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Abstract—Dempster-Shafer theory of imprecise probabilities The metric in [1] is based on a new perspective for QIF
has proved useful to incorporate both nonspecificity and cditict ~ analysis. The fundamental idea is to model an attackerigfoel
uncertainties in an inference mechanism. The traditional Biyesian about a program’s secret input as a probability distributiver

approach cannot differentiate between the two, and is unalgl to . . S . . . .
handle non-specific, ambiguous, and conflicting informatio with- high states. This belief is then revised, using Bayesiaratipg

out making strong assumptions. This paper presents a gendiza- techniques, as the attacker interacts with a program’susicec
tion of a recent Bayesian-based method of quantifying infamation It is believed that the work reported in|[1] is the first to aelel

flow in Dempster-Shafer theory. The generalization concrelly an attacker’s belief in quantifying information flow. Thisork
enhances the original method removing all its weaknesses g&h was later expanded and appearedin [2]. A number of relevant

are highlighted in this paper. In so many words, our generalzed a . .
method can handle any number of secret inputs to a program, it results [3], [4] were reported in the sequel; however, thekwo

enables the capturing of an attacker’s beliefs in all kinds bsets 1N [1], [2] is sufficient as a foundation of our work.

(singleton or not), and it supports a new and precise quantitive A number of weaknesses can be seenlin [2]. First, proba-

information flow measure whose reported flow results are plasible  bjlity measures are used for capturing an attacker’s balef

in that they are bounded by the size of a program's secret inpll e resentingier uncertainty about the true state of a system.

and can be easily associated with the exhaustive search effo Th h thinite additivit wihat f

needed to uncover a program’s secret information, unlike tle ese measures have Bite additvity pr_opgr_yt at torces

results reported by the original metric. them to act on singleton sets, and makes it difficult to regmes
Index Terms—computer security, quantitative information flow, an attacker’s ignorance or contradiction. Moreover, threse-

imprecise probabilities, Dempster-Shafer theory, information the-  surescannotmodel attackers who effectually or ineffectually

ory, uncertainty, inference, program analysis collaborate with each other. Second, the experiment pobtoc
between an attacker and a system described_lincijnot
. INTRODUCTION handle more than one secret input to a program. Third, the QIF

metric advanced in_[2] reports counter-intuitive flow qutes

The goal of information flow analysis is to enforce limitghat exceedthe size of a program’s secret input, and make
on the use of information that apply to all computations that impossibleto determine the space of the exhaustive search
involve that information. For instance, a confidentialitpperty needed to uncover a program’s secret information.
requires that a program with secret inputs should not leakThis paper presents a generalization of the method followed
those inputs into its public outputs. Qualitative inforiatflow in [2] that is free of all these weaknesses. The generatizati
properties, such as non-interference are expensive, sifpes is based on Dempster-Shafer theory of imprecise probiaiilit
or rarely satisfied by real programs: generally some flomexis[5], [6] which enables the capturing of an attacker’s bealief
and many systems remain secure provided that the amoaikinds of sets (singleton or not), combining those belieind
of flow is sufficiently small, moreover, designers wish teevising them to update an attacker’s knowledge about @syst
distinguish acceptable from unacceptable flows. As part of this generalization, we propose an inferencersehe

Systems often reveal a summary of secret information thay attacker uses to update her knowledge from interactittg wi
store. The summary contains fewer bits and provides a linait program execution. This scheme can haraiy number
on the attacker’s inference. For instance, a patient'srtepo of secret inputs to a program. The mathematical toolbox on
released with the disease name covered by a black rectanghdiefs and the inference scheme we posit in this paper stppo
However, it is not easy to precisely determine how mudh new and precise QIF measure whose reported flow results
information exists in the summary. For instance, if the fordre boundedby the size of a program’s secret input, and can
size is uniform on the patient’s report, the width of the Blacbe easily associated with the exhaustive search effort needed
rectangle might determine the length of the disease nam.uncover a program’s secret information, unlike the rssul
Quantitative information flow (QIF) analysis is an appro#ttit reported by the original metric.
establishes bounds on information that is leaked by a pnogra ) ]
In QIF, confidentiality properties are also expressed, mut 4- Relation to Our Earlier Work
limits on the number of bits that might be revealed from a In a recent position paper![7], we tackled the inexplicable
program’s execution. A violation is declared if the numbér aesults reported by the QIF metric inl[2] that exceed the size
leaked bits exceeds the policy. of a program’s secret input, and presentedefinementthat
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bounds those results by a range consistent with the size of a [I. REPRESENTINGUNCERTAINTY

program’s secret input. The refinement was accomplishedund  Frame of Discernment

the original Bayesian settings, and it enabled us to relate the . . . .
reported flow results to the exhaustive search effort ne¢aled For most repre_sentatlons of uncertainty, the starting tpoin
uncover a program’s secret information. A reader, inteckgt s a set of possiblevorlds states or elementary outcomes

developing a clear picture of the problems the metrid_in §] Fhat_an agent considers possible. This set is calle‘(ame
fraught with, is strongly referred to1[7] of discernmen{l1] (a frame for short). For example, in the

crude guessing of commonly used passwords, an agent might

B. Plan of the Paper consider the following set possible:

The remainder of this paper is organized as follows. SectigRassword, 123456, qwerty, abc123, letmein, monkey, 696969}

