
ar
X

iv
:1

20
6.

54
87

v1
 [

cs
.C

R
]

24
 J

un
 2

01
2

A Precise Information Flow Measure from Imprecise
Probabilities

Sari Haj Hussein
Department of Computer Science, Aalborg University, Denmark

Email: angyjoe@gmail.com

Abstract—Dempster-Shafer theory of imprecise probabilities
has proved useful to incorporate both nonspecificity and conflict
uncertainties in an inference mechanism. The traditional Bayesian
approach cannot differentiate between the two, and is unable to
handle non-specific, ambiguous, and conflicting information with-
out making strong assumptions. This paper presents a generaliza-
tion of a recent Bayesian-based method of quantifying information
flow in Dempster-Shafer theory. The generalization concretely
enhances the original method removing all its weaknesses that
are highlighted in this paper. In so many words, our generalized
method can handle any number of secret inputs to a program, it
enables the capturing of an attacker’s beliefs in all kinds of sets
(singleton or not), and it supports a new and precise quantitative
information flow measure whose reported flow results are plausible
in that they are bounded by the size of a program’s secret input,
and can be easily associated with the exhaustive search effort
needed to uncover a program’s secret information, unlike the
results reported by the original metric.

Index Terms—computer security, quantitative information flow,
imprecise probabilities, Dempster-Shafer theory, information the-
ory, uncertainty, inference, program analysis

I. I NTRODUCTION

The goal of information flow analysis is to enforce limits
on the use of information that apply to all computations that
involve that information. For instance, a confidentiality property
requires that a program with secret inputs should not leak
those inputs into its public outputs. Qualitative information flow
properties, such as non-interference are expensive, impossible,
or rarely satisfied by real programs: generally some flow exists,
and many systems remain secure provided that the amount
of flow is sufficiently small, moreover, designers wish to
distinguish acceptable from unacceptable flows.

Systems often reveal a summary of secret information they
store. The summary contains fewer bits and provides a limit
on the attacker’s inference. For instance, a patient’s report is
released with the disease name covered by a black rectangle.
However, it is not easy to precisely determine how much
information exists in the summary. For instance, if the font
size is uniform on the patient’s report, the width of the black
rectangle might determine the length of the disease name.
Quantitative information flow (QIF) analysis is an approachthat
establishes bounds on information that is leaked by a program.
In QIF, confidentiality properties are also expressed, but as
limits on the number of bits that might be revealed from a
program’s execution. A violation is declared if the number of
leaked bits exceeds the policy.

The metric in [1] is based on a new perspective for QIF
analysis. The fundamental idea is to model an attacker’s belief
about a program’s secret input as a probability distribution over
high states. This belief is then revised, using Bayesian updating
techniques, as the attacker interacts with a program’s execution.
It is believed that the work reported in [1] is the first to address
an attacker’s belief in quantifying information flow. This work
was later expanded and appeared in [2]. A number of relevant
results [3], [4] were reported in the sequel; however, the work
in [1], [2] is sufficient as a foundation of our work.

A number of weaknesses can be seen in [2]. First, proba-
bility measures are used for capturing an attacker’s beliefand
representingher uncertainty about the true state of a system.
These measures have thefinite additivity propertythat forces
them to act on singleton sets, and makes it difficult to represent
an attacker’s ignorance or contradiction. Moreover, thesemea-
surescannotmodel attackers who effectually or ineffectually
collaborate with each other. Second, the experiment protocol
between an attacker and a system described in [2]cannot
handle more than one secret input to a program. Third, the QIF
metric advanced in [2] reports counter-intuitive flow quantities
that exceedthe size of a program’s secret input, and make
it impossibleto determine the space of the exhaustive search
needed to uncover a program’s secret information.

This paper presents a generalization of the method followed
in [2] that is free of all these weaknesses. The generalization
is based on Dempster-Shafer theory of imprecise probabilities
[5], [6] which enables the capturing of an attacker’s beliefs in
all kinds of sets (singleton or not), combining those beliefs, and
revising them to update an attacker’s knowledge about a system.
As part of this generalization, we propose an inference scheme
an attacker uses to update her knowledge from interacting with
a program execution. This scheme can handleany number
of secret inputs to a program. The mathematical toolbox on
beliefs and the inference scheme we posit in this paper support
a new and precise QIF measure whose reported flow results
are boundedby the size of a program’s secret input, and can
be easily associated with the exhaustive search effort needed
to uncover a program’s secret information, unlike the results
reported by the original metric.

A. Relation to Our Earlier Work

In a recent position paper [7], we tackled the inexplicable
results reported by the QIF metric in [2] that exceed the size
of a program’s secret input, and presented arefinementthat

http://arxiv.org/abs/1206.5487v1

bounds those results by a range consistent with the size of a
program’s secret input. The refinement was accomplished under
the original Bayesian settings, and it enabled us to relate the
reported flow results to the exhaustive search effort neededto
uncover a program’s secret information. A reader, interested in
developing a clear picture of the problems the metric in [2] is
fraught with, is strongly referred to [7].

B. Plan of the Paper

The remainder of this paper is organized as follows. Section
II discusses the methods of representing uncertainty starting
from the coarse-grained frame of discernment, moving to joint
frames, tuples, and tuple sets, and ending with the fine-grained
belief functions. In this section, we rigorously clarify the
limitations of probability measures used in [2]. Section III
concentrates on capturing beliefs using mass functions andthe
transformation of these functions into belief functions. Our
mathematical toolbox on beliefs is given in Section IV. It
includes formulas for combining beliefs, conditioning them,
and measuring the divergence between them. In this section,
we give a clear comparison between the poor properties of
Kullback-Leibler divergence measure [8] (the authors’ choice
in [2]), and the appealing ones of Jensen-Shannon divergence
measure [9] (our choice). We further investigate andsucceedin
generalizing Jensen-Shannon divergence measure in Dempster-
Shafer theory. Section V presents the language needed in our
experiments. Section VI lifts the syntax and semantics of this
language in order to enable us to write programs source code
in terms of mass functions. Section VII gives the attacker’s
model and then presents an inference scheme an attacker uses
to update her knowledge from interacting with a program
execution. Section VIII experiments with this inference scheme
using various set structures induced by an attacker’s beliefs. Our
informal reasoning and generic observations about experiments’
results are also given in this section. Section IX deals with
quantifying information flow and advances a new and precise
QIF measure whose reported flow results are proved to be
bounded by the size of a program’s secret input, and easily
associated with the exhaustive search effort needed to uncover
a program’s secret information. Sample flow calculations are
also given in this section. The paper concludes in Section X.

