
IEEE International Conference on Software Security and Reliability

Washington, D.C., June 2012.

Applying Microreboot to System Software

Michael Le and Yuval Tamir
Concurrent Systems Laboratory

UCLA Computer Science Department

{mvle,tamir}@cs.ucla.edu

Abstract—Av ailability is increased with recovery based on

component microreboot instead of whole system reboot. There

are unique challenges that must be overcome in order to apply

microreboot to low-level system software. These challenges

arise from the need to interact with immutable hardware

components on one hand and, on the other hand, with a wide

variety of higher level workloads whose characteristics may be

unknown. As an example, we describe our experience with

applying microreboot to system-level virtualization software.

Specifically, implementing microreboot for all the components

of the widely-used Xen virtualization infrastructure. We

identify the unique difficulties with applying microreboot for

such low-level software and present our solutions. We present

measures of the complexity of different classes of solutions and

experimental results, based on extensive fault injection,

showing the effectiveness of the solutions.

Keywords− Recovery; Virtualization; Fault injection

1. Introduction

Microreboot enables fast restoration of a valid state of a

failed process or system by rebooting the specific failed

component instead of the entire system [5]. Low-level

system software (LLSS) manages and controls hardware

resources and mediates access to hardware resources by

higher software layers. While in previous work microreboot

has been used mostly for user-level processes, the technique

is also applicable to system software. However, as

explained below, due to key characteristics of system

software, using microreboot to recover from failures in such

software is particularly challenging.

In general, it is difficult to apply microreboot to

software with tightly-coupled components and non-modular

organization. Unfortunately, LLSS tends to possess these

characteristics. LLSS has additional properties that makes it

less amenable than application software to the microreboot

technique. One such property is that LLSS interacts directly

with hardware resources. The hardware cannot be modified

and the interfaces to the hardware may not provide well-

defined semantics in the face of an LLSS component reboot.

Hardware resources may be shared by multiple LLSS

components, potentially coupling these components to each

other, making it difficult to microreboot a single component.

A second property that complicates the use of

microreboot for LLSS is that the software that runs on top of

the LLSS (application software) is typically not under the

control of the LLSS developer. This makes it difficult to

microreboot LLSS components while allowing the

application software, that interacts with the LLSS, to

ev entually continue operating normally. Finally,

microreboot is simpler if a component with greater privilege

can manage the microreboot process. With LLSS there may

not be any software component in the system with greater

privilege. Hence, the LLSS must somehow microreboot

itself while in a potentially corrupted state.

Ke y contributions of this paper include identifying

unique challenges to applying microreboot to low-level

system software and presenting general approaches to

addressing these challenges. This is based on our

experience using these approaches with complex low-level

software — software that provides system-level

virtualization. Specifically, we hav e applied microreboot to

all the components of the Xen [1] virtualization software.

As explained in Section 4, this software consists of three

components: the privileged virtual machine (PrivVM), the

device driver virtual machine (DVM), and the virtual

machine monitor (VMM). We denote all three of these

components as the virtualization infrastructure (VI).

We describe how we hav e employed the approaches to

using microreboot with LLSS with all three components of

the VI. In each case, we explain the specific difficulties and

present experimental results that show the effectiveness of

the techniques. While the use of microreboot to recover

from failures of two of the VI components has been

presented in prior work [13, 10, 14, 15], recovery from

failures of the PrivVM is presented here for the first time.

Hence, the description and evaluation of the specific

technique used for PrivVM recovery, based on microreboot,

is another key contribution of this work.

The next section is an overview of microreboot.

Section 3 describes the challenges with the use of

microreboot for LLSS and general approaches to addressing

these challenges. The Xen VI is described in Section 4.

Section 5 explains how we hav e employed microreboot for

recovery from failures of each one of the Xen VI

components. The experimental setup used to evaluate the

recovery mechanism is described in Section 6. The results

of the evaluation are in Section 7. Section 8 provides

measures of the implementation complexity of our recovery

schemes and related work is presented in Section 9.

2. Microreboot Overview

When system components fail, a simple way to recover is to

reboot the entire system. This is slow and reduces system

availability. Microreboot is a recovery technique that



- 2 -

reduces the down time caused by failure of some

components in the system by recovering (rebooting) only

the failed components in the system while allowing other

functioning components to continue operating normally.

As explained in [5], there are three main design goals

for microrebootable software: (1) fast and correct

component recovery, (2) localized recovery to minimize

impact on other parts of the system, and (3) fast and correct

reintegration of recovered components. To achieve these

goals, software components need to be loosely coupled,

have states that are kept in dedicated state store separate

from program logic, and be able to hide component failures

by providing mechanisms for retrying failed requests. To

decrease recovery latency, the software components should

be fine-grained to minimize the restart and reinitialization

time. Lastly, to facilitate cleaning up after microreboots and

prevent resource leaks, system resources should be leased

and requests should carry time-to-live values.

3. Microrebooting Low-level System Software

There are unique challenges to employing microrebooting

with low-level system software. In the rest of this section,

these challenges are described and general approaches to

addressing these challenges are presented.

Immutable shared hardware: LLSS interacts directly

with hardware that may not provide interfaces with the

properties required for ‘‘clean’’ microreboot and may cause

undesirable coupling among different LLSS components

that interact with the hardware. The coupling among LLSS

components may force multiple components to be

microrebooted together, thus violating the key goal of the

microreboot technique and increasing the recovery latency

of the system.

An LLSS component failure can lead to corruption of

hardware state by providing the hardware with faulty inputs

or failing to respond properly to inputs from the hardware.

The only way to restore the hardware component (e.g., a

device controller, an interrupt controller, or a bus) to a sane

state may be to reset it. The hardware component that needs

to be reset may be coupled to other hardware components

and/or shared by multiple LLSS components. Hence, the

reset of the hardware component may initiate a ‘‘domino

effect’’ that forces the reset and reboot of multiple hardware

and LLSS components. Furthermore, the reset of some

hardware components may be inherently slow [13].