[M discusses the methods of representing uncertaintyirsart The frames dealt with in this paper are given under

from the coarse-grained frame of discernment, moving 0tjoiine closed-world assumptiof5]. For a finite frameW —
frames, tuples, and tuple sets, and ending with the finexgdai {wi, ..., w, }, this means two things:

belief functions. In this section, we rigorously clarify eth
limitations of probability measures used in| [2]. Sectiofi Il
concentrates on capturing beliefs using mass functiongtend
transformation of these functions into belief functionsurO 2) Exhaustiveness: The framé is complete which means
mathematical toolbox on beliefs is given in Section IV. It that it containsaI.I the possible worlds

includes formulas for combining beliefs, conditioning e ) o n

and measuring the divergence between them. In this section’® Stat€ in a program execution is an assignment of a value
we give a clear comparison between the poor properties tgfg variable, and a frame is eligible to contam a set of those
Kullback-Leibler divergence measure [8] (the authors’icko @SSignments. For instance, a Boolean variablaccepts two

in [2]), and the appealing ones of Jensen-Shannon diveegeRESSIPIE assignments — 0 or a — 1. It has two possible
measurel[9] (our choice). We further investigate andceedn  States that we may write as = (a — 0) ando = (a — 1),
generalizing Jensen-Shannon divergence measure in Demp&@nd its corresponding frame 18/, = {0, 1}.

Shafe_r theory. Segtioﬁlv _presents the language nee_zde(_ll in BUrjgint Frame, Tuple, and Tuple Set

experiments. Sectidn VI lifts the syntax and semantics i th . .
language in order to enable us to write programs source cod program execution may accept a nhumbersetret (high)

in terms of mass functions. Section VIl gives the attackera’snd nonsecret (lowjnputs. For each |_np_ut, we have a humber
model and then presents an inference scheme an attacker ggé)ssmle states that we Sh?UId asswr_nlate Into an incéen
to update her knowledge from interacting with a progra ame.To representan ag_entsuncer'galnty ab_ogttheswtvmst
execution. Sectio VIl experiments with this inferencaame of inputs, we need to define the notions of joint frame, tuple,
using various set structures induced by an attacker’'sfee@ur and tqp_l(_a set [12]_' . . .
informal reasoning and generic observations about exjeerish Definition 1 (Joint Frame):ITet r be a finite un_lversal vari-
results are also given in this section. Sectiod X deals wi?ge set where for each "a”at.”é € r there exists a frame
quantifying information flow and advances a new and preciséX of values thgt can be assgned]@ and lets ¢ r be a
QIF measure whose reported flow results are proved to \S%rlable set. The joint frame onis defined by the formula:
bounded by the size of a program’s secret input, and easily W, = HWX

associated with the exhaustive search effort needed tovenco Xcs

a program'’s secret information. Sample flow calculatiores ar

also given in this section. The paper concludes in Sefion X. Defln_|t|on 2 (Tl_JpIe):Let W be a joint frame ors C " An
s-tuple is a function of the formx : s — W, that associates a

valuez(X) € W, with each variableX < s.

Definition 3 (Tuple Set)Let W, be a joint frame ors C r.

We believe that the work reported herein is tinst to address An s-tuple set is a subsef C W,.
the use of Dempster-Shafer theory in quantifying informmati  Definitions[1E3 allow us to assume two joint frameshigh
flow. A number of novel contributions that, to the best of oyoint frame )V, on ahigh variable seth C r, and alow joint
knowledge do not appear in the literature, are also seen offrame )V, on alow variable setl C r, to represent an agent’s
the course of this correspondence. They aregigeralization uncertainty about secret and nonsecret inputs respectivieé
of Jensen-Shannon divergence measure in Dempster-Shaf@rall joint frameW,,; on the overall variable sétuU! C r
theory, therules of updating a mass function, and conditioningmerges as the product of these two frames:
it on a Boolean expression, in addition to the lifted impeeat
while-language thaactson mass functions. All the uncertainty Wh = H Wx, Wi = HWXv Whut = H Wx
computations that appear in this paper are worked out ubig t Xeh Xel XehUl
pyuds library[10Q]; a Python library we developed specifically In the remainder of this correspondence, a frame is always
for this purpose. joint unless we state otherwise. When we refer to a frame, we

1) Exclusiveness: The worlds; in W are mutually exclu-
sive which means thaat mostone of them is the true
world.

C. Novel Contributions



write W, however we do not say that it is taken on the variablaean. In the framework of Dempster-Shafer theory, thiselbeli

sets C r. In addition, states are handled similarly to tupless captured using a mass function, which is defined as follows

and likewise state sets to tuple sets. When we say the high andefinition 4 (Mass Function)Let W, be a frame. A mass

low projections of a state, we mean the projections of traest function onW; is a function of the formm : P(W;) — [0, 1]

to h and! respectively. where P(W;) is the first-order power set ofV, defined as
PW;) = {X|X C W,}. This function satisfies:

C. Belief Functions

A frame is a coarse-grained representation of uncertainty, m(@) =0, Z m(4) =1
since we do not have any meansafmparingthe likelihood AEP (W)
of two worlds. Belief functions, the cornerstones of Dempst  For any A € P(W,), the valuem(A) has the following
Shafer theory([5],[[6], offer a fine-grained representat@n meaning; it characterizes the degree of belief that thevirartd
uncertainty that is suitable for our work because they af¢in the tuple setd, but it doesnot take into account any
numericthus enabling us tquantitativelymeasure information 5qditional evidence for the various subsetsAof
flow. They further permit the modeling of thevolution (or Each tuple seft € P(W,) such thatn(X) > 0 is called a
regressiol) of an agent's knowledge about a system as more apgha| setof m. We denote the set of all focal sets induced by
more pieces of evidence become available. Additionallgyth,,, as F,,, and write:
admit a programming language semantics, as we will show in

Section[V]. Finally, under belief functions, all pairs of was Fm ={X € PW,)m(X) > 0}
are comparablethus promoting the reasoning of agents and
empowering our analysis. We call the pair(F,,, m) a body of evidenceOccasionally,

