
A Mechanism for Web Service Selection and Recommendation Based on
Multi-QoS Constraints

Shao-chong Li
 School of Software

Shanghai Jiao Tong University
 Shanghai, P.R.China
lee.shaochong@gmail.com

Hao-peng Chen
School of Software

Shanghai JiaoTong University
Shanghai,P.R.China
chen-hp@sjtu.edu.cn

Xi Chen
School of Software

Shanghai JiaoTong University
Shanghai,P.R.China

april.chenxi@gmail.com

Abstract— Service-Oriented Architecture (SOA) provides a
flexible framework for service composition. In a service
market scenario, given a functional description of service,
different providers may offer diverse service implementations
that match such a functional description, but differ for some
QoS attributes. It is increasingly vital to provide a service
selection and recommendation mechanisms that best meet the
QoS requirements of the service user. Different from most of
the existing approaches to service selection, we consider a Web
service selection and ranking mechanism with multi-QoS
attributes, focusing on simulating degree of consumer
satisfaction and hypothesizing consumer preference historical
information. Efficient service selection mechanism and
heuristic algorithm for consumer preference of multi-QoS are
presented in this article and their performances are studied by
simulations.

Keywords-web service; multi-QoS; consumer satisfaction

I.INTRODUCTION
The Serviced-oriented Architecture (SOA) strongly relies

on mechanisms for advertising and discovering available
services. In this vision, providers offer similar competing
services corresponding to a functional description of a
service, these offerings can differ significantly in some
Quality of Service (QoS) attributes. On the other side,
prospective users of service need to dynamically choose the
best offerings for their purpose.

Web Service description Language (WSDL) describes
Web service mainly addressing communication issues and
syntactic description of service interfaces. Besides, current
service registries such as Universal Description Discovery
and Integration protocol (UDDI [1]) do not enable discovery
and selection based on service capabilities and
non-functional properties, since they primarily rely on the
approach of keyword matching of WSDL information. Using
the SOA paradigm to build applications, services can be
dynamically selected, enabling system properties like
flexibility, adaptability, and reusability. In this context, the
key point is to build a mechanism to assure that the
advertised service is effectively provided: i) the overall
mechanism of service selection and recommendation, ii) the
fulfillment of comprehensive QoS constraints, such as
application response time and cost, (a comprehensive QoS
constraints regards as many aspects, including performance,
reliability, scalability, capacity, robustness, exception
handling etc), iii) dynamic recommendation approach to
adapt user’s preference.

 Due to current SOA approaches only partially address
this comprehensive vision. Therefore, QoS-aware service
selection and recommendation become a very active area of
research and standardization. In this paper, we propose a
reasonable web service mechanism which allows the service
discovery based on the multi-QoS constraints. Suppose we
have found a set of candidates of target service which are
same in the functionality but differ in QoS. With our
mechanism, we can get them ordered by the given multi-QoS
constraints. We focus on the measureable QoS attributes,
such as performance, reliability, availability, and so on. For
the other QoS attributes, reputation is a method to solve
service selection problem. Reference [2], an earlier work of
our research team, has proposed an effective reputation
model to rank the services.

The rest of this paper is organized as follows. In Section
, we reviews related works in this area. Section

describes the framework of our mechanism, and presents
how to presume the consumer’s preference with to ANN
(Artificial Neutral Network). Section provides some
simulations to demonstrate our method. In the final section,
we conclude this paper and discuss some future works.

II.RELATED WORK
Service selecting and recommending are crucial in SOA.

The SOA model enables different service providers (SP) to
provide loosely coupled and interoperable services at
different Quality of Service (QoS) and cost levels in a
number of service domains. It provides a unique opportunity
for businesses to dynamically select services that better meet
their business and QoS requirements powerfully in a
cost-effective manner.

QoS is an important factor for Web service selection
when there is more than one service offering the same or
similar functionality. Currently, it is known that QoS
research mainly includes QoS model design, QoS
management [3], QoS discovery [4, 5] and optimal service
selection based on QoS [6, 7, 8].

