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Abstract—Internet-of-Things (IoT) systems have spread among
different application domains, from home automation to in-
dustrial manufacturing processes. The rushed development by
competing vendors to meet the market demand of IoT solutions,
the lack of interoperability standards, and the overall lack of a
defined set of best practices have resulted in a highly complex,
heterogeneous, and frangible ecosystem. Several works have been
pushing towards visual programming solutions to abstract the
underlying complexity and help humans reason about it. As
these solutions begin to meet widespread adoption, their building
blocks usually do not consider reliability issues. Node-RED, being
one of the most popular tools, also lacks such mechanisms, either
built-in or via extensions. In this work we present SHEN (Self-
Healing Extensions for Node-RED) which provides 17 nodes that
collectively enable the implementation of self-healing strategies
within this visual framework. We proceed to demonstrate the
feasibility and effectiveness of the approach using real devices
and fault injection techniques.

Index Terms—Internet-of-Things, Self-Healing, Autonomic
Computing, Visual Programming, Dependability

I. INTRODUCTION

The pervasiveness of the Internet-of-Things (IoT) is re-
shaping how people interact with everyday objects, as con-
nected devices profoundly influence our surroundings, in many
ways and in an unprecedented fashion. The preponderance
of vendor-specific devices and applications, along with their
heterogeneity, in terms of protocols and standards, altogether
with a large number of components (e.g., devices and services)
make these systems infeasible to deploy manually, setup, man-
age and maintain each component, thus exceeding the human
ability to manage all connected devices [1]. Such factors lead
to the birth of several vendor and protocol-independent inte-
gration and orchestration solutions. These solutions attempt
to abstract the IoT systems’ underlying complexity mostly
resulting from its heterogeneity and distributed nature while
favoring low-code approaches that make it feasible for less
technical users to develop and maintain their own IoT systems,
with one of the most common solutions being Node-RED [2].

Node-RED allows users to program their systems by con-
necting multiple data sources and actuators, and to define
some logic flows, in a drag-n-drop fashion. Although popular,
it has several limitations, including: no proper mechanisms
for debugging and testing flows (existent works [3], [4], [5],
[6] both identify and address these issues at some extent),

no type-checking mechanism exists, the used visual abstrac-
tions are leaky [7] and there is no formal meta-model [8],
it is designed to work in a centralized fashion and each
particular component’s behaviour (nodes) is mostly opaque.
While most of these limitations can be bypassed by leveraging
the Function node which runs any JavaScript code, this
jeopardizes the goal of being a visual and low-code approach.

Approaches such as Node-RED and others [9] attempt
to ease the integration, development, and evolution of IoT
systems requiring different technical expertise levels, mostly
dismiss considerations regarding fault-tolerance and system
reliability. This is common symptom across IoT due to its
complexity; as stated by Javed et al. [10], “building a fault-
tolerant system for IoT is a complex task, mainly because of
the extremely large variety of edge devices, data computing
technologies, networks, and other resources that may be
involved in the development process”.

However, as these devices and systems permeate our daily
lives, their correct function becomes ever-more paramount.
Some authors argue that most IoT device’s failures are typical
fail-stop, i.e., consistent, easily detectable, reproducible (easy
to debug and correct), and easy to fix by end-users by replacing
the faulty unit [11]. Yet, fail-stop failures can still impact the
quality-of-life of users (e.g., a broken smoke-detection device).
Failures beyond those, including intermittent faults, can have
nefarious side-effects when fail-over options, anomaly detec-
tion and correction mechanisms are not in-place [12], [11].