Although probability measures, the authors’ choicéin g2 We denote the domaiR(VV;) of i asd(m). Definition[3 shows
familiar, quantitative, support operations on beliefs] admit a how to project a mass function.
programming language semantics, they havditiiee additivity ~ Definition 5 (Mass Function Projection)et W, be a
propertythat forces them to act on singleton sets. This makedi@me,m : P(V,) — [0,1] be a mass function owV;, and
difficult to representgnorance(by assigning a zero probability? € s be a variable set. The projection of to ¢ is defined for
to a set in an algebra) amontradiction(by assigning a nonzero any A € P(W;) by the formula:
probability to the empty set). It also complicates assignin it
probabilities tonon-singletonand joint sets. The inability of m(A) = Z m(B)
agents to capture ignorance, express contradiction, adiel/de Bit=A
in non-singleton and joint sets cleadgtractsfrom the depth of \here B! is the projection of the tuple s € P(W,) to ¢.
our analysis. In addition, probability measures entailgmesg  As a specialization of the general mass function, we define
scalar probabilities toall sets in an algebra, but an agenj point mass function as follows.
may not have sufficient computational power to do that. This pefinition 6 (Point Mass Function)Let W, be a frame, and
computational inefficiency escalates into a grueling ordésgn . P(W,) — [0,1] be a mass function ohV,. We say that
dealing with huge frames. Lastly, probability measuresaay ,,, is g point on the tuple setl € P(W,), and writeri 4, if
capture independent work, whifeiling at modeling attackers {he gegree of belief characterized by is fully concentrated
who effectually or ineffectually collaborate with each ettas o 4 that is, ifm(A) = 1.

rigorously clarified in Examplel1. , _ _ Since it doeshot have the finite additivity property, a mass
Example 1 (Modeling Attackers’ Collaborationfonsider  fynction m is not a measure. This can be coped with. One

a band of attackers whose purpose is to hack into a compyi§p pind the pieces of evidence together, and obtain a belief
system. Assume that this band is partitioned into sub-bandsasure fromm using the formula:

Aq, As,..., A, and let u(A;) be the degree of infiltration
begotten by the sub-band;. For any two sub-bandd; and Bel(A) = Zm(B)
A;, it is intuitive that any of the following can happen: BCA

o (A U Ay) = p(Ai) + p(4;) when 4; and A; work  ginee the tuple sets in the domain of the functiBal :

independently. P(Ws) — [0,1] are measurable, normalizing the values
o w(AiUA;) > u(Aq) +pu(4;) whend; and 4; effectually Bel(A), so that the sum i, allows us to apply the familiar

collaborate. h dA ineff I distribution arithmetic on them i.e., distribution sumpguct,
. /ééﬁ;tﬁg)t; pu(Ai)+p(A;) whend; and4; ineffectually - c,ngitioning, and difference [13]. However, this ot what

we want to do. Converting the values(A) to Bel(A) is

an expensiveoperation that should be kept to a minimum.

Moreover, dealing with the valuesi(A) is more tractable
A belief is a psychological staten which an agent has athan dealing withBel(A). Thus, we ought to maintain the

degree of support to a proposition about a system. A beliefrigass function setting in our work and propose the following

based on a piece of evidence an agent obtains through sarithmetic on beliefs.

Ill. CAPTURING BELIEF



IV. ARITHMETIC ON BELIEFS functionmp as expressed by the formula, which is defined for

A. Belief Combination any tuple se) # A € P(W,):
We combine beliefs using Dempster's combination rule [14]. k.S m(C) for A0
Given two pieces of evidence obtained from timalependent mp(A) = CNB=A (3)
sources (we will shortly discuss independence) and expdess 0 for A=10
by two mass functionsn; and ms on the sameframe W, where:
Dempster's combination rule aggregaies andms to obtain ol Z m(C)

a combined mass functiom; ® mo which is defined for any

tuple setd # A € P(Wsus) by the formula: CNB#0
The parametek has the effect of normalizingus(A), and
(m1 ®ma)(A) = k. Z m1(B).m2(C) 1) enjoys the same quality mentioned in the previous section.
BNC=A
where: C. Belief Divergence

_ 1) Choosing a Divergence Measur@n agent’s belief about
(m1@m2)(0) =0,k = Z ma(B).mz(C) a program’s secret input is modeled as a probability digticin
BnC#0 in [2], and the divergence between two probability disttitws
If m; andmy are defined on two different framé4; and is measured using Kullback-Leibler divergence [8], whish i
W, , then the intersectio® N C' is inapplicable anymore and given in Definition[T.
is replaced with thenatural join operationB 1 C [12] as Definition 7 (Kullback-Leibler Divergence Measure)et
expressed by the formula, which is defined for any tuple s&t be a discrete random variable with alphaBigtand letp,
0 #AePWsu): and p be two probability distribution functions oX. The

Kullback-Leibler divergence measure between and ps is
(m1 @ m2)(A4) = k. Z mi(B).m2(C) ) defined by the formula:

B<C=A
. x
where: L(pr,p2) = Y _pi(z )log 2 ()
- o "’”)
(mi@ma)(0) =0,k7" = Y mi(B).ma(C) _ ’
BiG A0 Our work necessitates a divergence measure between mass

functions, not between probability distributiods L divergence
cannotbe written in terms of generalizable uncertainty func-
. X nals, and thuseemsnon-generalizable in Dempster-Shafer
the pieces of evidence an agent gathers about a system [1 ﬁ
eory to act on mass functions. In contrast, Jensen-Simanno

A prerequisite for using Dempster’s combination rule isttha
dlvergence measuré|[9] has an obvious information-theoret
the pieces of evidence are obtained from independent saurce