When an LLSS component, such as an OS kernel, is

rebooted, it often goes through a process of probing the

hardware in order to identify its characteristics. For some

hardware components, such probing can change the state of

the device, which can lead to corruption and inconsistencies

if the device is being used by other components in the

system.

The hardware cannot be changed in order to

accommodate LLSS microreboot. Hence, microreboot for

LLSS components may require implementing work-arounds

to deal with specific problematic properties of specific

hardware components. This may involve identifying ways

to perform partial resets of the hardware, even if that may

not always be sufficient [13]. It may lead to special

operations performed during microreboot which, while not

an actual hardware reset, can eliminate specific known

‘‘problem states’’ in the hardware. An example of this is to

acknowledge any pending interrupts, waiting for a response

from the rebooted LLSS component, that would otherwise

block future interrupts. Finally, in some cases, the

considerations above may force a recovery technique where

system functionality is restored before the microreboot of

the failed LLSS component and/or the reset of some

particular hardware component. This can be done by fail-

over mechanisms that use redundant software and hardware

resources while the failed components are restored.

Workload transparency: Typically, many different

applications and user-level subsystems (workloads) run on

top of the LLSS and interact with LLSS components. The

software that runs on top of the LLSS may not be known at

the time the LLSS is developed and/or may not be under the

control of the LLSS developer. Hence, ideally, the

microreboot of LLSS components should be transparent to

the layers above it.

A key challenge to meeting the transparency goal

described above is the possibility of requests from the

workload that are in progress in the LLSS when an LLSS

component fails. Since the workload is typically not

designed to interact with components that may be rebooted,

it cannot be expected to retry such in-progress requests once

the microreboot is performed. Hence, an LLSS recovery

mechanism that employs microreboot must have some way

to log, in a safe location, information that allows in progress

requests to be retried and completed following microreboot.

Ideally, this is done strictly on the LLSS side and must be

considered part of implementing the microreboot capability.

‘‘Last’’ software layer: It is typically simplest for

microreboot of a component to be performed by a

component that has higher privilege and thus has access to

all the resources required for the rebooted component. In

many cases, LLSS components interact directly with the

hardware and have the highest privilege. In such cases, the

challenge is that, once the LLSS component fails, there is no

higher privilege component that can manage the

microreboot process. Furthermore, since the failed

component has the highest privilege, no part of the system

can be considered safe from corruption by the failed

component.

The only viable approach to dealing with the above

challenge is to have an equal privilege LLSS component, a

failure handler, that is invoked when an error is detected.



- 3 -

Since the failure handler is of equal privilege, the handler

itself may be corrupted by the failed component and/or

recovery may rely on the reuse of potentially corrupted

state. Redundant data structures can be used to minimize

the probability of corrupted state reuse. However, this

possibility cannot be eliminated.

System time management: System time is maintained

by the system software. Microreboot of an LLSS

component may lead to erratic changes in system time. For

example, system time may cease to advance for some

duration and/or may advance suddenly by a significant

amount when an LLSS component microreboot completes.

Applications running on the system may rely on time that is

monotonically increasing at a constant rate. For example,

this may be the case for applications that use timer events to

trigger some actions. In addition, the system may be

interacting with the outside world that is expecting time on

the system to remain approximately synchronized with real

time.

With respect to the workload running on top of the

LLSS, the problem above can be partially mitigated by

ensuring that the workload is not allowed to execute (is

scheduled out) if time is not advancing while an LLSS

component is being rebooted. The minimum disruption to

the workload can then be achieved by restoring time to the

value just before the reboot (just before the workload is

paused) when the workload is finally allowed to resume

execution. To minimize problems related to interactions

with the outside world, time must then be slowly accelerated

until it catches up with real time.

Imperfect recovery: None of the approaches described

above for dealing with the challenges of employing

microreboot for LLSS guarantee that recovery will be

successful. LLSS with high privilege may corrupt all

software layers above it and may corrupt the state of the

hardware to the point of requiring power cycling the entire

system. The probability of such undesirable behavior can

be reduced by performing extra work during normal

operation to provide self-checking capabilities and log

redundant data that can be used during recovery. The

microreboot process itself can be made safer by performing

extra checks on state that is reused as well as on hardware

components. The challenge is to determine the costs and

benefits of such overhead and know when the mechanism is

sufficient to meet system requirements.

An approach to meeting the above challenge is to rely

on incremental refinement of the recovery mechanism based

on experimental evaluation [19]. Specifically, the first step

is to implement a minimal recovery mechanism, that can

deal with ‘‘well-behaved’’ fail-stop failures. Fault injection

campaigns are then used to evaluate the recovery success

rate under realistic conditions. The results are used to

determine the most important cause of recovery failures.

This cause is a deficiency in the recovery mechanism that is

then eliminated or mitigated. The process is then repeated

until the desired success rate is achieved.

4. System-level Microreboot Example: Xen

As will be discussed in Section 5, we have applied the

techniques discussed in Section 3 to employ microreboot for

recovery from failures in the Xen [1] virtualization

infrastructure (VI). To facilitate understanding of this work,

this section is a brief review of key features of Xen.

Figure 1: Virtualization infrastructure and the split device driver

architecture.

System-level virtualization allows multiple VMs, each

with its own OS, to run on a single physical computer [20].

The virtualization infrastructure (VI) consists of all the

software components involved in multiplexing hardware

resources among VMs. The Xen VI is composed of three

components: virtual machine monitor (VMM), driver VM

(DVM), and privileged VM (PrivVM). We refer to VMs

that are not part of the VI as application VMs (AppVMs).

A common VI organization for allowing multiple VMs

to share I/O devices is called the split device driver

architecture [7, 16, 18]. With this organization, a frontend

driver resides in each VM sharing a device. As shown in

Figure 1, the actual device driver together with a backend

driver reside in a VM that is referred to as the driver VM

(DVM). In each AppVM, I/O requests are forwarded by the

frontend driver to the backend driver, which invokes the

actual device driver. In Xen [1], the frontend and backend

drivers communicate through a ring data structure in an area

of memory shared between the AppVM and DVM.