As a motivational example, consider a thermostat that stops
working (i.e., fail-stop), an AC unit can fallback to a prede-
fined working temperature or shut down entirely. However, if
the thermostat malfunctions so that it reports high-temperature
readings, it can make the AC force the ambient temperature
fall below unsafe levels for a newborn. Similarly, if a re-
frigerator’s temperature sensor reports erroneous readings, it
may cause food to degrade faster, possibly leading to food
poisoning for the entire household [13]. Although most IoT
systems, such as the smart app we use to control our home
lights, are not considered safety-critical (working in a fire-and-
forget fashion), their malfunction can still cause discomfort
or be life-threatening. While some device’s proneness to
failure can be reduced by improving their hardware parts or
by adding redundancy (e.g., triple modular redundancy and
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majority consensus), it typically comes with additional costs
and complexity [11], [14], [15].

Early research on the complexity of systems by IBM
Research resulted in the birth of the concept of autonomic
computing as a way of coping with the continuous growth
in the complexity of operating, managing, and integrating
computing systems [16], [17]. Autonomic computing systems
need to know and understand themselves to be able to adapt
to ever-changing conditions autonomously. A system to be
autonomic should have the following self-* properties: (1) self-
configuration, the ability of a system to automatically and
seamlessly configure itself by following a set of high-level
policies, (2) self-optimization, the ability of a system to
improve — or maintain — its performance without human
intervention, (3) self-protection, the ability of a system to
protect itself from malicious attacks, and (4) self-healing, the
ability of a system to automatically detect, diagnosis and repair
system defections at both hardware and software levels [18],
[16]. Several authors [19], [20], [21], [22] have been adopting
autonomic computing as a way to cope with the growing
complexity of IoT systems and their cross-domain application.

In a previous study on adding self-healing capabilities to
Node-RED in [23], we provided a proof-of-concept focused on
three concrete scenarios: (1) the unavailability of the IoT sys-
tem message broker, (2) dealing with some erroneous sensor
readings, and (3) checking for connectivity issues. These were
implemented using a mix of sub-flows, Function nodes and
new nodes. Preliminary tests were performed on a laboratory
setup, which provided insights on the pending challenges that
needed to be addressed to achieve proper self-healing within
Node-RED, without modifying it.

In this paper, we present a set of self-healing building Node-
RED nodes, that enable users to improve the resilience of IoT
systems. We validated our approach on a physical testbed [24],
which we named SmartLab, comprised of multiple heteroge-
neous sensors and actuators. A set of 3 scenarios showcase
some of the cases in which such nodes would provide benefits
to existent Node-RED flows, improving the overall capability
of the system to withhold failures of its parts.

The remaining of the paper is structured as follows: Sec-
tion II summarizes relevant literature that focus similar issues,
Section III present an overview to our approach, Section IV
summarizes the experiments and our observations. Section V
presents some final remarks and point to future work.

II. RELATED WORK

IoT systems have been primarily identified as a core ex-
ample of a system that must contemplate autonomic compo-
nents [19], [20], [21]. These components — that can range
from single devices (e.g., smart locks) to whole systems
(e.g., smart homes) — should be capable of self-management,
reducing the need for frequent human operation [25]. This
issue becomes even more important in critical systems and
when devices are deployed in remote (e.g., wildfire control)
or other hard to access areas (e.g., in the user’s home).

Some IoT systems are close-loop systems. These act based
on sensors measurements in order to maintain a predictable
output (feedback-loop). Examples are Cyber-Physical Systems
(CPS) and some Industrial IoT systems [26]. Other systems
are open-loop. These take input under consideration but do not
react only based on those inputs (no feedback-loop) [27]. As
a result, making IoT open-loop (there is no verification that an
actuator performed the required operation) systems resilient is
harder than closed-loop ones, due to the lack of feedback.

Nonetheless, any kind of IoT systems should be capable
of reconfiguring themselves to recover from failures. A self-
healing enabled system should be able to detect disruptions,
diagnose the failure root cause and derive a remedy, and
recover with a sound strategy in a timely fashion [16].

The existing approaches for fault-tolerance (and self-
healing) typically follow (1) reactive methodology where er-
rors are detected and then recovered from (e.g., complex event
processing, system watchdogs and supervisors),(2) proactive
(also known as preventive) methodology where errors are pre-
dicted and avoided before faults being triggered using machine
learning and other predictive mechanisms (cf. PREDICTIVE
DEVICE MONITOR [28]), or, (3) a combination of both [16].