C. Novel Contributions

We believe that the work reported herein is thefirst to address
the use of Dempster-Shafer theory in quantifying information
flow. A number of novel contributions that, to the best of our
knowledge do not appear in the literature, are also seen over
the course of this correspondence. They are thegeneralization
of Jensen-Shannon divergence measure in Dempster-Shafer
theory, therules of updating a mass function, and conditioning
it on a Boolean expression, in addition to the lifted imperative
while-language thatactson mass functions. All the uncertainty
computations that appear in this paper are worked out using the
pyuds library[10]; a Python library we developed specifically
for this purpose.

II. REPRESENTINGUNCERTAINTY

A. Frame of Discernment

For most representations of uncertainty, the starting point
is a set of possibleworlds, states, or elementary outcomes
that an agent considers possible. This set is called aframe
of discernment[11] (a frame for short). For example, in the
crude guessing of commonly used passwords, an agent might
consider the following set possible:

{password, 123456, qwerty, abc123, letmein,monkey, 696969}

The frames dealt with in this paper are given under
the closed-world assumption[5]. For a finite frameW =
{w1, ..., wn}, this means two things:

1) Exclusiveness: The worldswi in W are mutually exclu-
sive which means thatat mostone of them is the true
world.

2) Exhaustiveness: The frameW is complete which means
that it containsall the possible worlds.

A state in a program execution is an assignment of a value
to a variable, and a frame is eligible to contain a set of those
assignments. For instance, a Boolean variablea accepts two
possible assignmentsa → 0 or a → 1. It has two possible
states that we may write asσ = (a → 0) andσ = (a → 1),
and its corresponding frame isWa = {0, 1}.

B. Joint Frame, Tuple, and Tuple Set

A program execution may accept a number ofsecret (high)
andnonsecret (low)inputs. For each input, we have a number
of possible states that we should assimilate into an independent
frame. To represent an agent’s uncertainty about these two types
of inputs, we need to define the notions of joint frame, tuple,
and tuple set [12].

Definition 1 (Joint Frame):Let r be a finite universal vari-
able set where for each variableX ∈ r there exists a frame
WX of values that can be assigned toX , and lets ⊆ r be a
variable set. The joint frame ons is defined by the formula:

Ws =
∏

X∈s

WX

Definition 2 (Tuple):Let Ws be a joint frame ons ⊆ r. An
s-tuple is a function of the formx : s → Ws that associates a
valuex(X) ∈ Ws with each variableX ∈ s.

Definition 3 (Tuple Set):Let Ws be a joint frame ons ⊆ r.
An s-tuple set is a subsetS ⊆ Ws.

Definitions 1-3 allow us to assume two joint frames; ahigh
joint frameWh on a high variable seth ⊆ r, and alow joint
frameWl on a low variable setl ⊆ r, to represent an agent’s
uncertainty about secret and nonsecret inputs respectively. The
overall joint frameWh∪l on the overall variable seth ∪ l ⊆ r
emerges as the product of these two frames:

Wh =
∏

X∈h

WX ,Wl =
∏

X∈l

WX ,Wh∪l =
∏

X∈h∪l

WX

In the remainder of this correspondence, a frame is always
joint unless we state otherwise. When we refer to a frame, we

write Ws, however we do not say that it is taken on the variable
set s ⊆ r. In addition, states are handled similarly to tuples,
and likewise state sets to tuple sets. When we say the high and
low projections of a state, we mean the projections of that state
to h and l respectively.

C. Belief Functions

A frame is a coarse-grained representation of uncertainty,
since we do not have any means ofcomparingthe likelihood
of two worlds. Belief functions, the cornerstones of Dempster-
Shafer theory [5], [6], offer a fine-grained representationof
uncertainty that is suitable for our work because they are
numericthus enabling us toquantitativelymeasure information
flow. They further permit the modeling of theevolution (or
regression) of an agent’s knowledge about a system as more and
more pieces of evidence become available. Additionally, they
admit a programming language semantics, as we will show in
Section VI. Finally, under belief functions, all pairs of worlds
are comparablethus promoting the reasoning of agents and
empowering our analysis.

Although probability measures, the authors’ choice in [2],are
familiar, quantitative, support operations on beliefs, and admit a
programming language semantics, they have thefinite additivity
propertythat forces them to act on singleton sets. This makes it
difficult to representignorance(by assigning a zero probability
to a set in an algebra) andcontradiction(by assigning a nonzero
probability to the empty set). It also complicates assigning
probabilities tonon-singletonand joint sets. The inability of
agents to capture ignorance, express contradiction, and believe
in non-singleton and joint sets clearlydetractsfrom the depth of
our analysis. In addition, probability measures entail assigning
scalar probabilities toall sets in an algebra, but an agent
may not have sufficient computational power to do that. This
computational inefficiency escalates into a grueling ordeal when
dealing with huge frames. Lastly, probability measures canonly
capture independent work, whilefailing at modeling attackers
who effectually or ineffectually collaborate with each other as
rigorously clarified in Example 1.

Example 1 (Modeling Attackers’ Collaboration):Consider
a band of attackers whose purpose is to hack into a computer
system. Assume that this band is partitioned into sub-bands
A1, A2,..., An and let µ(Ai) be the degree of infiltration
begotten by the sub-bandAi. For any two sub-bandsAi and
Aj , it is intuitive that any of the following can happen:

• µ(Ai ∪ Aj) = µ(Ai) + µ(Aj) when Ai and Aj work
independently.

• µ(Ai∪Aj) > µ(Ai)+µ(Aj) whenAi andAj effectually
collaborate.

• µ(Ai∪Aj) < µ(Ai)+µ(Aj) whenAi andAj ineffectually
collaborate.

III. C APTURING BELIEF

A belief is a psychological statein which an agent has a
degree of support to a proposition about a system. A belief is
based on a piece of evidence an agent obtains through some

mean. In the framework of Dempster-Shafer theory, this belief
is captured using a mass function, which is defined as follows.

Definition 4 (Mass Function):Let Ws be a frame. A mass
function onWs is a function of the formm : P(Ws) → [0, 1]
whereP(Ws) is the first-order power set ofWs defined as
P(Ws) = {X |X ⊆ Ws}. This function satisfies:

m(∅) = 0,
∑

A∈P(Ws)

m(A) = 1

For any A ∈ P(Ws), the valuem(A) has the following
meaning; it characterizes the degree of belief that the trueworld
is in the tuple setA, but it doesnot take into account any
additional evidence for the various subsets ofA.

Each tuple setX ∈ P(Ws) such thatm(X) > 0 is called a
focal setof m. We denote the set of all focal sets induced by
m asFm, and write:

Fm = {X ∈ P(Ws)|m(X) > 0}

We call the pair〈Fm,m〉 a body of evidence. Occasionally,
we denote the domainP(Ws) of m asd(m). Definition 5 shows
how to project a mass function.