The privileged VM (PrivVM) is used to perform

system management operations such as creating, destroying,

and checkpointing VMs. The VMM does not permit these

operations to be invoked by any other VMs.

The functionality of the PrivVM is provided by a

combination of kernel modules and user-level processes

running in the PrivVM. One user-level process, XenStored,

provides access to a dynamic database of system

configuration information, called XenStore. XenStored also

provides mechanisms for VMs to be informed of changes to

certain configuration states by allowing VMs to register

watches on those states in the XenStore. A VM

communicates with the XenStore through XenStored using



- 4 -

a shared ring data structure, similar to the communication

mechanism between a DVM and AppVM.

5. Employing Microreboot for Xen VI Recovery

As originally implemented, failures in any of the Xen VI

components results in the failure of the entire virtualized

system, requiring full system reboot that involves restarting

all the AppVMs. We hav e employed microreboot to

implement mechanisms that allow the virtualized system to

recover from most failures of any of the VI components,

without requiring the AppVMs to be restarted. Following

recovery, the fault tolerance capability of the system is

restored so that it maintains its ability to recover from future

VI component failures. The rest of this section describes the

configuration of the virtualized system that makes it

amenable to fault tolerance. The mechanisms used for

detecting failures of the VI components are explained. A

definition of what is meant by ‘‘successful recovery’’ is then

provided. Three successive subsections present how

microreboot is used to recover from failures of each of the

VI components. A final subsection relates the specific

difficulties with implementing microreboot for the Xen VI

to the challenges discussed in Section 3.

The PrivVM manages the virtualized system [1] and, as

described later, also plays important roles in most of the

fault tolerance mechanisms that we have dev eloped. Hence,

it is desirable to minimize the probability of PrivVM failure

and minimize the complexity of recovery when the PrivVM

does fail. In a typical Xen system, the PrivVM is used to

access all hardware devices in the system [1]. However,

such a configuration exposes the PrivVM to possibly buggy

device drivers [21] or faulty device controllers, thus

increasing the probability of PrivVM failure.

Due to the considerations explained above, we use a

configuration that minimizes the interactions of the PrivVM

with device controllers. Specifically, as explained in

Section 4, access to most devices is through a separate

driver VM (DVM). The PrivVM’s root file system is in

memory so that the PrivVM does not have access to any

storage devices. The PrivVM has access to a network

interface card (NIC) in order to enable remote management

of the virtualized system. In addition, the PrivVM controls

the PCI bus configuration space and access to the PCI

configuration space from any VM is performed through the

PrivVM. Furthermore, the PrivVM hosts the virtual serial

console device.

A prerequisite for recovery is the detection of

component failures. Crashes of the DVM or VMM are

easily detected since they cause the invocation of panic

handlers [13, 14]. DVM and VMM hangs are detected by

mechanisms implemented in the VMM that identify when

these components fail to perform expected operations over a

given period of time [13, 14]. Similar mechanisms are used

to detect crashes or hangs of the PrivVM’s kernel. As

discussed in Section 4, the PrivVM hosts user-level

processes that are essential to the correct operations of the

VI. To detect the failure of these processes, we deploy a

user-level monitoring process, called hostmon, that

periodically checks for the existence of these processes.

When hostmon detects the disappearance of one of these

processes, it invokes the VMM to crash the PrivVM and

trigger full PrivVM recovery.

We use the rate of successful recovery from VI

component failures to quantify the effectiveness of our

resiliency mechanisms. Virtualization is commonly used to

consolidate the workloads of multiple physical systems on a

single physical host. With multiple physical systems, a

single fault may cause the failure of one of the systems.

Due to physical isolation, other systems are not directly

affected. Since a virtualized system does not have the

benefits such physical isolation, an aggressive reliability

goal for VI resiliency mechanisms is to do no worse than a

cluster of physical systems. Hence, we define recovery

from a VI component failure to be successful as long as it

does not lead to the failure of more than one AppVM and

the recovered VI is able to continue hosting the remaining

VMs as well as create and host new VMs [14, 15].

We hav e implemented recovery mechanisms, based on

microreboot, for all the VI components of Xen version

3.3.0. As discussed in Section 3, we have used the

incremental refinement approach to optimize the recovery

scheme for each VI component. Mechanisms for

microrebooting the VMM [14] and DVM [13, 15] are only

briefly reviewed since they hav e already been presented

elsewhere. The mechanism for recovering a failed PrivVM

has not been described elsewhere and is thus presented in

more detail.

5.1. Microrebooting the VMM

ReHype [14] microreboots the VMM while preserving the

states of all running VMs in memory. Failure detectors in

the VMM initiate the VMM microreboot. The failure

handler in the VMM controls the microreboot process:

stopping all but one CPU from running, preserving critical

VMM state, and refreshing parts of the VMM memory with

a pristine VMM image stored elsewhere in memory. The

CPUs are instructed to halt by the handler of a special non-

maskable interrupt sent from the CPU handling the failure.

Before refreshing VMM memory, VMM state in the static

data segments is preserved since it contains data that is

critical for resuming execution of the existing VMs.

ReHype reserves a space in the uninitialized (bss) static data

segment to which this state is copied and from which it is

later restored. The overwritten (refreshed) VMM memory

includes VMM code, the initialized static data segment, and

the non-reserved area of the bss.

To prevent the loss of VM states across a VMM

microreboot, the memory of the VMs, which is allocated on



- 5 -

the VMM’s heap, must be preserved. The memory states of

VMs can be very large. Hence, to minimize recovery time,

the VMM’s heap is preserved in place. The VMM’s boot

code has been modified to restore critical VM management

data structures, saved in the reserved space in the bss and

the preserved heap, and to avoid marking as free pages that

were allocated by the old VMM instance.