Athreya et al. [29] suggest devices should be able to
manage themselves both in terms of configuration (self-
configuration) and resource usage (self-optimization), propos-
ing a measurement-based learning and adaptation framework
that allows the system to adapt itself to changing system
contexts and application demands. Although their work has
some considerations about resilience to failures (e.g., power
outages, attacks), it does not address self-healing concerns.

The concept of responsible objects [20], states that things
should be self-aware of their context (passage of time, progress
of execution and resource consumption), and apply smart self-
healing decisions taking into account component transaction
properties (backward and forward recovery). Their approach
shows limitations, viz. (1) when applied to time-critical ap-
plications, as it is not clear how much time we should wait
for a transaction to finish, (2) some processes, such as those
triggered by emergencies, cannot be compensated, and (3)
when is it acceptable to perform checkpoints in a continuously
running system that cannot be rolled-back? It also ignores the
nature of constrained devices (e.g., limited memory, power)
that might challenge the implementation of transactions.

Aktas et al. [22] are amongst the first to purpose runtime
verification mechanisms to identify issues by resorting to a
complex event processing (CEP) technique and “applying
rule-based pattern detection on the events generated real-
time”. They do not address self-healing and only convey a
summary of problems or possible problems to human oper-
ators. Leotta et al. [30] also present runtime verification as
a testing approach by using UML state machine diagrams
to specify the system’s expected behaviour. However, their
solution depends on the definition of a formal specification of
the complete system, which is unfeasible for highly-dynamic
IoT environments (e.g., dynamic network topology).

There was also some literature found on the evolution of



Node-RED with fault-tolerance considerations. The work by
Margarida et al. [31] propose a modification to Node-RED
that allows the automatic decomposition and partitioning of the
system towards higher decentralization, by running a custom
firmware on the IoT devices. The system reliability is increase
since Node-RED nodes could be automatically assign nodes to
devices based on pre-specified properties and priorities, thus
when abnormal run-time conditions were observed, the system
reconfigured itself (i.e., self-configuration and self-healing).
The work was validated by running a set of experimental
scenarios on both virtual and physical devices. A similar
work by Szydlo et al. [32] decomposes Node-RED flows into
code artifacts that allow a mostly seamless integration with
IoT devices, however there is no automation of the initial
flow’s decomposition and partitioning, nor efforts in detecting
bottlenecks or addressing their impact and taking measures to
reduce the impact of such issues on service delivery.

Other works [33], [34], [35] focus on creating a distributed
version of Node-RED were the flows can be deployed across
multiple Node-RED instances (e.g., on-premises and in the
cloud). This increases the resilience of the Node-RED itself
by avoiding its out-of-the-box centralized design. However, no
further considerations about the IoT devices themselves and
their failures are taken into account.

To the best of our knowledge, no current work attempts
to provide known self-healing strategies and mechanisms to
visual and other low-code approaches for IoT development,
namely, no runtime verification mechanisms for visual pro-
gramming environments nor a straightforward way of visually-
defining fallback measures in case of both intermittent and
total failures of components. This is not unexpected, as Leotta
et al. [30] point out that “software testing (in IoT) has been
mostly overlooked so far, both by research and industry,” and
later corroborated by Seeger et al. [36], claiming that most of
the research being conducted in visual programming for IoT
has been disregarding failure detection and recovery.

