This item may be protected under Title 17 of the U.S. Copyright Law. It is made available by UMBC for non-commercial research and education. For permission to publish or reproduce, please contact the author.

Access to this work was provided by the University of Maryland, Baltimore County (UMBC) ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) platform.

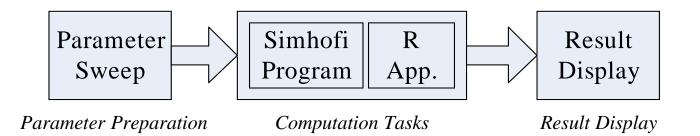
Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing <u>scholarworks-</u> <u>group@umbc.edu</u> and telling us what having access to this work means to you and why it's important to you. Thank you.

Accelerating Parameter Sweep Workflows by Utilizing Ad-hoc Network Computing Resources: an Ecological Example

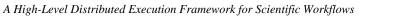
Jianwu Wang¹, Ilkay Altintas¹, Parviez R. Hosseini², Derik Barseghian², Daniel Crawl¹, Chad Berkley³, Matthew B. Jones³

¹ San Diego Supercomputer Center, UCSD, U.S.A.
² The Consortium for Conservation Medicine, Wildlife Trust, U.S.A.
³ National Center for Ecological Analysis and Synthesis, UCSB, U.S.A.


Outline

- Introduction
- Theoretical Ecology Use Case
- Background
 - Kepler
 - Master-Slave Architecture
- Our Approach
 - Distributed Composite Actor
 - Provenance Collection
- Results
- Conclusion and Future Work

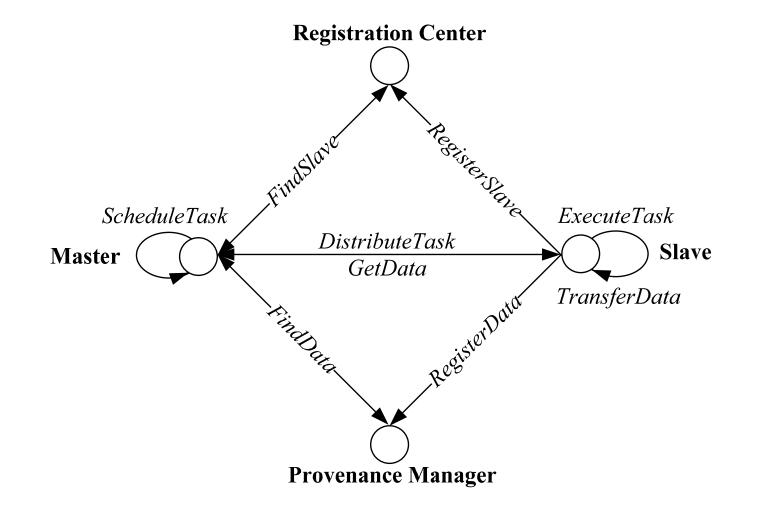
- Many scientific computing problems have linear or greater time complexity based on parameter configuration ranges
- Domain scientists should be able to easily leverage distributed computing resources with little knowledge of the underlying techniques
- We will discuss a distributed execution framework, called Master-Slave Distribution, to distribute sub-workflows to ad-hoc network computing resources