Definition 5 (Mass Function Projection):Let Ws be a
frame,m : P(Ws) → [0, 1] be a mass function onWs, and
t ⊆ s be a variable set. The projection ofm to t is defined for
anyA ∈ P(Wt) by the formula:

m↓t(A) =
∑

B↓t=A

m(B)

whereB↓t is the projection of the tuple setB ∈ P(Ws) to t.
As a specialization of the general mass function, we define

a point mass function as follows.
Definition 6 (Point Mass Function):LetWs be a frame, and

m : P(Ws) → [0, 1] be a mass function onWs. We say that
m is a point on the tuple setA ∈ P(Ws), and writeṁA, if
the degree of belief characterized bym is fully concentrated
on A, that is, ifm(A) = 1.

Since it doesnot have the finite additivity property, a mass
function m is not a measure. This can be coped with. One
can bind the pieces of evidence together, and obtain a belief
measure fromm using the formula:

Bel(A) =
∑

B⊆A

m(B)

Since the tuple sets in the domain of the functionBel :
P(Ws) → [0, 1] are measurable, normalizing the values
Bel(A), so that the sum is1, allows us to apply the familiar
distribution arithmetic on them i.e., distribution sum, product,
conditioning, and difference [13]. However, this isnot what
we want to do. Converting the valuesm(A) to Bel(A) is
an expensiveoperation that should be kept to a minimum.
Moreover, dealing with the valuesm(A) is more tractable
than dealing withBel(A). Thus, we ought to maintain the
mass function setting in our work and propose the following
arithmetic on beliefs.

IV. A RITHMETIC ON BELIEFS

A. Belief Combination

We combine beliefs using Dempster’s combination rule [14].
Given two pieces of evidence obtained from twoindependent
sources (we will shortly discuss independence) and expressed
by two mass functionsm1 and m2 on the sameframe Ws,
Dempster’s combination rule aggregatesm1 andm2 to obtain
a combined mass functionm1 ⊗m2 which is defined for any
tuple set∅ 6= A ∈ P(Ws∪s) by the formula:

(m1 ⊗m2)(A) = k.
∑

B∩C=A

m1(B).m2(C) (1)

where:

(m1 ⊗m2)(∅) = 0, k−1 =
∑

B∩C 6=∅

m1(B).m2(C)

If m1 andm2 are defined on two different framesWs and
Wt , then the intersectionB ∩ C is inapplicable anymore and
is replaced with thenatural join operationB ⊲⊳ C [12] as
expressed by the formula, which is defined for any tuple set
∅ 6= A ∈ P(Ws∪t):

(m1 ⊗m2)(A) = k.
∑

B⊲⊳C=A

m1(B).m2(C) (2)

where:

(m1 ⊗m2)(∅) = 0, k−1 =
∑

B⊲⊳C 6=∅

m1(B).m2(C)

The parameterk in formulas (1) and (2) normalizesm1⊗m2

which has the appeal of explicitly recognizingconflictbetween
the pieces of evidence an agent gathers about a system [15].

A prerequisite for using Dempster’s combination rule is that
the pieces of evidence are obtained from independent sources.
Intuitively, this means that these pieces are totallyunrelated
and that the occurrence of one of them has no influence on the
other [11]. In our work, this is well-justified if the pieces of
evidence are obtained from external sources that are unrelated
to a program execution; however, it isnot if the pieces are
obtained by monitoring an execution - in repeated executions,
an agent relies on one output to rearrange the next input and
thus influence the next output [2].

Dempster’s combination rule has the distinguishing property
of being commutative and associative [11]. This empowers our
analysis by allowing an agent to choose thecombinationorder
and postpone the combination of amisleadingpiece of evidence
until more hints about this piece are available.

B. Belief Conditioning

We condition beliefs using Dempster’s conditioning rule
[14]. Suppose that a current agent’s belief is captured using
a mass functionm : P(Ws) → [0, 1]. Later on, this agent
obtains a new piece of evidence that the true world is in the
tuple setB ∈ P(Ws). Suppose further that there exists a focal
set C ∈ Fm such thatC ∩ B 6= ∅. Dempster’s conditioning
rule enables the agent toincorporate the new evidence and
updateher knowledge. This rule transformsm into a new mass

functionmB as expressed by the formula, which is defined for
any tuple set∅ 6= A ∈ P(Ws):

mB(A) =







k.
∑

C∩B=A

m(C) for A 6= ∅

0 for A = ∅
(3)

where:
k−1 =

∑

C∩B 6=∅

m(C)

The parameterk has the effect of normalizingmB(A), and
enjoys the same quality mentioned in the previous section.

C. Belief Divergence

1) Choosing a Divergence Measure:An agent’s belief about
a program’s secret input is modeled as a probability distribution
in [2], and the divergence between two probability distributions
is measured using Kullback-Leibler divergence [8], which is
given in Definition 7.

Definition 7 (Kullback-Leibler Divergence Measure):Let
X be a discrete random variable with alphabetX , and letp1
and p2 be two probability distribution functions onX . The
Kullback-Leibler divergence measure betweenp1 and p2 is
defined by the formula:

KL(p1, p2) =
∑

x∈X

p1(x) log
p1(x)

p2(x)

Our work necessitates a divergence measure between mass
functions, not between probability distributions.KL divergence
cannotbe written in terms of generalizable uncertainty func-
tionals, and thusseemsnon-generalizable in Dempster-Shafer
theory to act on mass functions. In contrast, Jensen-Shannon
divergence measure [9] has an obvious information-theoretic
interpretation in terms of Shannon uncertainty functional, which
makes it generalizable in Dempster-Shafer theory, in addition
to a number of desirable properties thatKL lacks. Before
defining Jensen-Shannon divergence measure, we need to give
a definition for Shannon uncertainty functional.

Definition 8 (Shannon Uncertainty Functional):Let X be a
discrete random variable with alphabetX , and let p be a
probability distribution function onX . The uncertainty about
X is defined by the functional:

S(p) = −
∑

x∈X

p(x) log p(x)

Uncertainty is measured in bits if the logarithm is binary.
(Here and hereafter, all logarithms are to the base2).

Definition 9 (Jensen-Shannon Divergence Measure):Let p1
and p2 be two probability distribution functions. The Jensen-
Shannon divergence measure betweenp1 andp2 is defined by
the formula:

JS(p1, p2) = 2S(
p1 + p2

2
)− S(p1)− S(p2)

In Table I, we compare betweenKL and JS divergence
measures.P3 is a salient property that maintains thebalance
and computational correctness in the information flow measure

TABLE I
COMPARISON BETWEENKL AND JS DIVERGENCE MEASURES

No Property KL JS

P1 D(p1, p2) ≥ 0 Yes Yes
iff p1(x) 6= p2(x)

P2 D(p1, p2) = 0 Yes Yes
iff p1(x) = p2(x)

P3 D(p1, p2) = D(p2, p1) No Yes
P4 Finiteness (Definement) Not if we havep log p

0
Yes

P5 Upper and lower bounds No, only lower bound Yes
P6 Boundness No Yes,JS ≤ 2

we will advance in Section IX.P4 is important in its own right,
since it enables us to handleall possible belief combinations,
including those where one belief is zero and the other is
positive. The dissatisfaction ofP4 in KL drives the authors
of [1] to suggest an admissibility restriction on beliefs whose
ineffectivenessis revealed in our earlier work [7]. We also see
that P6 is appealing to have in our work. Indeed, it decidedly
contributes to the desirable boundness of the flow measure we
will propose in Section IX.