Since the VMM can fail at any time, inconsistencies

can occur between the new VMM instance and the rest of

the preserved system. The basic microreboot scheme

discussed above is not capable of resolving most of these

inconsistencies, resulting in a low successful recovery rate

(5.6% of detected VMM failures). We incrementally

improved the basic recovery scheme and were able to obtain

a successful recovery rate of over 94% [14] of detected

VMM failures. Some of these improvements involved

resolving inconsistencies that can arise from partially

executed hypercalls, acquired locks in the preserved

structures, and unacknowledged hardware interrupts.

5.2. Microrebooting the DVM

When a DVM fails, applications accessing I/O through that

DVM are blocked. If the DVM is microrebooted and

hardware devices are reset, the duration of the interruption

may be on the order of seconds [13]. Such long

interruptions can result in the failure of the workload

running in the AppVMs. Therefore, unlike other VI

components, we do not rely on microreboot to recover from

DVM failure. Instead, recovery from a DVM failure

involves failing over to a redundant DVM with access to

separate hardware devices [15]. However, microreboot must

still be used to replace the failed DVM so that the fault

tolerance capabilities of the system are restored.

The PrivVM controls the process of microrebooting the

DVM, which includes: pausing the failed DVM, booting a

new DVM instance, destroying the failed DVM, and

integrating the new DVM with existing VMs on the system.

The destruction of the failed DVM and subsequent releasing

of all its memory to the VMM must be done after all the

devices that the failed DVM owns are re-initialized by the

newly booted DVM. This is to prevent ongoing DMA

operations initiated by the failed DVM from corrupting

memory that has been released to the VMM. The new

DVM instance is re-integrated with existing VMs by

reforming the respective frontend-backend connections.

This is done transparently to the applications in the AppVM

by extending existing mechanisms in the frontend drivers

responsible for resuming and suspending devices [13].

5.3. Microrebooting the PrivVM

As described above, microreboot of a DVM is controlled by

the PrivVM. The PrivVM is, obviously, not operational

during PrivVM microreboot. Without a functional PrivVM,

only the VMM has the privileges required to replace a failed

PrivVM. Hence, the VMM is responsible for releasing all

the resources of the failed PrivVM and booting the new

PrivVM instance. Since the PrivVM kernel and root file

system may be corrupted during PrivVM failure, pristine

PrivVM kernel and filesystem images must be used for the

new PrivVM. The required pristine images are stored,

compressed, in the VMM address space, consuming

approximately 128MB.

A key requirement for microrebooting the PrivVM is to

restore state in the PrivVM needed for managing and

controlling the system. This state includes the XenStore,

stored as a file in the PrivVM, and watches in the XenStored

process. Since all the PrivVM state, including the file

system, is in memory, failure of the PrivVM results in the

complete loss of its state. Hence, to preserve the critical

PrivVM state, the XenStore and XenStored states are

replicated. To survive PrivVM failure, the replicated states

must be stored in a different VI component. While there are

several alternatives, the simplest choice is to maintain the

replicated state in one of the DVMs. This DVM is referred

to as DVM_XS.

The backup copy of the critical PrivVM state is

maintained in the DVM_XS by a user-level process — the

XenStore Backup Agent (XBA). The XBA on the

DVM_XS communicates with XenStored on the PrivVM

over shared rings, similar to the connection between

AppVMs and a DVM. XenStore write requests, watch

registrations, and requests to start or end XenStore

transactions are forwarded by XenStored to the XBA before

performing the operations in the PrivVM. The XBA

performs all operations on a local copy of the XenStore

located on the filesystem of the DVM_XS. After a

microreboot, the new PrivVM acquires up-to-date XenStore

and XenStored states from the XBA. If the DVM_XS fails,

the XenStore and XenStored states are transmitted from the

PrivVM to the XBA on the newly recovered DVM_XS.

During PrivVM microreboot, the frontend-backend

connection with the XBA must be established before the

PrivVM can obtain the XenStore and XenStored states from

the XBA. Establishing this connection requires the PrivVM

to have information such as the frame number of the shared

page being used by the connection (Section 4). Hence, the

VMM has been modified (new hypercalls) to allow the

PrivVM to store this information in VMM memory when

the PrivVM is first booted and retrieve the information when

a new instance is booted during PrivVM microreboot.

During PrivVM microreboot, once the XenStore and

XenStored states have been restored, connections involving

the PrivVM are re-established, connecting frontends in the

various VMs to the XenStored, virtual serial console, and

PCI backends in the PrivVM. Re-establishment of PCI

frontend-backend connections required a small extension to

the PCI frontend driver in all the VMs. This extension



- 6 -

incorporates the abilities to disconnect/connect from/to the

PCI backend driver using the existing suspend/resume

functionalities of the split device driver mechanism.

Table 1. Fault injection into the PrivVM. Percentage of successful

recoveries out of detected PrivVM failures.

Mechanism Successful Recovery RatePrivVM State

Basic Idle 92.16%

Basic Active 35.71%

+ T_VMCreate Active 86.42%

+ T_Requests Active 96.27%

The mechanisms presented up to this point provide

basic capabilities for PrivVM microreboot. Table 1 presents

the results from fault injection into registers while the

PrivVM is executing (Section 6). As shown in the top row,

when the PrivVM is idle, the rate of successful recoveries

out of all detected faults is greater than 92%.

If faults occur while the PrivVM is active, recovery is

more difficult. As shown in the second row of Table 1, if

faults are injected while the PrivVM is in the process of

creating a new VM, recovery rate plummets to below 36%.

Most failures (> 65%) occur because, during recovery, the

new XenStored process fails while trying to acquire

information from the restored XenStore about the existing

VMs on the system. Since the PrivVM fails in the middle of

creating an AppVM, only a subset of the expected entries

for the new AppVM are present in the XenStore backup.

Hence, XenStored in the new PrivVM instance fails while

attempting to process incomplete (invalid) XenStore state.

T_VMCreate: To avoid the above problem, VM

management operations, such as VM creation and

destruction, including associated changes to XenStore, have

to be atomic. Transactionalizing these operations requires

maintaining a log that tracks the individual steps of each

operation. This allows the recovery mechanism to

determine how far along the operation progressed before

failure and, if necessary, how to undo partially completed

operations. With this information, even across PrivVM

failures, VM management operations are either executed to

completion or aborted, leaving the VI in a consistent state.