. . . interpretation in terms of Shannon uncertainty functipndlich
Intuitively, this means that these pieces are totaliyelated P y ©

and that the occurrence of one of them has no influence on {Hgkes it generalizable in Dempster-Shafer theory, in audit

. TP . 0 a number of desirable properties th&tL lacks. Before
other [11]. In our work, this is well-justified if the piece$ o
defining Jensen-Shannon divergence measure, we need to give
evidence are obtained from external sources that are tedela

a definition for Shannon uncertainty functional.
to a program execution; however, it it if the pieces are
. o . Definition 8 (Shannon Uncertainty Functionallet X be a
obtained by monitoring an execution - in repeated execeno

acrete random variable with alphabat, and letp be a
an agent relies on one output to rearrange the next input an
probability distribution function onX. The uncertainty about
thus influence the next outputl [2]. Y is defined by the functional:

Dempster’'s combination rule has the distinguishing priyper y
of being commutative and associative|[11]. This empowers ou Zp )log p(x
analysis by allowing an agent to choose tmanbinationorder ceX
and postpone the combination ofrasleadingpiece of evidence
until more hints about this piece are available.

The parametek in formulas [1) and[(2) normalizes; ®ms-
which has the appeal of explicitly recognizingnflictbetween

Uncertainty is measured in bits if the logarithm is binary.
(Here and hereatfter, all logarithms are to the b2jse
B. Belief Conditioning Definition 9 (Jensen-Shannon Divergence Measuk&}t p;

We condition beliefs using Dempsters conditioning rulgmdpQ be two probability distribution functions. The Jensen-
[14]. Suppose that a current agent's belief is capturengS| hannon divergence measure betwgemndp is defined by

a mass functioorm : POW,) — [0,1]. Later on, this agent e formula:
obtains a new piece of evidence that the true world is in the JS(p1,p2) = 25(1’1 +p2) — S(p1) — S(p2)
tuple setB € P(W;). Suppose further that there exists a focal 2

setC € F,, such thatC' N B # (. Dempster's conditioning In Table[l, we compare betweeR L. and JS divergence
rule enables the agent toacorporate the new evidence and measuresP3 is a salient property that maintains thalance
updateher knowledge. This rule transforms into a new mass and computational correctness in the information flow mesasu



TABLE |
COMPARISON BETWEENK L AND JS DIVERGENCE MEASURES 2) Bel(A) < ZAp(x) for any A € P(Ws)
xe

A recursive algorithm for computinglU is given in Ap-

No P KL JS ) o o "

° Property pendix[-A [15]. It can be shown thadU is insensitiveto
Pl ﬁ(;’i&i’)?)fpg(x) Yes Yes changes in evidence which makes it ill-suited for captutimey
P2  D(p1,p2) =0 Yes Yes uncertainty associated with an agent’s beliefd [15]. Tioees
o3 gf(m (z) )= pzD((x) N v AU is not what we need in order to generaliz€ in Dempster-

p1,p2) = D(p2,p1 o es i
P4  Finiteness (Definement)  Not if we hawdog 2 Yes Shafer theory. Hlowever, If we re.call thatl/ is a total of two
P5  Upper and lower bounds  No, only lower bound  Yes types of uncertainty; nonspecificity and conflict, we cantevri

P6  Boundness No YeslS < 2

AU (Bel) = GH(m) + GS(m)

Based on this equivalence, we can define the generalized
we will advance in Sectidn IXP4 is important in its own right, Shannon uncertainty functional.
since it enables us to handidl possible belief combinations, Definition 12: (Generalized Shannon Uncertainty Functional):
including those where one belief is zero and the other i®t m : PW,) — [0,1] be a mass function, and
positive. The dissatisfaction aP4 in KL drives the authors Bel : P(W;) — [0,1] be the corresponding belief function,
of [1] to suggest an admissibility restriction on beliefsagk both onW;. The conflict uncertainty about the true world in
ineffectivenesss revealed in our earlier work][7]. We also seé/V; is given by the functional:
that P6 is appealing to have in our work. Indeed, it decided|
contributes t%pthe d?asirable boundness of the flow measure v>\//e GS(m) = AU(Bel) — GH(m)
will propose in Sectiof IX. whereGH (m) and AU (Bel) are respectively given in Defini-
2) Generalizing the Divergence Measurgs we saw in Def- tions[10 and 11.
inition [@, J.S is written in terms ofS. Therefore, generalizing  Notice in Definition[[I2 that the insensitivity ofAU is
JS in Dempster-Shafer theorgntails generalizingS in the overcomeby subtractingsH from it. This makes3S sensitive
same theory. The hunt for a generalizationSofn Dempster- to changes in evidence, and allows us to proceed witmouel
Shafer theory starts by noticing thato types of uncertainty generalization of/S in Dempster-Shafer theory.
coexist in this theory: Definition 13: (Generalized Jensen-Shannon Divergence Measure):
1) Thenonspecificityn our prediction about the true world Leét m; andm, be two mass functions ow;. The generalized
in a frame. Jensen-Shannon divergence measure betwegrand msy is
2) Theconflictbetween the pieces of evidence expressed Bgfined by the formula:
each mass value. my + mae

To measure nonspecificity in Dempster-Shafer theory, we useGJS(ml’ mz) = 2GS( ) = GS(ma) = GS(m3)

generalized Hartley uncertainty functional [15], whictgisen whereGS is given in Definition1D.

in Definition[10. Now we have to check whether the properties/of listed
Definition 10: (Generalized Hartley Uncertainty Functional):in Table[] hold onG.JS. We know that for anym, we have

Let m : P(Ws) — [0, 1] be a mass function oV, and 7,  GS(m) > 0, which means thaP1 holds onGJS. P2 and P3

be the set of all focal sets induced by. The nonspecificity obviously hold onG.JS. It is known thatG H (m) < log |[W|

uncertainty about the true world iV, is given by the and AU(Bel) < log|W;| for any m and Bel on W, [15].

functional: This means thatGS(m) < log|Ws| and consequently that

GH(m) = Z m(A)log|A] GJS(m1,ms) < log|Ws|. Thus,P4 and P6 also hold.