A High-Level Distributed Execution Framework for Scientific Workflows

Theoretical Ecology Use Case

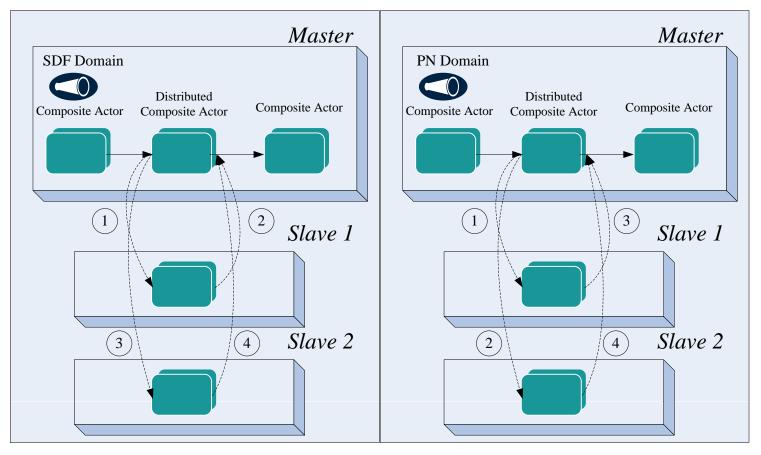
Characteristics of the use case

- Parameter Sweep: independent multiple execution, i.e., "embarrassingly parallel problems"
- Smooth Transition of Computation Environments
- Partial Workflow Distribution
- Provenance Collection

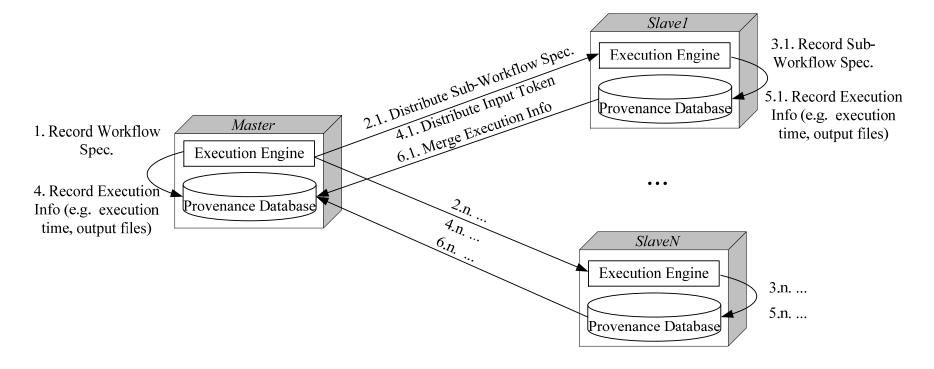


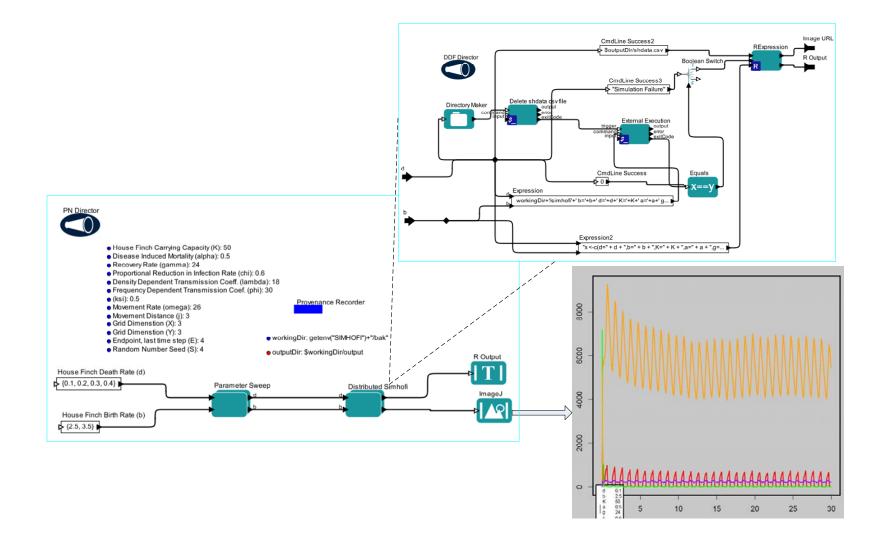
Actor-oriented Modeling

- All these actors inherit the same interfaces, such as prefire(), fire() and postfire()
- Model of Computation
 - Synchronous Data Flow (SDF) director: actors execute sequentially
 - Process Network (PN) director: each actor has its own execution thread and execute in parallel