Many solutions which support QoS-based WS selection
have existed in this area. For instance, UDDIe[9] has been
used with QoS information which is advertised by the
provider. In reference [10], it focuses on augmenting web
service clients as a means for determining optimal service
providers. Reference [11] has implemented a
reputation-enhanced service discovering algorithm, which is
based on the consumer’s performance feedbacks to compute

2010 IEEE 6th World Congress on Services

978-0-7695-4129-7/10 $26.00 © 2010 IEEE

DOI 10.1109/SERVICES.2010.31

221

QoS. In order to meet the needs of both consumers and
providers, some researchers addressed one issue of selecting
web services by maximizing user’s satisfaction expressed as
utility functions over QoS attributes [12]. In reference [13],
the researchers treated the selection of QoS-driven web
service with dynamic composition as a fuzzy constraint
satisfaction problem and applied an optimal search approach
with adjustments to service composition. Reference [14]
advocates using fuzzy set to express the user's QoS
preference on a specific QoS criteria and using fuzzy
expression to represent the user's trade-off among QoS
criteria. Considering a set of services implement the same
functionality but differ for the quality parameters, in the
work presented in [11], two main approaches have been
proposed: local and global optimization. For the global
optimization, Reference [15] proposes a global approach for
Web services selection and optimization. During the process
of composing web services, it is crucial to consider the
services’ QoS, Reference [16] proposes an approach to
combine the same or similar functional services into classes
of service which is convenient for selection. Reference [17]
also presents a global QoS optimizing and multi-objective
web services selection algorithm based on multi-objective
ant colony optimization.
 These researches advanced the research in QoS-aware
service discovery. However, there is no practical and
comprehensive research on service recommendation yet.
Many problems still need to be addressed. For example:

 In order to satisfy the consumer’s preference, the
QoS attributes should be consumer-aware which
means that they need to be dynamically updated.

 The contribution weight of each QoS attributes to
the selecting decision should be determined
objectively but not subjectively.

 In this paper, to provide an effective multi-QoS-aware
service discovery, a new web service selecting and
recommending mechanism is proposed. This mechanism
can:

 Model the QoS constraints accurately. In this paper,
we propose a mathematic approach to model QoS
constraints according to the preferences given by
the service consumers in the process of selecting
web services.

 Dynamically adjust the contribution weights of QoS
attributes by self learning. We keep and handle the
historical service selecting information for each
service consumers to update the contribution
weights of QoS attributes. This approach results in
the improvement of the effectiveness of service
discovery.

Detailed introduction about this model is described in
the next sections.

III.FRAMEWORK OF THE SERVICE RANKING AND
SELECTING

In this section, we present the model of service
selection and recommendation framework, and then

introduce the front-end and back-end used. Figure 1
illustrates a high-level architecture view of the framework
we consider.

On behalf of the further discussion, we begin by making
the assumption as follows:

 There is an existing efficient and effective solution
for functional selection. This paper just focuses on
the approach to manage the same functional services
with different QoS.

 As a dynamic feature of services, the QoS attributes
are changed from time to time. This implies that we
have to use them as variables to calculate the indexes
of services, such as customer’s satisfaction, to be
convincing.

Consumer Client

Back-end

Intelligent Ranking

Service Controller

Service
Functional
Manageme

nt
Qos Normalization

Service QoS
Dynamic
Database

Consumer
History

Database

CFP

Front-end
MAP

Availability

ANN

QoS attribute n

Figure 1. Service selecting mechanism

 The QoS data is feedback by service providers and
kept in Service registry.

 We consider measurable QoS attributes such as
performance, response time as individual attributes
and treat all the immeasurable QoS attributes as a
single attribute which is reputation [2].

As is shown in Figure 1, the Font-end is a consumer
client which is divided into two parts: MAP (Multi-QoS
Attributes Process Part) and CFP (Consumer Functional
Process Part). In MAP, consumers give their QoS constraints
by specifying the degrees of satisfaction of a set of reference
points of each QoS attribute. In CFP, consumer input their
functional requirement. Both of the two parts data will be
packed by Front-end and sent to Back-end.

Back-end is composed by multi-components. Service
Controller can receive consumer data which come from
front-end and save data to Consumer History Database. It
also transfers the result of Qos normalization part to
Intelligent Ranking part to recommend service. QoS
normalization part unifies the QoS attributes unit to
consumer’s satisfaction. Service functional management can
generate a service set which contain the same functional
requirements. All the services’ QoS values are maintained by
Service QoS dynamic Database. ANN is commanded by
Service Controller which can accommodate consumer’s
preference.

Next Sections would illustrate each component in detail.

222

A. Framework introduction
Our framework provides a multi-selection client for each

QoS attributes. Due to various QoS attributes differing in
measurement span and meaning, it will be convenient for
consumer to compose multi-constraint in a composite
constraint. For example, response time and reliability is
measured by seconds and errors/month separately. If all of
these measures can be measured by a unified unit, it will be
helpful for statistics. In our framework, consumer’s
multi-constraint is formatted as a vector where response time
and reliability are normalized by consumer’s satisfaction.