AEF
V. LANGUAGE

We use an imperative while-language extended with a proba-
Biistic choice construct. The language is described usithes

that show how expressions and commands are formed, how
expressions are evaluated, and how commands are executed.

To aggregatelymeasure both nonspecificity and conflict
in Dempster-Shafer theory, we use the aggregate uncertai
functional [15], which is given in Definitiof 11.

Definition 11 (Aggregate Uncertainty Functionallet
Bel : P(W,) — [0,1] be a belief function onV;. The
aggregate uncertainty about the true worldWn is given by A. Syntax

the functional: The syntactic sets and the metavariables that range over
them are shown in Tablelll. The formation rules of arithmetic
AU (Bel) = max {— Z p(x) logp(x)} and Boolean expressions are standard, and we only give the
Ppel zEW; formation rules of commands:

wherepgel is the set of_ aII. probability d@stribution func:t_ionsC = skip| X = alco; c1[if b then ¢ else ¢|while b do c|co p|]
thatdominateBel by satisfying the following two properties: H babil H | 0 H
The probabilistic choice ruleg c1 executescy with a
1 € [0, 1] for anyz € W, and =1 b . 2P
) pl) €[0,1] ye zg;vsp(x) probability p or ¢; with a probabilityl — p.

C1



TABLE I TABLE IlI

THE SYNTACTIC SETS AND THE METAVARIABLES THE EXECUTION RULES OF COMMANDS
Syntactic Set Metavariables [skip]o = Ao € State.o
- X = = Ao € State.c[X — h =
Val: The set of integerN n,m [ oo 7 € State.o| n] where [a]o" = n

[co; c1]o = ([e1] o [eo])o = Ao € State.[c1]([co]o)

[if b then cq else c1]o = Ao € State.([b]o, [colo, [c1]0)
[while b do c]Jo = Ao € State. least fixed point of I' : State
— State where I'(¢) = Ao € State.([b]o, (¢ o [c])o, o)

[co p[] c1]lo = Ao € State.p X [colo + (1 —p) X [c1]o

Bool: The set of truth valuegtrue, false} ¢t
Var: The set of program variables XY
Aexp: The set of arithmetic expressions a
Bexp: The set of Boolean expressions b
Com: The set of commands c

B. Semantics o is denoted ag’[X — n]. Formally, we write:

value to a variable (what we mentioned in SecfionllI-A), and oY) fY #X
having introduced the syntactic sets in the previous secti@
can now denote a state as a function of the fermVar —
Val. When we writeg(X) =n or o(X — n) for X € Var  if b= true

andn € Val, we mean that the value of the variahlé in (b,z,2') = { ..

the statec is n. We might havemore than one variable in ' if b = false

a single state, in which case we writd X,Y) = (n,m) or

o(X - n,Y - m) for XY € Var andn,m € Val. A VI. LIFTED LANGUAGE

notationState is also needed to refer to the set of all possible |, this section, we lift the language we presented in Section
states in a program execution. We use the following semarifin order to act on mass functions. Our lifted language is
functions: thefirst of its kind to enjoy this property. The upgrade process
involves both the syntax and the semantics.

- - i i if Y =X
Recalling that a state in our scheme is an assignment of a o[X s n](Y) = {n i

We also make use of the simplifying aedlorful notation:

A Aexp — (State — Val)
B : Bexp — (State — Bool)
C : Com — (State — State) A. Lifting the Syntax

which enables us to define the following denotation function We need to add one more syntactic set to the sets shown in
Table[Tl, which is what we do in Definition16.

Va € Aexp.Ala] : State — Val Definition 16 (TheM ASS Syntactic Set)Let W, be a
Vb € Bexp.B[b] : State — Bool frame on the overall variable sétU ! C r that contains a
Ve € Com.C[c] : State — State program’s secret and nonsecret inputs. We define the simtact

Since the semantic functions are known, as well as the rarfgeé MASS to be the set of all mass functions o, and

H I
of metavariables, we condense the denotations and jw}itg], eouse the nf1etava.r|able|s gndlm to rgng? oveMﬁfjéS
and [d] instead ofA[a], B[], andC]d]. ne more formation rule is also needed for amy ,

The evaluation of arithmetic and Boolean expressions ?Qd it isluckily prescribed in Definitio@4.

standard. As for commands, we note that their executig | ting the Semantics
changesn program states. Unless the corresponding program ssuming input (output) masses, when we writéo) = n
inputs are influenced by an agent, we assume that variable?oiﬁ‘ c ]\?ASF:S‘ c pSt te and ' € [0,1], we mZarT the
all states are initially set teerq that isVX € Var.oo(X)=0. - 0 ¢ are e A

We also observe that a command execution feagninatein likelihood that o is to be used as an input (output) state. The

a final state, or magivergeand never yield a final state (non—?nIy seman(tjlc f_llj_ECt'?]{t‘ \(/jve heed tc:j Iift is tht(.a oned pdertal?l?_g
termination). Let us explain the meaning of terminationhist 0 commands. Ihe ffted command semantic and denotation

non-lifted semantics. functions are defined by the mappings:

Definition 14 (Non-lifted Meaning of TerminationfFor any C:Com — (MASS — MASS)
¢ € Com, when we write: Ve e Com.Clc] : MASS — MASS
[c]o’ = \o € State.o The meaning of termination also changes in the lifted se-

_ _ _ mantics as shown in Definitidn 1L7.
we mean that the command which began in an input state  Definition 17 (Lifted Meaning of Terminationor anyc €

o', deterministicallyterminates in an output state Com, when we write;
The execution rules of commands are given in Table Ill. The ,
notion given in Definitio 15 is used in one of those rules. [c]m" = Am € MASS-ZW(O’)-[C]U
g

Definition 15 (State Update)tet o € State, X € Var,
andn € Val be a state, a variable, and a value respectivelye mean that the commanmgdwhich began irmnyinput states’
The state obtained from by changing the value oK to n in  of d(m’), potentiallyterminates in any output stateof d(m).