III. SELF-HEALING FOR IOT
A. Self-healing Patterns for IoT

Some of our previous work on dependable IoT systems
focused on the systematization of widespread knowledge from
both scientific and grey literature regarding fault-tolerance
and dependability on various systems typologies including
hardware-specific, industrial systems, software applications
and cloud computing [37]. This systematization presents 27
patterns split into two categories: (1) error detection pat-
terns, and (2) recovery and maintenance of health patterns.
In the first category, error detection, we list patterns that
focus on checking the health of the system and its parts.
Some patterns address cross-cutting issues to almost any
other computing system but under the IoT point-of-view. In
contrast, others focus on checking the correct operation of
its sensing and actuating parts and are listed in Table I.
Regarding the second one, recovery and maintenance of health
patterns, the patterns address the issue of guaranteeing normal
system operation even when failures with different system

TABLE I
IDENTIFIED ERROR DETECTION (PROBING) PATTERNS.

Pattern Description

ACTION AUDIT Guarantee that required actions are triggered when need by
checking its effects.

SUITABLE
CONDITIONS

Check if surrounding conditions are suitable for device
operation.

REASONABLE
VALUES

Check if the values fit into a reasonable pattern for the
device and its operational constraints.

UNIMPAIRED
CONNECTIVITY

Check that the different parts of the system can communi-
cate using the primary communication infrastructure.

WITHIN REACH Guarantee that mostly idle devices are able to communicate
when needed by making routine trials.

COMPONENT
COMPLIANCE

Check if the system parts are running the software they
should in the way they are expected to.

COHERENT
READINGS

Compare sensor data from various sources to improve and
ensure sensing data quality.

INTERNAL
COHERENCE

Regularly check if the system internal state correctly mir-
rors the actual devices’ state.

STABLE TIMING Check if devices are sending messages at the expected
periodicity.

UNSURPRISING
ACTIVITY

Check if devices are producing a suspicious number of
messages as that might indicate severe hardware or logic
problem.

TIMEOUT Keep a timer running since the first action and observe if
a reaction happened, otherwise a problem has happened.

CONFORMANT
VALUES

Check if the device readings are in conformance with the
devices’ manufacturer specification.

RESOURCE
MONITOR

Monitor the system resources continuously, checking if the
resources suit the operational needs.

TABLE II
IDENTIFIED RECOVERY AND MAINTENANCE OF HEALTH PATTERNS.

Pattern Description

REDUNDANCY Use redundancy as a way of minimize the impact of a faulty
part.

DIVERSITY Use different entities to achieve a common goal and reduce
the impact of faulty parts.

RUNTIME
ADAPTATION

Enable the system to use different infrastructure seamlessly
during operation.

DEBOUNCE Filter or aggregate events to meet operational timing con-
straints.

BALANCING Distribute software and load between available resources to
meet operational demands.

COMPENSATE Ensure system operation by mitigating sensing errors by
having mechanisms that can compensate missing or erro-
neous information.

TIMEBOX Only process an order in a specific period to respects
the system operational constraints, filtering the remaining
requests within a time-span.

CHECKPOINT Preserve the current (or most recent) system state to avoid
repeating actions or changing devices states to defaults in
case of disruption.

RESET Perform system resets periodically or when some error is
detected as a preventive measure.

CONSENSUS
AMONG VALUES

Compare information from several sources enforcing a
consensus before taking a decision.

CIRCUMVENT
AND ISOLATE

Circumvent and isolate failing parts, by disabling faulty
components and reconfiguring the system to ignore them.

FLASH Restore a device to manufacturer settings with a trusted
software version.

CALIBRATE Ensure the accuracy of the data collected by (re)calibrating
devices’ to meet the expected behaviour.

REBUILD
INTERNAL STATE

Rebuild the internal state of the system to comply with
(mirror) the current system state.



parts occur. Self-healing is then achieved by contemplating
strategies encompassing traditional fault-tolerance approaches
such as redundancy, and mechanisms tailored for sensing and
actuating errors and misbehaviour’s, being listed in Table II.
Some additional patterns presented in other works are also
considered, even if they do not directly focus on enabling
self-healing capabilities. Namely, the existence of a DEVICE
REGISTRY [28], [38] allows to check, during runtime, what
resources are available, their capabilities and exposed services.
Complementary patterns regarding device configuration (i.e.,
self-configuration) are also considered, namely: AUTOMATIC
CLIENT-DRIVEN REGISTRATION and AUTOMATIC SERVER-
DRIVEN REGISTRATION [38].