The relation between consumer’s satisfaction and each
QoS attribute value is depicted in a rectangular coordinate.
According to such discipline, for each QoS attributes,
consumer’s selection constraint would form a set which
contains disperse coordinate points. All the selected sets are
undoubtedly taken as consumers’ preference. As a result, our
framework sends each selection sets and functional
requirements to back-end.

After back-end has received consumer’s data, at first,
Service Functional Manage part obtains a service set with
customer’s functional requirements. Each element in service
set contains its QoS attributes values which are dynamically
managed by Service QoS Dynamic Database. And then,
according to consumer’s preference in Consumer History
Database, QoS Normalization part will normalize each
service’s QoS attributes values as a vector. At last,
Intelligent Ranking part will recommend the best service to
front-end according to each service’s vector. In Section C, a
detailed description will be given on this mechanism.

If the service recommended by Intelligent Ranking part
is not in accord with the consumer’s selection, our
framework would accommodate the customer’s preference
automatically through ANN part. ANN part will coordinate
relating data with consumer’s choice so as to shorten the
disparities between the recommended and the actual
selection. Consumer’s preference will be modified and saved
in Consumer History Database. This paper exploits the
inverted diffuse method in Neural Network to handle the
case of service accommodation. Section D will introduce
detailed solution.

B. Front-end
According to Figure 1, suppose we have registered a

group of services with the functional requirement. As
different service QoS attributes may lead to different results
in service selection, we assume that each service consumer’s
satisfaction has a relation which is defined as follow:

 fs={(fd , fc)} (1)

Where fd is denoted as the value of single service’s QoS
attribute. fc denotes the weight of the consumer’s satisfaction
of service. For each service selection, for example, when fd
(eg.. response time)reach 1s, consumer a considers its
satisfaction as 99%, while consumer b may consider it as
90%. The relation can be described as follows:

ܽݏ݂ = (1s, 99%) (2)
 (3) (1s, 90%) =ܾݏ݂

We build a data table for each customer as follow:

TABLE I. REFERENCE OF RESPONSE TIME

FD(second) 1 10 20 30 40 50
FS (%) 99 99 81 72 20 10

 In the case that we have:

 fs= (900s, 99%) (4)

In this mechanism, we consider the fs as a noise datum
for the reason that it should be a bad service when a service’s
response time reaches 900s. But in this function fs, the
consumer’s satisfaction is 99%. Single datum cannot reflect
the trend of customer’s satisfaction as regards the specific
QoS attributes. According to different requirements, each
with different service consumer satisfaction and different
QoS attributes, all together we have studied 300 cases. After
simulating each of these cases, the exponential function is
selected as the model to simulate the relation between
service customer satisfaction and QoS attributes.

In exponential function, when x comes to zero, the value
of exponent function is on the verge of maximum infinity.
This function form can simulate the response time of QoS
attributes exactly. For example, when response time targets
zero infinitely, consumer’s satisfaction reaches the maximum
value. On the other side, when x is approximately infinite,
consumer’s satisfaction reaches the minimum value
correspondingly. So choosing the exponent curve as the
above relation formalize style can provide the consumer
accurate satisfaction value. Given consumers’ satisfaction
discipline our exponent curve needs to be a decreasing
function. Although the consumers’ selected points are
dispersive and random, utilizing exponent curve model, we
can describe their satisfaction accurately.

Figure 2. exponent curve of response time

We tackle the simulating problem through transforming
it into the exponent curve with the conic fitting method in
Figure 2, and the data are from the table .

With the above definition, we define fs as the relation of
a single QoS attributes xi and consumer’s satisfaction yi .

݅ݏ݂ ݅ݔ) = ݅ݕ ,) (i=0,1,2,3……..) (5)

223

 According to each QoS attribute, the relation Sc is
defined as follow:

 Sc = { ݂݅ݏ}(i=0,1,2,3………) (6)

For each set Sc, we utilize conic fitting method to
simulate the model. According to above description, our
model is a decreasing function. The function is described as:

ݕ = ݔܾ−݁ (7)

For each consumer, constant b would be given different
values according to consumer’s selected data. In the
front-end part, we expect to get a formula set for each
consumer’s selected QoS attributes. So after selecting
appropriate values with QoS attributes, we iterate each set Sc
to formulize the formula. If correlative QoS attribute data Sc
are vacant, we consider that the consumer ignore this QoS
attribute.

According to conic fitting method and taking the
exponent curve as compute model, we get a normal equation
with the Table data. The equation form can be depicted as
the following:

 ൜cA + db = fbA + eb = g (8)

The values of A, c, d, e, f, g, is calculated by the
satisfaction data. Then with the normal equation (8) being
solved, the constant b could be calculated. In the end, we get
customer’s satisfaction with function y =e−bx .