In the case of a VM create operation, either the VM is

created successfully or the VM is destroyed and any

information written to the XenStore is removed.

To demonstrate the feasibility and effectiveness of the

above approach, we have implemented transactional

versions of the VM create and destroy operations. This

involved modifying Xend — a user-level process in the

PrivVM that receives requests for management operations

and carries out these requests by interacting with the VMM

and XenStored. Xend acknowledges requests after

performing the requested operation. Our modified Xend

uses the XBA and replicated XenStore to create a log that is

maintained across PrivVM recovery and is available to the

new Xend process.

Creating a VM requires sending two requests to Xend:

(1) create the VM and (2) unpause the VM. Our modified

Xend creates a log entry before executing the first request

and removes the log entry before acknowledging this

request. After recovery, if Xend detects a log entry for

creating a VM, that indicates that the PrivVM had failed

before acknowledging the ‘‘create VM’’ command and thus

may have failed before completing all the steps involved in

creating a VM. Hence, Xend destroys the VM and cleans

up any XenStore entries associated with that VM. With

respect to the PrivVM, the processing of the ‘‘unpause VM’’

request is inherently atomic (one hypercall) and thus no

modifications are needed to the processing of that request.

The processing of the ‘‘VM destroy’’ request is made

atomic using the same approach as for the ‘‘VM create’’

request.

With transactional VM creation, the successful

recovery rate is above 86% (Table 1). More than 63% of

remaining failures are cases in which the AppVM hangs

waiting for a response to a XenStore request. Such requests

are sent by the AppVM during its boot-up process to set up

access to its disks. The AppVM hangs if the request is lost

due to PrivVM failure while processing the request.

T_Requests: To overcome the problem of AppVM

hangs, when the PrivVM is microrebooted, the recovery

mechanism must ensure that pending XenStore requests

from other VMs are performed and proper responses are

sent to the requesters. Similarly to T_VMCreate, this is

done using logging to detect partially processed requests —

requests for which responses have not been sent to the

requesters.

XenStore requests/responses from/to another VM are

placed in circular buffers shared between the PrivVM and

the other VM. Shared producer and consumer indices are

used to coordinate the use of the shared buffers. Since the

shared buffer page is owned by the other VM, the

requests/responses and the circular buffer indices remain

intact across a PrivVM microreboot (although there is the

possibility that they will be corrupted by the failed PrivVM).

As originally implemented, XenStored updates the

request consumer index once it reads a request, before

processing it. XenStored updates the response producer

index after it places a response in the response ring. To help

detect pending requests, our modified XenStored updates

the request consumer index only after it updates the

response producer index. Our modified XenStored also logs

in the replicated XenStore the request consumer index

before it begins to process a request and logs the response

producer index after placing the response in the shared

buffer but before updating the shared index. Thus, while

XenStored is processing a request, the logged request

consumer index equals the shared value. If the response to



- 7 -

an in-progress request has already been made available to

the requesting VM, the logged response producer index is

not equal to the shared value. During PrivVM recovery, the

new XenStored uses the values of the logged indices and the

indices in the shared buffer to determine where in the

request buffer to resume request processing.

With PrivVM recovery, the mechanism described

above may result in the re-execution of requests that have

been completely executed but for which the response has

not been made available to the requesting VM. This is not a

problem with idempotent requests, such as XenStore reads

and writes. However, error responses may be sent to the

requester if there is an attempt to re-execute non-idempotent

requests, such as removing entries in the XenStore,

starting/ending XenStore transactions, or setting watches.

For such non-idempotent requests, before request processing

begins, XenStored logs to the replicated XenStore relevant

information regarding the state of XenStore and XenStored.

During PrivVM recovery, the new XenStored uses this

logged information to avoid re-executing non-idempotent

requests that have already been executed, yet provide proper

responses to the requester. With this enhancement, the

successful recovery rate for detected PrivVM failures is

above 96%.

5.4. System-level Implementation Challenges

This subsection highlights how the general approaches for

overcoming challenges of system-level microreboot (Section

3) apply to specific difficulties with microrebooting the Xen

VI components. Some of the problems and solutions are not

exclusively system-level problems but are discussed in

order to provide a complete picture of the issues involved in

microrebooting system-level software.

Immutable shared hardware: Microrebooting Xen

VI components requires resetting hardware devices with

which these components interact. It is not possible to

change the fact that some devices cannot be individually

reset and some reset operations may be slow, possibly

causing applications waiting in the AppVMs to fail

(Section 3). This is a problem that affects all three

components of the VI. Getting around these problems

requires modifications to the software that initializes

hardware components.

An example where a modified re-initialization

operation is needed is during the microreboot of the

PrivVM. Since the PrivVM has access to the PCI

subsystem (PCI buses and PCI configuration space),

PrivVM boot-up usually includes the probing of PCI

devices. This probing involves the reading of the PCI

configuration, which requires writing into a control register.

The control register may be in use for different purposes

during normal system operations. Hence, reading the PCI

configuration during PrivVM recovery may have unintended

side effects. Avoiding this problem required modifying the

PCI driver in the PrivVM kernel. The PCI information

gathered during initial PrivVM boot-up is saved in the

VMM. A modified PCI probing routine is used during

reboot to retrieve the PCI information from the VMM.

When microrebooting the DVM, special re-

initialization operations can be used to decrease the device

reset time. Specifically, for reducing the time it takes to

reset network interface devices, we have experimented with

a special network device reset routine that bypasses the link

layer negotiation phase [13]. This phase can be time

consuming (orders of seconds). The danger of bypassing

the link layer negotiation is that the device may be left in a

corrupted state. Our solution for dealing with this problem

is described in Section 5.2 [15].