B. Self-Healing Extensions

Taking as ground-work the previous proof-of-concept,
which asserted the feasibility of our approach, altogether
with the effort carried on the systematization of the existing
knowledge of self-healing for IoT in the form of patterns (cf.
Subsection III-A), a minimal working set of nodes was devised
that enabled the implementation of self-healing behaviours
with new, or by modifying already existent, Node-RED flows.
A total of 17 nodes were implemented, as presented in
Table III. These nodes do not cover all the presented patterns
since (1) some patterns are not applicable within Node-RED,
(e.g., CALIBRATE) and (2) some patterns are enabled by Node-
RED’s built-in nodes or available extensions (e.g., TIMEOUT).
The implementation of the JavaScript nodes was validated
against their specification using software testing approaches
(Node-RED’s test-helper framework).

IV. EXPERIMENTS AND RESULTS

We performed experiments focusing on how different nodes
could be combined to improve system dependability. These
were run in a testbed presented in [23]: a SmartLab. It consists
in three sensing nodes, four actuators, and an on-premises
server running Node-RED, an MQTT message broker, and
a database. An additional host exists as a replica to ensure
minimal redundancy of the Node-RED instance, providing a
fallback mechanism (cf. REDUNDANCY).

Failures were forced into the system — by physically and
virtually injecting faults — to assert the system’s behaviour,
i.e., its ability to delivery correct service when degradation
occurred. These faults were injected arbitrarily during the time
of observation of the different scenarios to closely mimic
their real-world typical occurrence (e.g., device malfunction,
delayed communication, connectivity failures, power supply
instabilities and resets due to unhandled exceptions).

A. Sensor Failure Scenario

A sensing node (Sensor Node 1) with a humidity and
temperature sensor, connected over MQTT, producing values
every 60 seconds, is connected to the Node-RED flow depicted
in Fig. 1. The sensor is a DHT11, capable of reading tem-
peratures in the range of [0, 50]◦C and humidity in the range
[20, 90]%. In parallel, a passive heartbeat (cf. Algorithm 4)

Algorithm 1: threshold-check node.
Input : reading: R
Output : 〈reading: R, error〉 // egress ignores ‘ ’ messages

1 init
2 config: {
3 low: R, high: R
4 inv low ≤ high
5 }

6 onInput
7 if config.low ≤ reading ≤ config.high then
8 return 〈reading, 〉
9 else return 〈 , error〉

Algorithm 2: compensate node.
Input : reading: α
Output : reading: α

1 init
2 config: {
3 historyMaxSize: Z>1, interval: R>0,
4 strategy: [α]→ α← s ∈ {avg, max, min, last, ...}
5 }
6 timer ← newTimer(config.interval)
7 msgHistory: [α]← [ ]

8 onInput
9 if |msgHistory| ≥ config.historyMaxSize then

10 delete(msgHistory0)

11 msgHistory ← msgHistory ++ reading
12 timer.start() // (Re)start timer
13 return reading

14 onTimeout
15 reading ← config.strategy(msgHistory) // Injects input
16 trigger onInput

checks if the Sensor Node 1 fails to produce any message
within a given interval, triggering an error accordingly:

1) the threshold-check (cf. Algorithm 1), verifies if
both readings are within the expected values for the
sensor, dropping values out-of-bounds;

2) the compensate (cf. Algorithm 2) verifies if, at some
point, the sensor readings rate do not match the expected
periodicity (i.e., 60 seconds). If not matched, estimation
is done, and a corresponding message is sent at the ex-
pected interval: (1) the last reading for the temperature,
and (2) the mean of the last ten readings for humidity;

3) the checkpoint (cf. Algorithm 1) ensures that if there
is any disruption that resets the Node-RED flow (e.g.,
host reboot), the last message is re-sent (if within the
message Time-to-live configured limit).