2) Generalizing the Divergence Measure:As we saw in Def-
inition 9, JS is written in terms ofS. Therefore, generalizing
JS in Dempster-Shafer theoryentails generalizingS in the
same theory. The hunt for a generalization ofS in Dempster-
Shafer theory starts by noticing thattwo types of uncertainty
coexist in this theory:

1) Thenonspecificityin our prediction about the true world
in a frame.

2) Theconflictbetween the pieces of evidence expressed by
each mass value.

To measure nonspecificity in Dempster-Shafer theory, we use
generalized Hartley uncertainty functional [15], which isgiven
in Definition 10.

Definition 10: (Generalized Hartley Uncertainty Functional):
Let m : P(Ws) → [0, 1] be a mass function onWs, andFm

be the set of all focal sets induced bym. The nonspecificity
uncertainty about the true world inWs is given by the
functional:

GH(m) =
∑

A∈Fm

m(A)log|A|

To aggregately measure both nonspecificity and conflict
in Dempster-Shafer theory, we use the aggregate uncertainty
functional [15], which is given in Definition 11.

Definition 11 (Aggregate Uncertainty Functional):Let
Bel : P(Ws) → [0, 1] be a belief function onWs. The
aggregate uncertainty about the true world inWs is given by
the functional:

AU(Bel) = max
PBel

{

−
∑

x∈Ws

p(x) log p(x)

}

wherePBel is the set of all probability distribution functions
that dominateBel by satisfying the following two properties:

1) p(x) ∈ [0, 1] for any x ∈ Ws and
∑

x∈Ws

p(x) = 1

2) Bel(A) ≤
∑

x∈A

p(x) for anyA ∈ P(Ws)

A recursive algorithm for computingAU is given in Ap-
pendix I-A [15]. It can be shown thatAU is insensitiveto
changes in evidence which makes it ill-suited for capturingthe
uncertainty associated with an agent’s beliefs [15]. Therefore,
AU is not what we need in order to generalizeJS in Dempster-
Shafer theory. However, If we recall thatAU is a total of two
types of uncertainty; nonspecificity and conflict, we can write:

AU(Bel) = GH(m) +GS(m)

Based on this equivalence, we can define the generalized
Shannon uncertainty functional.

Definition 12: (Generalized Shannon Uncertainty Functional):
Let m : P(Ws) → [0, 1] be a mass function, and
Bel : P(Ws) → [0, 1] be the corresponding belief function,
both onWs. The conflict uncertainty about the true world in
Ws is given by the functional:

GS(m) = AU(Bel)−GH(m)

whereGH(m) andAU(Bel) are respectively given in Defini-
tions 10 and 11.

Notice in Definition 12 that the insensitivity ofAU is
overcomeby subtractingGH from it. This makesGS sensitive
to changes in evidence, and allows us to proceed with ournovel
generalization ofJS in Dempster-Shafer theory.

Definition 13: (Generalized Jensen-Shannon Divergence Measure):

Let m1 andm2 be two mass functions onWs. The generalized
Jensen-Shannon divergence measure betweenm1 and m2 is
defined by the formula:

GJS(m1,m2) = 2GS(
m1 +m2

2
)−GS(m1)−GS(m2)

whereGS is given in Definition 12.
Now we have to check whether the properties ofJS listed

in Table I hold onGJS. We know that for anym, we have
GS(m) ≥ 0, which means thatP1 holds onGJS. P2 andP3
obviously hold onGJS. It is known thatGH(m) ≤ log |Ws|
and AU(Bel) ≤ log |Ws| for any m and Bel on Ws [15].
This means thatGS(m) ≤ log |Ws| and consequently that
GJS(m1,m2) ≤ log |Ws|. Thus,P4 andP6 also hold.

V. L ANGUAGE

We use an imperative while-language extended with a proba-
bilistic choice construct. The language is described usingrules
that show how expressions and commands are formed, how
expressions are evaluated, and how commands are executed.

A. Syntax

The syntactic sets and the metavariables that range over
them are shown in Table II. The formation rules of arithmetic
and Boolean expressions are standard, and we only give the
formation rules of commands:

c ::= skip|X := a|c0; c1|if b then c0 else c1|while b do c|c0 p[] c1

The probabilistic choice rulec0 p[] c1 executesc0 with a
probabilityp or c1 with a probability1− p.

TABLE II
THE SYNTACTIC SETS AND THE METAVARIABLES

Syntactic Set Metavariables

V al: The set of integersN n,m
Bool: The set of truth values{true, false} t
V ar: The set of program variables X,Y
Aexp: The set of arithmetic expressions a
Bexp: The set of Boolean expressions b
Com: The set of commands c

B. Semantics

Recalling that a state in our scheme is an assignment of a
value to a variable (what we mentioned in Section II-A), and
having introduced the syntactic sets in the previous section, we
can now denote a state as a function of the formσ : V ar →
V al. When we writeσ(X) = n or σ(X → n) for X ∈ V ar
and n ∈ V al, we mean that the value of the variableX in
the stateσ is n. We might havemore than one variable in
a single state, in which case we writeσ(X,Y) = (n,m) or
σ(X → n, Y → m) for X,Y ∈ V ar and n,m ∈ V al. A
notationState is also needed to refer to the set of all possible
states in a program execution. We use the following semantic
functions:

A : Aexp → (State → V al)
B : Bexp → (State → Bool)
C : Com → (State → State)

which enables us to define the following denotation functions:

∀a ∈ Aexp.A[a] : State → V al
∀b ∈ Bexp.B[b] : State → Bool
∀c ∈ Com.C[c] : State → State

Since the semantic functions are known, as well as the range
of metavariables, we condense the denotations and write[a], [b],
and [c] instead ofA[a], B[b], andC[c].

The evaluation of arithmetic and Boolean expressions is
standard. As for commands, we note that their execution
changesin program states. Unless the corresponding program
inputs are influenced by an agent, we assume that variables in
all states are initially set tozero, that is∀X ∈ V ar.σ0(X) = 0.
We also observe that a command execution mayterminatein
a final state, or maydivergeand never yield a final state (non-
termination). Let us explain the meaning of termination in this
non-lifted semantics.