TABLE IV
THE LIFTED EXECUTION RULES OF COMMANDS

[skipjm = Am € MASS.m

(X :=alm = Am € MASS.m[X — n] where [alc =n

for any o € d(m)

[co; c1]m = ([e1] o [eo])m = Am € M ASS.[c1]([co]m)

[if b then cg else c1]Jm = Am € M ASS.[co](m|b) + [c1](m|—d)
[while b do ¢Jm = Am € M ASS. least fixed point of " : MASS
— MASS where I'(¢) = Am € MASS.o([c](m|b)) + (m|-b)
[co p[] c1]lm = Am € MASS.[co]l(p x m) + [c1]((1 — p) X m)

The sum value to the right-hand side of the previous formula

specifies the likelihood of this termination.

In this context, we also need to give amovel definition of
a mass update.

Definition 18 (Mass Update)tet m € M ASS, X € Var,

and n € Val be a mass function, a variable, and a value

respectively. The mass function obtained framby changing
the value ofX to n in all the states ofi(m) is denoted as
m[X — n]. Formally, we achieve that as follows:

1) Vo € d(m).0’ = o[X — n] € d(m[X — n])
m(o) X eo

2) mIX = n)(o’) = X

m(o’)

4) The program always terminatesid preserves the state
of secret inputs as high.

The program executeence per interaction with the
attacker, and in each execution the attacker is allowed
to make onlyone observation.

The attacker can monitor the public output of the program
and adaptivelychange the input.

The attackeknowsthe frame of each secret inpw@nd

the values of all of the nonsecret inputs.

The impossible world isot a true value of any of the
inputs [15]. Therefore, the attacker’s belief is capturid v
anormalizedmass function, which assigns a zero degree
of belief in the impossible world (the empty set) as we
saw in Definition[4.

5)

6)
7

8)

B. Scheme Description

At first, the attacker has anitial belief about the true values
of the secret inputs. The extent of this belief is capturdédgus
aninitial mass functiorm;,,;; : P(W,) — [0, 1]. This function
can either reflect the attacker’s inititdtal ignoranceor her
belief in aninitial piece of evidence she obtained through some
mean. In the former case, the attacker knows that the truesal
of the secret inputs are in the framw,; however, she has

The lifted execution rules of commands are given in TabRo evidence whatsoever about their location in any subset of

[Vl These rules immediately follow from applying the forrasl

that frame, which givesn;,;(Wr) = 1 and m;,(A) = 0

in definitions ¥ and 18 to the execution rules given in Tabfer any A € P(W;)\W,. In the latter case, the degree of
M Notice in the lifted rules that we are conditioning a reasthe initial belief distributes nequallyin general) among a

function on aBoolean expressiorFormula [(8) can not do this.

We give anoveladaptation of this formula in Definitidn 1L9.
Definition 19 (Boolean Expression Conditionind)et m :

P(W;s) — [0,1] be a mass function oWV, andb € Bexp

be a Boolean expression. The expansiorbdb the domain

number of setdy,....I,, € P(Wy,) such thatm,;:(I1) =i >
O,...,mimt(lm) = 1m > 0, mimt(Wh) =1—4,—...— 1, and
i1+ ...+, <1

Without relying on monitoring a program execution, the
attacker soon obtains a finite numberof pieces of evidence

P(W;) of m yields the tuple seB C W, whose tuples satisfy (through social engineering say) fromindependent sources

bie., B = {x € Wz I b}. The conditioning ofm on b is
then given by the formula:

>

CNB=A
0 for A=10

m(C) for A+

mb(A)

Notice that the resulted mass functionusnormalized

VIl. | NFERENCESCHEME

(independence was discussed in Secfion 1V-A) about the true
values of the secret inputs. The extent of theg@eces of evi-
dence is captured usingmass functionsn; : P(W,) — [0, 1]
wherei = 1,...1n.

Before experimenting with a program execution, the attacke
ought to combine the mass functions she has using formula
(). The combination outcome is the attackqrebelief m,,.,
which describes her beliéfeforeinteracting with the program:

to update her knowledge from interacting with a program

This sections presents an inference scheme an attacker USES . : POVL) = [0,1] : mpre(A) = Minir ® ®mi(A)
=1

execution. This scheme is a generalization of the expetimen

protocol advanced in_[2]; however gurpasseghat protocol

by handling any number of secret inputs to a program. Befofe
describing this scheme, we need to give the attacker’s mod&f

A. Attacker's Model
The attacker is modeled via the following assumptions:
1) The attacker has eopy of the program’s source code.

2) The program has aumberof secret inputs the attackerm

does not know and would like to learn.
3) The program executes on a system that dussnten-
tionally collude to leak the secret inputs.

