiie. Soft-
ware startups - a research agenda. E-Informatica Software Engineering
Journal, 2016:89-124, 10 2016.

M. Unterkalmsteiner, P. Abrahamsson, X. Wang, A. Nguyen-Duc, S. Q.
Shah, S. S. Bajwa, G. H. Baltes, K. Conboy, E. Cullina, D. Dennehy,
et al. Software startups—a research agenda. e-Informatica Software
Engineering Journal, 10(1):89-123, 2016.

C. Vijai and W. Wisetsri. Rise of artificial intelligence in healthcare
startups in india. Advances In Management, 14(1):48-52, 2021.

X. P. S. Zhang and D. Kedmey. A budding romance: Finance and ai.
IEEE MultiMedia, 25(4):79-83, 2018.

	I Introduction
	II Background
	II-A Research questions

	III Research Methodology
	III-A Inclusion and Exclusion Criteria
	III-B Database Search
	III-C Meta Data Collection
	III-D De-duplication and Validation
	III-E Snowballing
	III-F Manual Selection and Finalization

	IV Results
	IV-A RQ1: Which software engineering practices are followed by general software startups?
	IV-A1 Requirement Engineering
	IV-A2 Design
	IV-A3 Development
	IV-A4 Testing
	IV-A5 Deployment

	IV-B RQ2: Which additional software engineering practices do machine learning startups follow?
	IV-B1 Requirement Engineering
	IV-B2 Data Management
	IV-B3 Model Learning
	IV-B4 Quality assurance
	IV-B5 Deployment

	V Threats to Validity
	VI Discussion and Conclusion
	References