As the first experiment, a total failure of a sensing node
was replicated by disconnecting the sensor node from power
at a random moment (this can be seen in Fig. 2). Soon after
the sensor node was disconnected, the heartbeat failed. As
expected, the compensate node triggered and compensates
the missing values using the configured strategies. When the



TABLE III
SELF-HEALING EXTENSIONS NODE PALLET AND MAP TO SELF-HEALING PATTERNS

Node Description Enabled Patterns

action-audit After a trigger action is given, a sensor reading that acknowledges the action is waited
for until a timeout occurs.

TIMEOUT, ACTION AUDIT

balancing Distributes computation tasks (messages) among available resources (e.g., similar or
redundant devices), by distributing the messages among nodes using either Round Robin,
Weighted Round Robin or Random strategies.

BALANCING, REDUNDANCY

checkpoint Stores the last input message of a node, replaying it in case of Node-RED failure (with
a time-to-live threshold).

CHECKPOINT

compensate Compensate missing values using pre-defined strategies, complying with the expected
values periodicity. Also provide confidence analysis in consecutive compensations.

COMPENSATE

debounce Adjusts periodicity of messages to meet target periodicity requirements (e.g., actuator
response capability), by operating as a rate-limit with aggregation/filtering capabilities.

STABLE TIMING, DEBOUNCE,
TIMEBOX

flow-control Enable/disable flows, allowing to adapt to changes/disruptions in the system. CIRCUMVENT AND ISOLATE,
RUNTIME ADAPTATION

heartbeat Heartbeat that check the alive status of system parts connected over HTTP and MQTT. WITHIN REACH, TIMEOUT,
UNIMPAIRED CONNECTIVITY

http-aware Periodically probes the network for running services (on specified ports), discovering
new ones or checking if some has disappeared (i.e., disconnected).

WITHIN REACH, UNIMPAIRED
CONNECTIVITY, DEVICE REGISTRY

kalman-filter Provides an implementation of the Kalman noise filter [39] which uses statistical
predictors to reduce the effect of random noise on measurements.

COMPENSATE

network-aware Periodically scan of the local network for finding new or disconnected devices and hosts
(discovery).

WITHIN REACH, UNIMPAIRED
CONNECTIVITY, DEVICE REGISTRY

redundancy Manage redundant instances of Node-RED, setting a new master instance on the case
of disruption of a master instance and reconfigure in case of recovery.

REDUNDANCY

readings-watcher Check if sequential sensor readings are meaningful and correct by checking for minimum
changes, maximum changes or stuck-at anomaly (same sequential reading).

REASONABLE VALUES

replication-voter Selects a value (message) taking into account several input messages (e.g., array of
sensor readings), based on a consensus (e.g., majority).

REDUNDANCY, DIVERSITY

resource-monitor Checks telemetry data reported by the different system parts against near-maximum (or
near-minimum) thresholds.

RESOURCE MONITOR

threshold-check Checks if measurements are within the operational specifications of the device. Can also
be used to check if the surrounding conditions allow correct device operation.

REASONABLE VALUES, SUITABLE
CONDITIONS

timing-check Checks if the periodicity of incoming messages matches the expected rate. UNSURPRISING ACTIVITY

device-registry Maintains a registry within Node-RED with all devices in the system which adapts and
triggers events as connected devices change.

WITHIN REACH, DEVICE REGISTRY

Fig. 1. Experiment with failure of sensing device and COMPENSATE maintenance of health pattern, along with HEARTBEAT PROBE.

device reconnects, the compensate node stopped producing
values, and real readings are used. It is observable that when
the device recovers there are two almost sequential readings,
not matching the expected periodicity; this could be further
managed — if required by the receiver node or device —
using a debounce node to ensure that values are always at

the same periodicity.