Definition 14 (Non-lifted Meaning of Termination):For any
c ∈ Com, when we write:

[c]σ′ = λσ ∈ State.σ

we mean that the commandc, which began in an input state
σ′, deterministicallyterminates in an output stateσ.

The execution rules of commands are given in Table III. The
notion given in Definition 15 is used in one of those rules.

Definition 15 (State Update):Let σ ∈ State, X ∈ V ar,
andn ∈ V al be a state, a variable, and a value respectively.
The state obtained fromσ by changing the value ofX to n in

TABLE III
THE EXECUTION RULES OF COMMANDS

[skip]σ ≡ λσ ∈ State.σ
[X := a]σ ≡ λσ ∈ State.σ[X 7→ n] where [a]σ = n
[c0; c1]σ ≡ ([c1] ◦ [c0])σ = λσ ∈ State.[c1]([c0]σ)
[if b then c0 else c1]σ ≡ λσ ∈ State.([b]σ, [c0]σ, [c1]σ)
[while b do c]σ ≡ λσ ∈ State. least fixed point of Γ : State
→ State where Γ(ϕ) = λσ ∈ State.([b]σ, (ϕ ◦ [c])σ, σ)
[c0 p[] c1]σ ≡ λσ ∈ State.p × [c0]σ + (1− p)× [c1]σ

σ is denoted asσ[X 7→ n]. Formally, we write:

σ[X 7→ n](Y) =

{

n if Y = X

σ(Y) if Y 6= X

We also make use of the simplifying andcolorful notation:

(b, x, x′) =

{

x if b = true

x′ if b = false

VI. L IFTED LANGUAGE

In this section, we lift the language we presented in Section
V in order to act on mass functions. Our lifted language is
thefirst of its kind to enjoy this property. The upgrade process
involves both the syntax and the semantics.

A. Lifting the Syntax

We need to add one more syntactic set to the sets shown in
Table II, which is what we do in Definition 16.

Definition 16 (TheMASS Syntactic Set):Let Wh∪l be a
frame on the overall variable seth ∪ l ⊆ r that contains a
program’s secret and nonsecret inputs. We define the syntactic
setMASS to be the set of all mass functions onWh∪l, and
we use the metavariablesm andm′ to range overMASS.

One more formation rule is also needed for anym ∈ MASS,
and it is luckily prescribed in Definition 4.

B. Lifting the Semantics

Assuming input (output) masses, when we writem(σ) = n
for m ∈ MASS, σ ∈ State and n ∈ [0, 1], we mean the
likelihood that σ is to be used as an input (output) state. The
only semantic function we need to lift is the one pertaining
to commands. The lifted command semantic and denotation
functions are defined by the mappings:

C : Com → (MASS → MASS)
∀c ∈ Com.C[c] : MASS → MASS

The meaning of termination also changes in the lifted se-
mantics as shown in Definition 17.

Definition 17 (Lifted Meaning of Termination):For anyc ∈
Com, when we write:

[c]m′ = λm ∈ MASS.
∑

σ

m(σ).[c]σ

we mean that the commandc, which began inany input stateσ′

of d(m′), potentiallyterminates in any output stateσ of d(m).

TABLE IV
THE LIFTED EXECUTION RULES OF COMMANDS

[skip]m ≡ λm ∈ MASS.m
[X := a]m ≡ λm ∈ MASS.m[X 7→ n] where [a]σ = n
for any σ ∈ d(m)
[c0; c1]m ≡ ([c1] ◦ [c0])m = λm ∈ MASS.[c1]([c0]m)
[if b then c0 else c1]m ≡ λm ∈ MASS.[c0](m|b) + [c1](m|¬b)
[while b do c]m ≡ λm ∈ MASS. least fixed point of Γ : MASS
→ MASS where Γ(ϕ) = λm ∈ MASS.ϕ([c](m|b)) + (m|¬b)
[c0 p[] c1]m ≡ λm ∈ MASS.[c0](p ×m) + [c1]((1 − p)×m)

The sum value to the right-hand side of the previous formula
specifies the likelihood of this termination.

In this context, we also need to give ournoveldefinition of
a mass update.

Definition 18 (Mass Update):Let m ∈ MASS, X ∈ V ar,
and n ∈ V al be a mass function, a variable, and a value
respectively. The mass function obtained fromm by changing
the value ofX to n in all the states ofd(m) is denoted as
m[X 7→ n]. Formally, we achieve that as follows:

1) ∀σ ∈ d(m).σ′ = σ[X 7→ n] ∈ d(m[X 7→ n])

2) m[X 7→ n](σ′) =

{

m(σ) if X ∈ σ′

m(σ′) if X /∈ σ′

The lifted execution rules of commands are given in Table
IV. These rules immediately follow from applying the formulas
in definitions 17 and 18 to the execution rules given in Table
III. Notice in the lifted rules that we are conditioning a mass
function on aBoolean expression. Formula (3) can not do this.
We give anoveladaptation of this formula in Definition 19.

Definition 19 (Boolean Expression Conditioning):Let m :
P(Ws) → [0, 1] be a mass function onWs, and b ∈ Bexp
be a Boolean expression. The expansion ofb to the domain
P(Ws) of m yields the tuple setB ⊆ Ws whose tuples satisfy
b i.e., B = {x ∈ Ws|x ⊢ b}. The conditioning ofm on b is
then given by the formula:

mb(A) =







∑

C∩B=A

m(C) for A 6= ∅

0 for A = ∅

Notice that the resulted mass function isunnormalized.

VII. I NFERENCESCHEME

This sections presents an inference scheme an attacker uses
to update her knowledge from interacting with a program
execution. This scheme is a generalization of the experiment
protocol advanced in [2]; however itsurpassesthat protocol
by handling any number of secret inputs to a program. Before
describing this scheme, we need to give the attacker’s model.

A. Attacker’s Model

The attacker is modeled via the following assumptions:

1) The attacker has acopyof the program’s source code.
2) The program has anumberof secret inputs the attacker

does not know and would like to learn.
3) The program executes on a system that doesnot inten-

tionally collude to leak the secret inputs.

4) The program always terminatesand preserves the state
of secret inputs as high.

5) The program executesonce per interaction with the
attacker, and in each execution the attacker is allowed
to make onlyoneobservation.

6) The attacker can monitor the public output of the program
andadaptivelychange the input.

7) The attackerknowsthe frame of each secret input,and
the values of all of the nonsecret inputs.

8) The impossible world isnot a true value of any of the
inputs [15]. Therefore, the attacker’s belief is captured via
a normalizedmass function, which assigns a zero degree
of belief in the impossible world (the empty set) as we
saw in Definition 4.