The system chooses thdgh projection of the input state
th ¢ P(Wy,) to be the set that contains the true values of the
cret inputs. The corresponding point mass function wbeld

my : POW,) = [0,1] : miy(a¥) = 1,1, (A) = 0 for any A € P(Wy)\o*"

The attacker chooses tHew projection of the input state
o € P(W;) with the corresponding point mass function:

12 POW) — [0,1] = 1y (o¥) = 1,91(A) = 0 for any A € P(W,)\o¥

The low projections represents the attackergiessesf
the secret inputs, in addition to the nonsecret inputs. &hes



TABLE V

guesses are likely to biefluencedby the attacker’s prebelief, THE ATTACKER'S PREBELIEF AND POSTBELIEF IN EXPERIMENT
in which case, the attacker would choos€ as the set that
_has the h|g_hest mass accordlngntgrle. However, we do not POVR)  Mpre Moo Miost
impose an influence as such to avoid the loss of generality. (A 93 1 0
The program’s input becomes the combination, ® i, (B,C} .02 0 1
done using formula{2), since the domainsrof andr; are
different. The system executes the program which produces a TABLE VI
mass function: AN INTERMEDIATE TABLE FOR COMPUTINGTh}, ® 711;
ms : PWhui) = [0,1] : ms(A) = [S](thy, @ ) (A) (A 4.0). (B, A.0).(C, 4.0} - 1
This mass function representsany possible output states. {(A, A,0), (A, A,1), (A, B,0), {(A, 4,00} : 1

However, since the attacker is allowed to make only one ebser _ (4,5,1),(4,6,0),(4,C, 1)} : 1
vation per execution, one state must be chasemomly This
random choice is made using a sampling operBttrat draws
a states’ from the domain ofmn;s with a probabilityl/|F,,,|. A. Experimentl
The chosen output state beconaése T'(ms), from which the
attackerobserveghe low projectiono = o'+ € P(W),).

The attacker applies the semantics of the program to
combinationriy; ® mp,. t0 generate grediction m5
output massn;:

In this experiment, the focal sets induced hy,.. form a
artition as shown in Table]V. Notice that the attacker lveke
tB?s overwhelminglyikely to be A, but has a very small chance

of the 1ot necessarily equally distributed) to be eitheror C.
1) Interaction1: The system chooses'” = (p — A) and
my - PWhot) = [0,1] : ms(A) = [S](1 @ mpre)(A) the attacker chooses! = (g — A,a — 0). The corresponding
) " ) ) my, and iy are given in Sectiof_VII-B. The program input
The attacker incorporates any additional information COns,. ® 1y is determined by applying formulal(2). We simplify
tained in the observation, she made earlier, by conditioningy,is a5k by performing the intermediate computations show
ms on o using formula [(B). The result is a new mass funGy, rapje[V] [1Z]. The first column in this table contaims,
tion mg thg/ attacker projects td to obtain herpostbelief and the top row containgy;, both of whichextendedio the
Mpost = m,"", which describes her belief after interactinginion variable domairk Ul = {p,g,a}. Every internal cell
with the program. contains thentersectionbetween the corresponding tuple sets
It is worth pointing out that in repeated executions, thgnd theproductof the corresponding values. The combination

attacker may choose hgostbelieffrom one execution as ajs finalized by adding the values of all internal cells wituaty
prebelief to the next. The attacker may even choose a pegbefj;ple set and normalizing by = 1 to obtain:

that contradictsthe pieces of evidence she has. Both choices
are acceptable and add ample expressiveness to our analysis thy, @ iy = [{(A4, 4,0)} : 1]

VIII. EXPERIMENTING WITH THE INFERENCESCHEME Next the semantics dPWC, given in Table1V, is applied:

Unlike the QIF method used in|[2], which can only de ) . . . . .
with singleton focal sets induced by an attacker’s beliefs, afPWC] (i ® i) = [eo)((1ivn @ 1) b) + [e1]((rvn @ 170)[2b)
method is capable of handling all focal set structures. Thjgere:
includes, in addition to singleton focal sets, focal setd fbrm
a partition, overlapping andnestedfocal sets. Experimenting ¢ i=a:=1,c1 i=a:=0,bu=p=g,~bu=p#g (4)
with our scheme using singleton sets yields identical tegol
those in [[2]. We also find it rather similar to experiment gsin
overlapping or nested sets. Therefore, we experiment wilh o B =1{(A,A,0),(4,4,1),(B,B,0),
partition and nested sets. For the purpose of our expersnent (B, B,1),(C,C,0),(C,C,1)} ()
we reuse the same password checker from [2]. This checker
sets an authentication flagafter checking a stored passwordPplying Definition[19 conditioning gives:
p against a guessed passwagrdupplied by the user. (rin @ 1) |b = [{(A, 4,00} : 1]

PWC: if p=gthena:=1lelsea:=0

The expansion 0b to P(Wh;) yields:

The expansion ofb to P(Wj,;) yields:
The secret input to thi®WC is p while the nonsecret ones

are g and a. The universal variable set is = {p,g,a} and -B = {(4,B,0),(4, B,1),(A,C,0), (A, C,1),
the high and low variable sets ate= {p} and! = {g,a} (B,A,0),(B,A,1),(C,A,0),(C, A1), (6)
respectively. For simplicityp is assumed to be eithet, B, or (B,C,0),(B,C,1),(C, B,0),(C, B, 1)}

C'. Each conducted experiment involves two runs of interacti%pmying Definition[I9 conditioning again gives:
between the attacker arWWC. Thereal password is assumed

to be A in the first run and” in the second. (riv, @ i) |=b = [0 : 1]



TABLE VIl
Now we apply the mass updates, as described in Defiifibn 18: 1e arracker's PREBELIEF AND POSTBELIEF IN EXPERIMEN

feol (1, @ ring)[B) = [{(A, A, 1)} < 1] —

. . P(Wh) Mpre Mpost Mpost
-b)=10:1 L4 L4
[e1]((rin, @ i) |=b) = [0 1] A s o n
A straightforward addition gives: ﬁ}Bvc} o9 0
(B} 0 0 98
[PWC] (i, @ i) = [{(A4, A, 1)} : 1;0: 1] {B,C} 0 0 .02

and a final normalization yields the output mass:

3) Reasoning About the Result$f we contemplate the
results in TabléV m;,ost suggests that the attacker is certain
thatp is A, WhereaSmpOSt, suggests that she is certain that
the p is either B or C' (with chances that are not necessarily
equal). Comparingn;,ost with m,,. tells that interactionl
=(p—Ag— Aa—1) had begotten little chapge in th_e attacker’s belief. Thiteli
changecorresponds to littleipdatein the attacker’'s knowledge
and subse,guently to little information flow froWC. If we
Next 1i; @ m,,. is determined by applying formul&l(2): comparen,,,.; With m,,.., we arrive at the converse conclusion

- Iarger knowledge update and larger flow. Notice also that

M @ myre = [{(A, 4,0)} :.98;{(B, 4,0), (C, A,0)} : .02] mpost and mpost are more accurate tham,,. since both of
them arenearerto 1, than it. This accuracy increase results

The semantics oPWC is now applied to get: in informing of the attacker, which igositiveinformation flow.

ms = [PWC](riy, @ 1) = [{(4, A, 1)} : 1]

The only state that can be drawn frodtms) is (A4, A,1)
from which the attacker observes the low projection:

o—a“ (9= A,a—1)

[PWC) (11 @ mipre) = lcol(11u @ mipre)|B) + [ea) (i @ myre)|-b) - B- Experimene
In this experiment, the focal sets inducedrby,.. are nested
where co, c1, b, and —b are the same as iril(4). Applyingas shown in TablEVII. Notice that the attacker belieyeis
Definition[19 conditioning with the samgl(5) arid (6) yields: overwhelmingly likely to be eithetd or B, but has a very
small chance to be eithet, B, or C (all the chances are not
(10 ® mpre)|b = [{(A, A,0)} : .98:0 : .02] (

i ¢ e necessarily equal). The attacker’s postbelmﬁ,%st andm,,
(11 ® mpre)|=b = [{(B, 4,0), (C, 4,0)} : .02;0:.98] are shown in the same table.

post

The mass updates are now applied to get: 1) Reasoning About the Resultsft we contemplate the
results in Tabl& VI mpost suggests that the attacker is certain
[col (1 @ mpre)|b) = [{(A, A, 1)} :.98;0 : .02] that p is A, whereaSmpost suggests that she believesis

[e1]((ry @ myre)|—b) = [{(B, A,0), (C, A,0)} : .02;0:.98]  overwhelmingly likely to beB but has a very small chance (not
. - ) necessarily equally distributed) to be eitligior C. Comparing
A straightforward addition gives: My0se With my,. tells that interactionl had begotten large
) B o, change in the attacker’s belief (she no longer believesn).
[PWC(riu @ mypre) = [{(g’ i’ é)} Ogi O e 02:0: 1 This large change corresponds to large knowledge update and
{(B,4,0),(C, 4,00} : 02,0 1] large flow. Comparingn;;ost with my,. yields the converse

and a final normalization yields the attacker’s prediction: ~ conclusion. Notice also that,,,, is more accurate tham,,.
since it is nearer tan; than it. This accuracy increase results

my = [PWC] (1 @ mpre) = [{(4, A,1)} : .98; in informing of the attacker, and means positlilve informatio
{(B, A,0),(C, A 0)} :.02] flow. However, wecannotinformally claim thatm,,,,; is more

accurate tharm,,. - they both seem to stand at nearly the
After expandingo to d(mj;) and obtaining: same distance from,, (which is a point mass oQC'}). This

nearly-constanticcuracy reflectaear-zeroinformation flow.

={(A,A1),(B,A1 Al
0 ={(4,4,1),(B,4,1),(C, 4,1)} C. Generic Observations

the attacker conditions using formu[d (3) to get: We can derive generiand informal observations by putting
. the experiments’ results into a wider perspective. If thackier
ms = m5|0 =[{(A, A, 1)} : 1] where k = 1/.98 has astrong belief that the true value of a secret input is in a

partition (in a set nested in other sets in the body of evidgnc
A final projection Ofm5 to h yields m, post Shown in Tablé V. and an interaction with the systemonfutesher belief, then
2) Interaction2: Similar computat|ons to those presented ithe attacker’s strong belief is transferred to that panis

the previous section yleldmpost, also shown in TableV. complementthose setsintersection.
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be established under the metric proposed.in [2]. that has the highest cardinality.
2) For anyx € A, putp(x) = Bel(A)/|A.
X. CONCLUSIONS 3) For eachB C W, — A, put Bel(B) = Bel(BU A) —

We presented a generalization of the QIF analysis method Bel(A).
proposed in[[1],[[2]. Our generalization is based on Dempste 4) PutW, =W, — A.
Shafer theory of imprecise probabilities. We uncoveredmnu 5) If Ws # 0 and Bel(Ws) > 0, go to stepl.
ber of weaknesses in the original method and showed that thef) If Ws # 0 and Bel(W;) = 0, put p(z) = 0 for any
are eliminated by way of our generalization. Our generdlize reWs.
method can handle any number of secret inputs to a program/) ComputeAU(Bel) = — > p(x)logp(z).
it enables the capturing of an attacker’s beliefs in all kird oEWs
sets (singleton or not), and it supports a new and precise @F Proof of Theorerhl1
measure whose reported flow results are plausible in thgt the0 < GJS(m1,m2) < log|W;s| = n (from Section [V=C2])
are bounded by the size of a program’s secret input, and can  —n < GJS(Mmpye, M) — GJS (Mpost, Mmp) <1
be easily associated with the exhaustive search efforteteed 0o =[—n,7]
to uncover a program’s secret information, unlike the tssul
reported by the original metric.
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