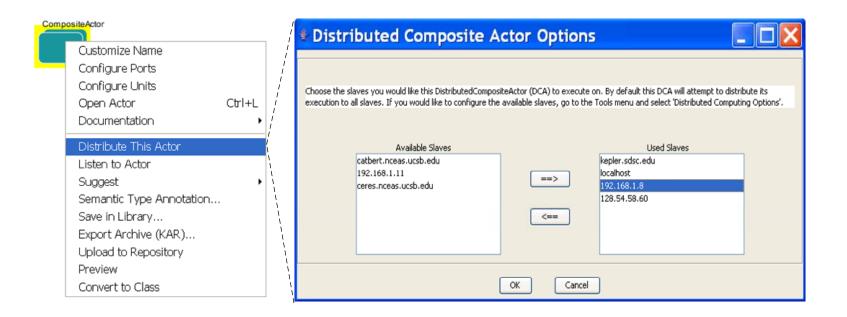

Background – Conceptual Architecture for Workflow Distributed Execution

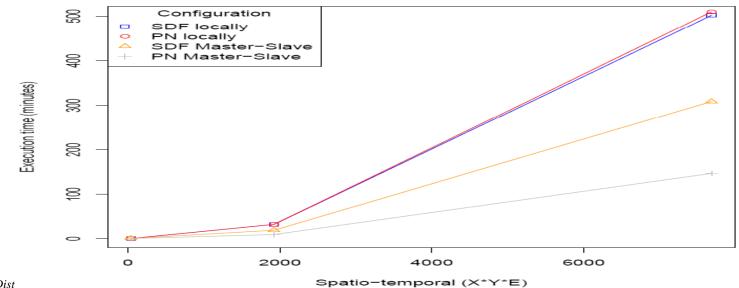
Our Approach – Distributed Composite Actor


- As the role of Master, each token received by this Actor is distributed to a Slave node, executed, and the results returned.
- Different behavior with different computation models


Our Approach – Provenance Collection

- By collecting workflow structure and executions, our provenance framework make it easier for users to track data files for large parameter sweeps
- It can be configured to support centralized or decentralized provenance information recording


Results – Workflow


Results – Usability

- Users use the DistributedCompositeActor just like the common composite actor
- Interaction for execution environment transition

Results – Experiment

Parameters	Execution Time (minutes)				
	SDF locally	PN locally	SDF Master-Slave	PN Master-Slave	
b = < 0.1, 0.2, 0.3, 0.4 >, d = < 2.5,	0.39	0.35	0.60	0.52	
3.5>, <i>X</i> =3, <i>Y</i> =3, <i>E</i> =4					
b = < 0.1, 0.2, 0.3, 0.4 >, d = < 2.5,	32.21	32.24	19.05	9.38	
3.5>, <i>X</i> =8, <i>Y</i> =8, <i>E</i> =30					
b = < 0.1, 0.2, 0.3, 0.4 >, d = < 2.5,	502.2	510	309	147	
3.5>, <i>X</i> =16, <i>Y</i> =16, <i>E</i> =30					
Testbed Constitution					
	OS	Memory	CPU	CPU	
Notebook	Window XP	2 GB 2.00 GHz Duo Core			
Desktop	Mac OS X	2 GB 2.80 GHz Duo Core			

Conclusion and Future Work

- A distributed execution framework in the Kepler
 - Distribute sub-workflows to ad-hoc network computing resources
 - Applicable to parameter sweep applications to realize parallel independent execution

• Future Work

- Generalize for Cluster, Grid, and Cloud platforms.
- Categorize different distributed approaches in Kepler to match different requirements

• Thanks!

• For More Information:

- Distributed Execution Interest Group of Kepler: <u>https://dev.kepler-project.org/developers/interest-groups/distributed</u>
- Contact: jianwu@sdsc.edu