B. Scheme Description

At first, the attacker has aninitial belief about the true values
of the secret inputs. The extent of this belief is captured using
an initial mass functionminit : P(Wh) → [0, 1]. This function
can either reflect the attacker’s initialtotal ignoranceor her
belief in aninitial piece of evidence she obtained through some
mean. In the former case, the attacker knows that the true values
of the secret inputs are in the frameWh; however, she has
no evidence whatsoever about their location in any subset of
that frame, which givesminit(Wh) = 1 and minit(A) = 0
for any A ∈ P(Wh)\Wh. In the latter case, the degree of
the initial belief distributes (unequally in general) among a
number of setsI1,...,Im ∈ P(Wh) such thatminit(I1) = i1 >
0,...,minit(Im) = im > 0, minit(Wh) = 1− i1 − ...− im, and
i1 + ...+ im ≤ 1.

Without relying on monitoring a program execution, the
attacker soon obtains a finite numbern of pieces of evidence
(through social engineering say) fromn independent sources
(independence was discussed in Section IV-A) about the true
values of the secret inputs. The extent of thesen pieces of evi-
dence is captured usingn mass functionsmi : P(Wh) → [0, 1]
wherei = 1,...,n.

Before experimenting with a program execution, the attacker
ought to combine the mass functions she has using formula
(1). The combination outcome is the attacker’sprebeliefmpre,
which describes her beliefbeforeinteracting with the program:

mpre : P(Wh) → [0, 1] : mpre(A) = minit ⊗
n

⊗

i=1

mi(A)

The system chooses thehigh projection of the input state
σ↓h ∈ P(Wh) to be the set that contains the true values of the
secret inputs. The corresponding point mass function wouldbe:

ṁh : P(Wh) → [0, 1] : ṁh(σ
↓h) = 1, ṁh(A) = 0 for any A ∈ P(Wh)\σ

↓h

The attacker chooses thelow projection of the input state
σ↓l ∈ P(Wl) with the corresponding point mass function:

ṁl : P(Wl) → [0, 1] : ṁl(σ
↓l) = 1, ṁl(A) = 0 for any A ∈ P(Wl)\σ↓l

The low projectionσ↓l represents the attacker’sguessesof
the secret inputs, in addition to the nonsecret inputs. These

guesses are likely to beinfluencedby the attacker’s prebelief,
in which case, the attacker would chooseσ↓l as the set that
has the highest mass according tompre. However, we do not
impose an influence as such to avoid the loss of generality.

The program’s input becomes the combinationṁh ⊗ ṁl

done using formula (2), since the domains ofṁh and ṁl are
different. The system executes the program which produces a
mass function:

mδ : P(Wh∪l) → [0, 1] : mδ(A) = [S](ṁh ⊗ ṁl)(A)

This mass function representsmanypossible output states.
However, since the attacker is allowed to make only one obser-
vation per execution, one state must be chosenrandomly. This
random choice is made using a sampling operatorΓ that draws
a stateσ′ from the domain ofmδ with a probability1/|Fmδ

|.
The chosen output state becomesσ′ ∈ Γ(mδ), from which the
attackerobservesthe low projectiono = σ

′↓l ∈ P(Wl).
The attacker applies the semantics of the program to the

combinationṁl ⊗ mpre to generate aprediction m
′

δ of the
output massmδ:

m
′

δ : P(Wh∪l) → [0, 1] : m
′

δ(A) = [S](ṁl ⊗mpre)(A)

The attacker incorporates any additional information con-
tained in the observationo, she made earlier, by conditioning
m

′

δ on o using formula (3). The result is a new mass func-
tion m

′′

δ the attacker projects toh to obtain herpostbelief
mpost = m

′′↓h
δ , which describes her belief after interacting

with the program.
It is worth pointing out that in repeated executions, the

attacker may choose herpostbelief from one execution as a
prebelief to the next. The attacker may even choose a prebelief
that contradictsthe pieces of evidence she has. Both choices
are acceptable and add ample expressiveness to our analysis.

VIII. E XPERIMENTING WITH THE INFERENCESCHEME

Unlike the QIF method used in [2], which can only deal
with singleton focal sets induced by an attacker’s beliefs,our
method is capable of handling all focal set structures. This
includes, in addition to singleton focal sets, focal sets that form
a partition, overlapping, andnestedfocal sets. Experimenting
with our scheme using singleton sets yields identical results to
those in [2]. We also find it rather similar to experiment using
overlapping or nested sets. Therefore, we experiment with only
partition and nested sets. For the purpose of our experiments,
we reuse the same password checker from [2]. This checker
sets an authentication flaga after checking a stored password
p against a guessed passwordg supplied by the user.

PWC : if p = g then a := 1 else a := 0

The secret input to thisPWC is p while the nonsecret ones
are g and a. The universal variable set isr = {p, g, a} and
the high and low variable sets areh = {p} and l = {g, a}
respectively. For simplicity,p is assumed to be eitherA, B, or
C. Each conducted experiment involves two runs of interaction
between the attacker andPWC. Thereal password is assumed
to beA in the first run andC in the second.

TABLE V
THE ATTACKER’ S PREBELIEF AND POSTBELIEF IN EXPERIMENT1

P(Wh) mpre m
′

post m
′′

post

{A} .98 1 0
{B,C} .02 0 1

TABLE VI
AN INTERMEDIATE TABLE FOR COMPUTINGṁh ⊗ ṁl

{(A,A, 0), (B,A, 0), (C,A, 0)} : 1

{(A,A, 0), (A,A, 1), (A,B, 0), {(A,A, 0)} : 1

(A,B, 1), (A,C, 0), (A,C, 1)} : 1

A. Experiment1

In this experiment, the focal sets induced bympre form a
partition as shown in Table V. Notice that the attacker believes
p is overwhelminglylikely to beA, but has a very small chance
(not necessarily equally distributed) to be eitherB or C.

1) Interaction1: The system choosesσ↓h = (p → A) and
the attacker choosesσ↓l = (g → A, a → 0). The corresponding
ṁh and ṁl are given in Section VII-B. The program input
ṁh ⊗ ṁl is determined by applying formula (2). We simplify
this task by performing the intermediate computations shown
in Table VI [12]. The first column in this table containṡmh

and the top row containṡml, both of whichextendedto the
union variable domainh ∪ l = {p, g, a}. Every internal cell
contains theintersectionbetween the corresponding tuple sets
and theproductof the corresponding values. The combination
is finalized by adding the values of all internal cells with equal
tuple set and normalizing byk = 1 to obtain:

ṁh ⊗ ṁl = [{(A,A, 0)} : 1]

Next the semantics ofPWC, given in Table IV, is applied:

[PWC](ṁh ⊗ ṁl) = [c0]((ṁh ⊗ ṁl)|b) + [c1]((ṁh ⊗ ṁl)|¬b)

where:

c0 ::= a := 1, c1 ::= a := 0, b ::= p = g,¬b ::= p 6= g (4)

The expansion ofb to P(Wh∪l) yields:

B = {(A,A, 0), (A,A, 1), (B,B, 0),
(B,B, 1), (C,C, 0), (C,C, 1)}

(5)

Applying Definition 19 conditioning gives:

(ṁh ⊗ ṁl)|b = [{(A,A, 0)} : 1]

The expansion of¬b to P(Wh∪l) yields:

¬B = {(A,B, 0), (A,B, 1), (A,C, 0), (A,C, 1),
(B,A, 0), (B,A, 1), (C,A, 0), (C,A, 1),
(B,C, 0), (B,C, 1), (C,B, 0), (C,B, 1)}

(6)

Applying Definition 19 conditioning again gives:

(ṁh ⊗ ṁl)|¬b = [∅ : 1]

Now we apply the mass updates, as described in Definition 18:

[c0]((ṁh ⊗ ṁl)|b) = [{(A,A, 1)} : 1]
[c1]((ṁh ⊗ ṁl)|¬b) = [∅ : 1]

A straightforward addition gives:

[PWC](ṁh ⊗ ṁl) = [{(A,A, 1)} : 1; ∅ : 1]

and a final normalization yields the output mass:

mδ = [PWC](ṁh ⊗ ṁl) = [{(A,A, 1)} : 1]

The only state that can be drawn fromd(mδ) is (A,A, 1)
from which the attacker observes the low projection:

σ′ = (p → A, g → A, a → 1)

o = σ
′↓l = (g → A, a → 1)

Next ṁl ⊗mpre is determined by applying formula (2):

ṁl ⊗mpre = [{(A,A, 0)} : .98; {(B,A, 0), (C,A, 0)} : .02]

The semantics ofPWC is now applied to get:

[PWC](ṁl ⊗mpre) = [c0]((ṁl ⊗mpre)|b) + [c1]((ṁl ⊗mpre)|¬b)

where c0, c1, b, and ¬b are the same as in (4). Applying
Definition 19 conditioning with the same (5) and (6) yields:

(ṁl ⊗mpre)|b = [{(A,A, 0)} : .98; ∅ : .02]
(ṁl ⊗mpre)|¬b = [{(B,A, 0), (C,A, 0)} : .02; ∅ : .98]

The mass updates are now applied to get:

[c0]((ṁl ⊗mpre)|b) = [{(A,A, 1)} : .98; ∅ : .02]
[c1]((ṁl ⊗mpre)|¬b) = [{(B,A, 0), (C,A, 0)} : .02; ∅ : .98]

A straightforward addition gives:

[PWC](ṁl ⊗mpre) = [{(A,A, 1)} : .98;
{(B,A, 0), (C,A, 0)} : .02; ∅ : 1]

and a final normalization yields the attacker’s prediction:

m
′

δ = [PWC](ṁl ⊗mpre) = [{(A,A, 1)} : .98;
{(B,A, 0), (C,A, 0)} : .02]

After expandingo to d(m
′

δ) and obtaining:

O = {(A,A, 1), (B,A, 1), (C,A, 1)}

the attacker conditions using formula (3) to get:

m
′′

δ = m
′

δ|o = [{(A,A, 1)} : 1] where k = 1/.98

A final projection ofm
′′

δ to h yieldsm
′

post shown in Table V.
2) Interaction2: Similar computations to those presented in

the previous section yieldsm
′′

post, also shown in Table V.

TABLE VII
THE ATTACKER’ S PREBELIEF AND POSTBELIEF IN EXPERIMENT2

P(Wh) mpre m
′

post m
′′

post

{A,B} .98 0 0
{A,B, C} .02 0 0
{A} 0 1 0
{B} 0 0 .98
{B,C} 0 0 .02

3) Reasoning About the Results:If we contemplate the
results in Table V.m

′

post suggests that the attacker is certain
that p is A, whereasm

′′

post, suggests that she is certain that
the p is eitherB or C (with chances that are not necessarily
equal). Comparingm

′

post with mpre tells that interaction1
had begotten little change in the attacker’s belief. This little
changecorresponds to littleupdatein the attacker’s knowledge
and subsequently to little information flow fromPWC. If we
comparem

′′

post with mpre, we arrive at the converse conclusion
- larger knowledge update and larger flow. Notice also that
m

′

post andm
′′

post are more accurate thanmpre since both of
them arenearer to ṁh than it. This accuracy increase results
in informing of the attacker, which ispositiveinformation flow.

B. Experiment2

In this experiment, the focal sets induced bympre are nested
as shown in Table VII. Notice that the attacker believesp is
overwhelmingly likely to be eitherA or B, but has a very
small chance to be eitherA, B, or C (all the chances are not
necessarily equal). The attacker’s postbeliefsm

′

post andm
′′

post

are shown in the same table.
1) Reasoning About the Results:If we contemplate the

results in Table VII.m
′

post suggests that the attacker is certain
that p is A, whereasm

′′

post suggests that she believesp is
overwhelmingly likely to beB but has a very small chance (not
necessarily equally distributed) to be eitherB or C. Comparing
m

′

post with mpre tells that interaction1 had begotten large
change in the attacker’s belief (she no longer believes in{B}).
This large change corresponds to large knowledge update and
large flow. Comparingm

′′

post with mpre yields the converse
conclusion. Notice also thatm

′

post is more accurate thanmpre

since it is nearer toṁh than it. This accuracy increase results
in informing of the attacker, and means positive information
flow. However, wecannotinformally claim thatm

′′

post is more
accurate thanmpre - they both seem to stand at nearly the
same distance froṁmh (which is a point mass on{C}). This
nearly-constantaccuracy reflectsnear-zeroinformation flow.

C. Generic Observations

We can derive genericand informal observations by putting
the experiments’ results into a wider perspective. If the attacker
has astrong belief that the true value of a secret input is in a
partition (in a set nested in other sets in the body of evidence),
and an interaction with the systemconfutesher belief, then
the attacker’s strong belief is transferred to that partition’s
complement(those sets’intersection).

IX. M EASURING INFORMATION FLOW

The approach used in [2] to measure information flow,
which corresponds it to an improvement in the accuracy of
an attacker’s belief, is applicable in our setting. Recall from
Section IV-C2 thatGJS(m1,m2) measures the divergence
betweenm1 andm2. The accuracy of the attacker’s prebelief
mpre is its distance fromṁh, measured asGJS(mpre, ṁh).
Likewise, the accuracy of the attacker’s postbeliefmpost is
GJS(mpost, ṁh). We define the amount of information flow
Q as the difference between these two quantities:

Q = GJS(mpre, ṁh)−GJS(mpost, ṁh)

= 2GS(
mpre+ṁh

2)− 2GS(
mpost+ṁh

2)
−GS(mpre) +GS(mpost)

Calculating the amount of flow from the experiments con-
ducted in Section VIII yields.020145, .97999, 1.01999, and
.01999 bits respectively [10]. These results are in line with the
informal reasoning made in sections VIII-A3 and VIII-B1.