Workload transparency: To make the microreboot of

VI components transparent to other system components, the

handling of in-progress requests from other components

must continue across recovery. This requires maintaining

additional state in the VI components in order to detect and

resume partially-executed operations. For instance,

microrebooting the PrivVM requires a mechanism, based on

logging, for ensuring completion of in-progress XenStore

requests (Section 5.3). Without this mechanism, the

AppVMs would have to be modified to retry these XenStore

operations themselves.

Partially executed hypercalls are a key problem with

recovery from VMM failures [14]. The hypercall

mechanism allows code in VMs to send requests to the

VMM. If the VMM fails while executing a hypercall, the

operation may never complete and the invoking VM may be

blocked forever waiting for a response. Hence, VMM

microreboot requires a facility to retry in-progress

hypercalls. Hypercall retry is implemented without

modifying the VMs. To force re-execution of a hypercall

after recovery, the VMM adjusts the VM’s instruction

pointer to point back to the hypercall instruction (trap)

before allowing the VM to run. This mechanism is already

used in the Xen [1] VMM to allow the preemption of long

running hypercalls transparently to the VMs [14].

Ideally, there should be no need to modify workload

software to support microrebooting of system components.

However, in some cases, limited workload modifications are

justified since they simplify the implementation of

microreboot. With our implementation of microreboot for

the Xen VI components, all workload modifications are in

the AppVM kernels. The applications running in the

AppVMs are not modified. For example, small

modifications to drivers in the kernels of the AppVMs

support reforming frontend-backend connections upon

DVM or PrivVM recovery [13]. Without these

modifications, the VMM would need to maintain additional

state and have mechanisms to reroute requests from

AppVMs to the new DVM or PrivVM instance, further



- 8 -

complicating the VMM [13].

‘‘Last’’ software layer: The VMM is the most

privileged layer in the software stack. Thus when the VMM

fails, it must microreboot itself. Recovery, howev er, can fail

if the VMM’s failure handler uses corrupted data.

The VMM’s failure handler must access the stack to

prepare the system for a VMM microreboot. To prevent the

VMM from accessing a corrupted stack, the VMM failure

handler sets the stack pointer to a valid stack location

obtained from a fixed location in memory. In addition, to

prevent CPUs from blocking interprocessor interrupts (IPI),

the CPU detecting the VMM failure uses NMI-based IPIs to

signal to other CPUs to initiate failure handling [14].

System time management: When the VMM is

microrebooted, system time and all VMs running on the

system are momentarily stopped. We hav e applied the

approach for restoring system time after recovery discussed

in Section 3. To prevent applications in the VMs from

failing, system time is restored to the value right before the

reboot. This allows timer events in the VMs to fire in the

correct order and mask the microreboot latency. External

entities may be exposed to the incorrect time in the

recovered system immediately after a VMM microreboot.

However, time can be slowly adjusted to the correct value

using a time synchronization service (ntp).

6. Experimental Setup

This section discusses the experimental setup used to

evaluate our microreboot-based recovery mechanisms for

the Xen VI. It discusses details of the fault injection

campaigns and the workloads stressing the VI components.

We use the UCLA Gigan fault injector [12, 9] to inject

single bit flip faults into CPU registers (general purpose and

the program counter) while the CPUs are executing VI code.

This type of injection is used since it causes arbitrary

corruptions in the VI components.

Our evaluation uses two workloads: synthetic and LVS.

For each workload, three fault injection campaigns are

performed, differing in when faults were injected: 1) while

the CPU executes VMM code, 2) while the CPU executes

DVM code, and 3) while the CPU executes PrivVM code.

The time of injection is random, and, for the DVM and

PrivVM campaigns, includes both user and kernel level

code.

A fault injection campaign consists of many fault

injection runs. For the synthetic workload, a ‘‘run’’ begins

by booting the VMM, PrivVM, two DVMs, and two

AppVMs. One AppVM runs a network intensive

application while the other runs an OS intensive application.

After the benchmarks begin executing in the AppVMs, a

single fault is injected into a VI component. To ensure the

VI is still operational, a third AppVM is booted after a

possible VI component recovery and runs a disk intensive

application.

The LVS workload is a deployment of the Linux

Virtual Server (LVS [22, 17]) on a clusters of VMs (virtual

cluster). LVS is an open-source load-balancing solution for

building highly-scalable and highly-available servers using

clusters of servers. For the LVS workload, a run begins by

booting the VMM, two DVMs, and fiv e AppVMs. Three

AppVMs run the Apache web server and two AppVMs act

as primary/backup load balancers (directors). The virtual

cluster is stressed by running fiv e instances of the Apache

ab benchmark on a remote client. Each instance performs a

series of HTTPS requests for statically and dynamically

generated web pages. After the remote client begins to

generate requests, a single fault is injected into one of the VI

components. One AppVM is randomly selected to be

rebooted about 50 seconds after a fault is injected to ensure

the VI is still operating correctly.

To simplify the setup for software-implemented fault

injection, the entire target system runs inside a fully-

virtualized (FV) VM [12]. Among other benefits, this

simplifies the restoration of pristine system state before each

run, thus isolating the run from previous runs.

Table 2. Injection outcomes.

Outcome Description

Detected VI

component

failure

Crash: (1) VMM/DVM/PrivVM kernel panics

(2) System process in PrivVM dies

Hang: VMM/DVM/PrivVM makes no observable progress

Silent

failure

Undetected failure: No detected VI component failures but

the workload fails to execute correctly

No errors observedNon-

manifested

Table 2 summarizes the three possible consequences of

an injection. Only detected failures lead to recovery

attempts. As discussed in Section 5, recovery is considered

successful if no more than one AppVM fails and the

recovered VI maintains its ability to host the existing

AppVMs as well as create and host new AppVMs. All

silent failures and failed recoveries of the VI are considered

system failures.