B. Load Spike Scenario

An access control device with an NFC reader is connected
over MQTT to a Node-RED flow depicted in Fig. 3. The reader
is placed at the entry point of the lab and ensures that every



Algorithm 3: checkpoint node.
Input : message
Output : message

1 init
2 config: {timeToLive: R>0}
3 store: {timestamp, lastMessage}
4 timestamp ← store.timestamp or NIL
5 lastMessage ← store.lastMessage or NIL
6 if lastMessage 6= NIL then
7 aliveTime ← time.now() − store.timestamp
8 if aliveTime ≤ config.timeToLive then
9 retained ← lastMessage

10 lastMessage ← NIL
11 return retained

12 onInput
13 store.timestamp ← time.now() // store is persistent
14 store.lastMessage ← message
15 return message

Algorithm 4: heartbeat node.
Input : message
Output : 〈ping, ok, error〉 // egress ignores ‘ ’ messages

1 init
2 config: {
3 ping: message, ok: message, error: message,
4 mode ← m ∈ { passive, active }, timeout: R>0

5 }
6 timer ← newTimer(config.timeout)

7 onInput
8 timer.restart()
9 if config.mode = passive then return 〈 , config.ok, 〉

10 else return 〈config.ping, config.ok, 〉

11 onTimeout
12 timer.restart()
13 return 〈 , , config.error〉

NFC card is validated using an external service, of which there
are one primary host and two additional backup ones to be
used in the case of exceptional usage spikes — more than one
card read in a 15s. window. The flow in Fig. 3 ensures that all
the card validation requests happen as fast as possible. There
are a number of self-healing nodes in-place to assure this:

1) the timing-check verifies the frequency at which the
cards are being swiped in the NFC reader, categorizing
(and splitting) them in accordance: too fast, too slow
and normal (using as reference the 15-second estimated
time between readings);

2) the balancing node, which handles readings that are
coming as too fast, distributes them among the available
validators, ensuring a distribution in accordance to the
configured strategy (e.g., round-robin), thus reducing the
load in the primary host.

This behaviour is depicted in the marble diagram of Fig. 4,
replicating the behaviour recorded at the testbed.
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Fig. 2. Experiment with failure of sensing device and COMPENSATE main-
tenance of health pattern, along with HEARTBEAT PROBE.

Fig. 3. Balancing the validation of identity cards (NFC) via an external service
(e.g. HTTP request) when a load spike happens (increased number of cards
swiped per unit of time).
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Fig. 4. Marble diagram of the messages between the different nodes (output
messages) on the flow of the load spike scenario, being the NFC reader the
producer of messages and the validators the final consumers.

C. Redundancy Scenario

Although REDUNDANCY is one of the most common pat-
terns found in fault-tolerant systems, having it implemented in
Node-RED allows the definition of recovery behaviors using
flows that go beyond simply turning on or off a whole Node-
RED runtime in the traditional redundant unit fashion.

There are two instances of Node-RED running at dif-
ferent hosts, with a common flow that carries a common



task: (1) receiving sensor data from Sensor-Node-1 over
MQTT (with a frequency of 1 reading per minute), (2) ex-
tracting the temperature, (3) asserting the validity of the
data (threshold-check and readings-watcher), and
(4) posting the data to an external service (an HTTP endpoint).
The flow depicted in Fig. 5 is deployed in both instances,
running a consensus algorithm1 to define a new master if the
previously defined master instance fails. Both Node-RED in-
stances are running simultaneously, optimizing the mean time
to recovery (MTTR) after a Node-RED instance crash (a.k.a.
active-standby). However, the flow is only active in one of
them (mutually-exclusive). When the master instance crashes,
an election occurs to determine a new master (effective until
the old master instance recovers — if it recovers).

Fig. 5. Managing two Node-RED instances (redundancy), and adapting
the behaviour of the system (flow-control) when the master instance
changes3. The redundancy node is configured with a TIMEOUT that triggers
a new election when a redundant instance stops pinging for 15 seconds. The
rbe (report-by-exception) node is part of the default palette and deduplicates
sequentially repeated messages.