Unlike the metric proposed in [2], our measure has an
intrinsic absoluterange bounded by the size of a program’s
secret input as proved in Theorem 1.

Theorem 1:Considering both deterministic and probabilistic
programs, and all types of an attacker’s beliefs, andavoiding
the imposition of any admissibility restriction on those beliefs,
the general range of flow reported byQ is:

̺Q = [−η, η]

whereη is the size of a program’s secret input in bits.
Proof: The proof is given in Appendix I-B.

Additionally, the results reported by our measure are easily
associated with the exhaustive search effort needed to uncover
a program’s secret information. This can be easily shown by
assuming a program with a secret input of sizeη bits, and an
informing flow of k bits from the same program to an attacker.
The absolute upper bound ofQ, given in Theorem 1, tells us
that k ≤ η. Therefore, the space of the exhaustive search [16]
that should be carried out in order to reveal the residual part
η − k bits of the secret input is2η−k. On the contrary, our
earlier work [7] showed that the exhaustive search space cannot
be established under the metric proposed in [2].

X. CONCLUSIONS

We presented a generalization of the QIF analysis method
proposed in [1], [2]. Our generalization is based on Dempster-
Shafer theory of imprecise probabilities. We uncovered a num-
ber of weaknesses in the original method and showed that they
are eliminated by way of our generalization. Our generalized
method can handle any number of secret inputs to a program,
it enables the capturing of an attacker’s beliefs in all kinds of
sets (singleton or not), and it supports a new and precise QIF
measure whose reported flow results are plausible in that they
are bounded by the size of a program’s secret input, and can
be easily associated with the exhaustive search effort needed
to uncover a program’s secret information, unlike the results
reported by the original metric.

ACKNOWLEDGMENT

The author would like to thank Marc Pouly for his helpful
comments on an early draft of this paper.

REFERENCES

[1] M. Clarkson, A. Myers, and F. Schneider, “Belief in information flow,”
in Computer Security Foundations, 2005. CSFW-18 2005. 18th IEEE
Workshop, june 2005.

[2] ——, “Quantifying information flow with beliefs,”Journal of Computer
Security, vol. 17, no. 5, 2009.

[3] G. Smith, “On the foundations of quantitative information flow,” in
Foundations of Software Science and Computational Structures, ser.
LNCS. Springer Berlin/Heidelberg, 2009, vol. 5504.

[4] S. Hamadou, V. Sassone, and C. Palamidessi, “Reconciling belief and
vulnerability in information flow,” in Security and Privacy (SP), 2010
IEEE Symposium on, may 2010.

[5] R. R. Yager and L. Liu,Classic Works of the Dempster-Shafer Theory of
Belief Functions. Berlin, Heidelberg: Springer Berlin/Heidelberg, 2008.

[6] G. Shafer,A mathematical theory of evidence. Princeton, N.J.: Princeton
U.P., 1976.

[7] S. H. Hussein, “Refining a quantitative information flow metric,” in
New Technologies, Mobility and Security (NTMS), 2012 5th International
Conference on, may 2012, pp. 1–7.

[8] S. Kullback and R. Leibler, “On information and sufficiency,” The Annals
of Mathematical Statistics, vol. 22, no. 1, 1951.

[9] J. Lin, “Divergence measures based on the shannon entropy,” Information
Theory, IEEE Transactions on, vol. 37, no. 1, jan 1991.

[10] S. H. Hussein, “pyuds 1.0 tool,” accessed 11 November, 2011, at:
http://sourceforge.net/projects/pyuds/.

[11] J. Y. Halpern,Reasoning about Uncertainty. Cambridge, MA, USA:
MIT Press, 2003.

[12] M. Pouly and J. Kohlas,Generic Inference - A unifying Theory for
Automated Reasoning. John Wiley & Sons, Inc., 2011.

[13] O. Kallenberg,Foundations of modern probability. NY: Springer, 1997.
[14] N. Wilson, Algorithms For Uncertainty And Defeasible Reasoning.

Kluwer Academic Publishers Group, 2000.
[15] G. J. Klir, Uncertainty and Information: Foundations of Generalized

Information Theory. Wiley-Interscience, 2005.
[16] A. J. Menezes, P. C. v. Oorschot, and S. A. Vanstone,Handbook of applied

cryptography. Boca Raton: CRC, 1997.

APPENDIX I
ALGORITHMS AND PROOFS

A. Computing Aggregate Uncertainty

Input: A belief functionBel : P(Ws) → [0, 1] on Ws.
Output: AU(Bel) as given in Definition 11.

1) Find a nonempty setA ∈ P(Ws) such thatBel(A)/|A|
is maximal. If more than one set exist, assume the set
that has the highest cardinality.

2) For anyx ∈ A, put p(x) = Bel(A)/|A|.
3) For eachB ⊆ Ws − A, put Bel(B) = Bel(B ∪ A) −

Bel(A).
4) PutWs = Ws −A.
5) If Ws 6= ∅ andBel(Ws) > 0, go to step1.
6) If Ws 6= ∅ and Bel(Ws) = 0, put p(x) = 0 for any

x ∈ Ws.
7) ComputeAU(Bel) = −

∑

x∈Ws

p(x) log p(x).

B. Proof of Theorem 1
0 ≤ GJS(m1,m2) ≤ log |Ws| = η (from Section IV-C2)

−η ≤ GJS(mpre, ṁh)−GJS(mpost, ṁh) ≤ η
̺Q = [−η, η]

	I Introduction
	I-A Relation to Our Earlier Work
	I-B Plan of the Paper
	I-C Novel Contributions

	II Representing Uncertainty
	II-A Frame of Discernment
	II-B Joint Frame, Tuple, and Tuple Set
	II-C Belief Functions

	III Capturing Belief
	IV Arithmetic on Beliefs
	IV-A Belief Combination
	IV-B Belief Conditioning
	IV-C Belief Divergence
	IV-C1 Choosing a Divergence Measure
	IV-C2 Generalizing the Divergence Measure

	V Language
	V-A Syntax
	V-B Semantics

	VI Lifted Language
	VI-A Lifting the Syntax
	VI-B Lifting the Semantics

	VII Inference Scheme
	VII-A Attacker's Model
	VII-B Scheme Description

	VIII Experimenting with the Inference Scheme
	VIII-A Experiment 1
	VIII-A1 Interaction 1
	VIII-A2 Interaction 2
	VIII-A3 Reasoning About the Results

	VIII-B Experiment 2
	VIII-B1 Reasoning About the Results

	VIII-C Generic Observations

	IX Measuring Information Flow
	X Conclusions
	References
	Appendix I: Algorithms and Proofs
	I-A Computing Aggregate Uncertainty
	I-B Proof of Theorem ??