7. Fault Isolation and Recovery Success Rate

This section presents the results from the fault injection

campaigns. Some of the injected faults are manifested as

errors — a component of the system deviates from correct

operation (component failures). Recovery using

microreboot is effective only if single faults do not manifest

as errors in multiple components, i.e., there is strong fault

isolation among system components. Figures 2-4 present

the distribution of component failures caused by faults

injected during VMM/DVM/PrivVM execution with the

synthetic and LVS workloads. The results show that the

vast majority of component failures are confined to the

component into which faults are injected. This indicates



- 9 -

79.79% 

3.19% 

7.45% 

3.19% 3.19% 

1.06% 

2.13% 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Synthetic

%
 o

f 
m

a
n

if
e

st
e

d
 f

a
u

lt
s 

81.25% 

6.25% 
2.50% 

1.25% 
1.25% 

2.50% 
2.50% 

2.50% 

LVS

*System = System (externally induced) 

Figure 2: Distribution of component failures caused by injecting

faults into CPU registers during VMM execution.

97.89% 

1.05% 1.05% 
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

DVM DVM +

AppVM

AppVM App

(silent)

VI

(silent)

Synthetic

%
 o

f 
m

a
n

if
e

st
e

d
 f

a
u

lt
s 89.23% 

7.69% 
0.77% 2.31% 

DVM DVM +

AppVM

AppVM App

(silent)

VI

(silent)

LVS

Figure 3: Distribution of component failures caused by injecting

faults into CPU registers during DVM execution.

93.75% 

6.25% 

PrivVM DVM VI (silent)

LVS88.24% 

3.53% 
8.24% 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

PrivVM DVM VI (silent)

Synthetic

%
 o

f 
m

a
n

if
e

st
e

d
 f

a
u

lt
s 

Figure 4: Distribution of component failures caused by injecting

faults into CPU registers during PrivVM execution.

that the Xen VI provides a high degree of fault isolation and

is thus an appropriate platform for deploying microreboot.

The fault isolation among Xen VI components is not

perfect. A single fault in a VI components can cause other

components to fail either together with the faulty component

or independently. For example, when faults occur during

VMM execution (Figure 2), with the synthetic and LVS

workloads, about 3% and 6%, respectively, of manifested

faults cause an AppVM to fail together with the VMM. Not

all failure of multiple components are due to poor fault

isolation. Some of these failures can be a result of an

incomplete recovery leaving the system in an inconsistent

state, leading to the failure of other components.

Some faults in VI components are not detected by our

detection mechanisms but cause the workloads to fail or

prevent the VI from correctly hosting or creating AppVMs.

These faults are manifested as silent application failures

(‘‘App (silent)’’), violating fault isolation (no faults were

injected in AppVMs), or silent VI failures (‘‘VI (silent)’’).

A small fraction of faults result in the outer VMM

terminating the entire target system. The impact of these

faults is categorized as ‘‘System (externally induced)’’.

These failures occur if there is critical state corruption in the

target system, preventing the outer VMM from performing

some operation on behalf of the target system, or if the

target system causes a triple fault exception to occur [15].

Table 3. Recovery success rates, out of all manifested faults, for
faults in the different VI components.

Workload VI Component Successful Recovery Rate

VMM 86.2%

DVM 94.7%

PrivVM 88.2%

Synthetic

VMM 87.5%

DVM 96.2%

PrivVM 92.2%

LVS

Table 3 shows the effectiveness of our microreboot-

based recovery mechanisms with respect to faults in each of

the three Xen VI components. Despite imperfect fault

isolation, a large fraction of component failures do not result

in system failures — the system maintains correct operation.

For faults injected during VMM execution,

approximately half of system failures are caused by two

main problems: (1) the inability of the VMM to correctly

recover itself or the PrivVM due to state corruption in the

VMM, and (2) the simultaneous failure of two VI

components, overwhelming our recovery mechanisms. The

remaining causes of system failures are due to undetected

VI failures, about half of which are externally induced.

For faults injected during DVMs or PrivVM execution,

the majority of system failures are caused by silent

application failures or silent VI failures. Silent application

failures can occur when faults in the DVM cause data

corruption when reading from or writing to I/O devices.

Faults in either PrivVM or DVM can cause silent VI failures

as both components are used to provide device access to

AppVMs and the PrivVM is used to create AppVMs.

Table 4. Lines of code (LOC) needed to implement the different
microreboot mechanisms. The Final mechanism category
includes the LOC for all improvements made in addition to the
Basic mechanism.

Component Mechanism User- lev el Kernel-level VMM-level

Basic 0 0 830

Final +0 +0 +50
VMM

DVM Basic 20 285 0

Basic 1730 1770 350

Final +575 +0 +15
PrivVM

8. Implementation Complexity

To provide insight regarding the engineering effort required

to implement microreboot-based recovery for the Xen VI

components, Table 4 shows the breakdown of the

implementation complexity, in terms of lines of code

(LOC), for the different microreboot mechanisms. The

basic PrivVM microreboot mechanism has the highest LOC

count. Most of this code is related to backing up the

XenStore and XenStored state. On the other hand,

microrebooting the DVM requires the least amount of code.

The DVM has no internal state that needs to be maintained



- 10 -

and the information needed to boot and reconnect a new

DVM instance to existing AppVMs is kept in the PrivVM.

Similarly to the PrivVM, the VMM has state that must

be maintained across a microreboot. However, unlike the

PrivVM, the VMM preserve this state in place, in memory.

This reduces the amount of code needed for saving and

restoring state.

9. Related Work

The original work on the use of microreboot as an

inexpensive recovery technique was presented in [5]. That

work, along with others in [3, 2, 4], discussed the main

design principles of microrebootable software and presented

examples of applying microreboot to application-level

software systems. The work in this paper leverages ideas

from this previous work and extends them by examining

how to address the unique challenges associated with

employing microreboot for system-level software.

There has been prior work on applying microreboot to

system software components. The focus in prior work has

been, almost exclusively, on inv estigating a specific

mechanism for a specific component or a few mechanisms

for a specific component. Much of this work focused on

improving the resiliency to device driver

failures [21, 7, 16, 8, 13, 10]. Microreboot has been applied

to recovery from failures of the Linux kernel [6] and the Xen

VMM [14]. Microreboot has also been used for proactive

rejuvenating of the Xen VMM and PrivVM [11]. None of

the prior works presented the general challenges to

implementing microreboot for low-level system software,

based on experience with multiple components and multiple

mechanisms. Furthermore, no prior work has presented a

mechanism for recovery from PrivVM failures.