Timestamp 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

No Data 0

Primary 1 1 1 1 1 1 1 1 1

Secondary 2 2 2 2 2 2 2 2 2 2 2 2 2

Fig. 6. Timeline (mins) depicting if the reading was provided by the primary
(master) instance, secondary (fallback), or if no data arrived when expected.

In this experiment, a new election occurs every 15 seconds
(configuration of the redundancy node). The default master
instance (the one with the highest octet) was turned off mul-
tiple times (randomly). The time was measured between the
disconnection of the master instance until the sensor reading
flow resumes on the fallback instance (a ping is done to an
external service). A total of 10 measurements were made, and
the MTTR of the system was 13.7s (σ = 1.77s).

As observed in Fig. 6, almost all sensor readings reach the
external endpoint, even with the continuous toggling of the
master Node-RED instance. During a test of 22 minutes, which
should have resulted in 22 sensor readings, only one was lost.

D. Threats to Validity

The experiments were carried on a representative testbed
deployed in a laboratory. While using a physical deployed

1The consensus algorithm implemented select as a master instance the node
with the highest last octet of the IP address.

testbed resembles a real-world scenario and can provide more
realistic data and behaviours — specially when a fault occurs
— when compared to simulated experiments, it also (1) limits
the number of devices used during the experiments due to
additional costs, (2) capturing failures-over-time requires long-
running experiments, and (3) the users that typically interact
with the system have a level of expertise uncommon in most
application domains. An inadequate selection of scenarios is
also a threat to this work, since they have been hand-picked
with prior knowledge of system and the SHEN implementation
details. This can result in a bias in the selection, favoring issues
that we have knowledge about and have more confidence that
our solution will handle correctly, instead of the ones that are
mostly like to occur. We attempt to mitigate this by mimicking
real-world use cases; there certainly exists an opportunity
for the creation of widely available datasets of IoT faults
so authors can more robustly compare their solutions. Faults
and implementation quirks of the underlying infrastructure
(i.e., Node-RED), might also influence the outcome of our
experiments, so they are a confounding variable. We believe
this has been mitigated by careful analysis of the expected
outcome (e.g., by observing the Node-RED’s operational logs),
though it is something to be aware of.

V. CONCLUSION

Built on top of previous published works, we have pre-
sented a solution that enables Node-RED users to improve
overall system dependability via self-healing mechanisms. We
have carried experiments using representative scenarios imple-
mented on the SmartLab testbed, showcasing the feasibility
and effectiveness of the approach in terms of error detection,
failure recovery and overall capability on health maintenance.

We have also identified some limitations, which might be
presented as future work, including: (1) resilience to network
partitions, as the Redundancy node has no way of finding if
there is already a master in the network; (2) most of the nodes
still do not support the definition of reasonable margins (e.g.,
in nodes that deal with timing constrains, a minor delay should
be ignored instead of triggering the recover or maintenance
action); (3) although its need was identified, no mechanism to
synchronize the current system state between different Node-
RED instances has been provided, and (4) the capabilities
of the DEVICE REGISTRY pattern and device/service discov-
ery are only partial due to the high heterogeneity and lack
of standard of IoT systems. Further, current state-of-the-art
do not present out-of-the-box solutions for distribution of
computational tasks across devices in the heterogeneous IoT
system beyond limited (both in scope or supported devices)
proofs-of-concept [31], [40], [32], [33], [34], [35], solutions
which, if available, would offer foundations for other kinds
of fault-tolerance mechanisms beyond the ones presented.
Additionally, to be able to validate the correct functioning
of our approach, there is the need of a solution that allows
one to deliberately provoke failures in the system and report
observed behaviours — in cloud computing defined as chaos
engineering or fault injection.



DATA AVAILABILITY

The extensions presented in this work are open-source and
available on GitHub [41], and they are ready to be installed
using Node-RED extension manager (using the npm JavaScript
package manager). A replication package is also available on
Zenodo [42].
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