10. Summary and Conclusions

We hav e identified unique challenges to applying

microreboot with low-level system software (LLSS) and

presented general approaches to addressing these

challenges. To demonstrate the utility of these approaches,

we have applied microreboot to all three components of the

Xen VI: the VMM, DVM, and PrivVM. We hav e presented

some of the difficulties of applying microreboot to each VI

component in the context of the earlier discussion of generic

challenges and solutions with system software. Using fault

injection, we have shown that microreboot can be the key

building block of low-overhead techniques that successfully

recover from failures in LLSS, restoring the system to full

operation for a great majority of manifested faults.

Acknowledgements

This work is supported, in part, by a donation from the

Xerox Foundation University Affairs Committee.

References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, ‘‘Xen and the Art of
Virtualization,’’ 19th ACM Symp. on Operating Systems Principles,
Bolton Landing, NY, pp. 164-177 (October 2003).

[2] G. Candea and A. Fox, ‘‘Crash-Only Software,’’ 9th Workshop on

Hot Topics in Operating Systems, Lihue, Hawaii (May 2003).
[3] G. Candea, A. B. Brown, A. Fox, and D. Patterson, ‘‘Recovery-

Oriented Computing: Building Multitier Dependability,’’ IEEE

Computer 37(11), pp. 60-67 (November 2004).
[4] G. Candea and J. Cutler, ‘‘Improving Availability with Recursive

Microreboots: A Soft-State System Case Study,’’ Performance

Evaluation Journal 56(1-4), pp. 213-248 (March 2004).
[5] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox,

‘‘Microreboot - A Technique for Cheap Recovery,’’ 6th Symp. on

Operating Systems Design and Implementation, San Francisco, CA,
pp. 31-44 (December 2004).

[6] A. Depoutovitch and M. Stumm, ‘‘Otherworld - Giving Applications
a Chance to Survive OS Kernel Crashes,’’ 5th ACM European Conf.

on Computer Systems, Paris, France, pp. 181-194 (April 2010).
[7] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and M.

Williamson, ‘‘Safe Hardware Access with the Xen Virtual Machine
Monitor,’’ 1st Workshop on Operating System and Architectural

Support for the on demand IT InfraStructure (OASIS) (ASPLOS)

(October 2004).
[8] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum,

‘‘Fault Isolation for Device Drivers,’’ Int. Conf. on Dependable

Systems and Networks, Estoril, Lisbon, Portugal, pp. 33-42 (June
2009).

[9] I. Hsu, A. Gallagher, M. Le, and Y. Tamir, ‘‘Using Virtualization to
Validate Fault-Tolerant Distributed Systems,’’ Int. Conf. on Parallel

and Distributed Computing and Systems, Marina del Rey, CA,
pp. 210-217 (November 2010).

[10] H. Jo, H. Kim, J.-W. Jang, J. Lee, and S. Maeng, ‘‘Transparent Fault
Tolerance of Device Drivers for Virtual Machines,’’ IEEE

Tr ansactions on Computers 59(11), pp. 1466-1479 (Nov 2010).
[11] K. Kourai and S. Chiba, ‘‘A Fast Rejuvenation Technique for Server

Consolidation with Virtual Machines,’’ Int. Conf. on Dependable

Systems and Networks, Edinburgh, UK, pp. 245-255 (June 2007).
[12] M. Le, A. Gallagher, and Y. Tamir, ‘‘Challenges and Opportunities

with Fault Injection in Virtualized Systems,’’ 1st Int. Workshop on

Virtualization Performance: Analysis, Characterization, and Tools,
Austin, TX (April 2008).

[13] M. Le, A. Gallagher, Y. Tamir, and Y. Turner, ‘‘Maintaining Network
QoS Across NIC Device Driver Failures Using Virtualization,’’ 8th

IEEE Int. Symp. on Network Computing and Applications,
Cambridge, MA, pp. 195-202 (July 2009).

[14] M. Le and Y. Tamir, ‘‘ReHype: Enabling VM Survival Across
Hypervisor Failures,’’ 7th ACM Int. Conf. on Virtual Execution

Environments, Newport Beach, CA, pp. 63-74 (March 2011).
[15] M. Le, I. Hsu, and Y. Tamir, ‘‘Resilient Virtual Clusters,’’ 17th IEEE

Pacific Rim International Symposium on Dependable Computing,
Pasadena, CA, pp. 214-223 (December 2011).

[16] J. LeVasseur, V. Uhlig, J. Stoess, and S. Gotz, ‘‘Unmodified Device
Driver Reuse and Improved System Dependability via Virtual
Machines,’’ 6th Symp. on Operating Systems Design &

Implementation, San Francisco, CA, pp. 17-30 (December 2004).
[17] Linux Virtual Server, http://linuxvirtualserver.org.
[18] Microsoft, Hyper-V Architecture, http://msdn.microsoft.com/en-us/

library/cc768520.aspx.
[19] W. T. Ng and P. M. Chen, ‘‘The Systematic Improvement of Fault

Tolerance in the Rio File Cache,’’ 29th Fault Tolerant Computing

Symp., Madison, WI, USA, pp. 76-83 (June 1999).
[20] M. Rosenblum and T. Garfinkel, ‘‘Virtual Machine Monitors: Current

Technology and Future Trends,’’ IEEE Computer 38(5), pp. 39-47
(May 2005).

[21] M. M. Swift, B. N. Bershad, and H. M. Levy, ‘‘Improving the
Reliability of Commodity Operating Systems,’’ ACM Trans. on

Computer Systems 23(1), pp. 77-110 (February 2005).
[22] W. Zhang and W. Zhang, ‘‘Linux Virtual Server Clusters,’’ Linux

Magazine 5(11) (November 2003).