Before we describe our algorithm, we define S(sc) as an
Sc set that comes from the customer’s choice. Our algorithm
is shown as follow:

Figure 3. Algorithm 1

As is described by above algorithm, input parameter is
S(sc) that indicates the consumer’s choice. Line 3 states that
we create a new empty set to contain the formula. Line 4 to
Line 5 iterates every Sc set in set S(sc) to generate the
formula and insert into the formula set Setformula . Line 6
returns the formula set. After these steps, we have a utility to
put and generate formula to multiple QoS constraints.

C. Back-end
Due to formula set we have proposed, for each QoS

attribute, we get a formula Fb. Taking fc as the satisfaction
of consumer, we can get the function as follows:

 ݂ܿ݅ = Fb(݅ݔ)(i = 0,1,2….and where each i delegates the
single QoS attributes) (9)

As different service QoS attributes may lead to different
results in service selection, we assume that each service has
an associated vector:

fc(ܽ1 ܽ2, ܽ3, ܽ4,……ܽ݅ ….)(i=1,2…….n) (10)

Where n is the number of different QoS classes. The
element of this vector delegates the consumer’s satisfaction
of each QoS attributes, such as response time. Suppose we
have an optimal service which contains the best value of
QoS attributes. Since we take percentage as the customer
satisfaction, the max value should be number 1. Here we
take fp as the optimal service:

 fp(1,1,1, 1,…… 1……) (11)

Suppose we get a group services with the same function
requirement. The services have a vector set as follow:

 Fc = {fci}(i=1,2,3………….) (12)

In order to select the optimal service, we compare the
distance between each service’s vector and optimal vector. Di=fcifpതതതതതത (i=1,2,3……..) (13)

According to the formula of space vector, we can
calculate the distancei: Di = ඥ∑ |1 − ai|2ni=1 (i=1,2,3…………) (14)

In our study, we consider that the further distancei is,
the worse the service evaluated. From the vector set we
consider the optimal service i need to satisfy the following
condition:

 Dmin = Min{Di (i=1,2,3……..)} (15)

Although we can use such method to rank service, the
distance cannot represent the actual situation because in
above situation the QoS attributes they selected are merely
taken into equal consideration. In this paper, we set weight
for each QoS attribute in order to coordinate consumer’s
requirements. We define wi to denote each QoS attribute
weight. In the following, the vector distance formula is
transformed as:

D = ට∑ (1−ai)2wi n∑ wini=1ni=1 (16)

Section D would discuss in detail on how to adjust the
weight value wifor consumer’s preference.

Based on the computing model introduced in the above
two sections, we can define the recommendation algorithm
as Algorithm 2.

In line 1, the input element Setservice indicates a group
service with the same functional requirement and S (sc)

1 ggetFormulaSet(S(sc))
ݏݐ݁ܵ 2 ← (ܿݏ)ܵ
ݐ݂݁ܵ 3 ݈ܽݑ݉ݎ݋ ← {new set of <s>} 4 ffor each item inn ܵ݁ݏݐ 55 do ݂ܵ݁ݐ ݈ܽݑ݉ݎ݋ ←getformula(item); 66 return ݂ܵ݁ݐ ݈ܽݑ݉ݎ݋

224

represents customer’s choice for each QoS attribute from the
front-end. Line 2 and Line 3 initialize operation set and
recommendation set. In line 4, we can use the former
algorithm to get a formula set for compute customer’s
satisfaction. And then, we iterate every service in Setsc
from line 5 to line 10. Line 7 uses a function which is
defined in Algorithm 3 to create a new vector. Line 8
computes the distance between input service’s satisfaction
and optimal with a function which employing formula (16)
for calculation. After each service’s distance has been
calculated, we sort all the input service by their distance in
line 10. The last line returns the result.

Figure 4. Algorithm 2

 The algorithm of created vector is described as
Algorithm 3.

Figure 5. Algorithm 3

Input parameters conclude a service’s QoS attributes and
a formula set. Line 2 and Line 3 initialize the QoS attributes
set and a new empty vector. Line 4 to Line 9 iterates each
QoS attribute in Sets to form a vector. For each QoS
attribute, Setformula contains corresponding formula to
compute customer’s satisfaction. So in line 5, we use
function to get the formula with QoS type. If the formula is
null, it represents that customer have no constraint on this
QoS attribute. As the line 7 represents, the element of this
vector is defined as 0. If the formula is not null, we should
record the customer’s satisfaction with the formula. Line 9
indicates such situation. At last, vectors would return as the
result.

D. Optimizing attribute weight
The above sections describe the web service static

ranking method. However, it is possible for the consumer to
choose a service in the service rank sequence other than the
first one in practice. (In our service registry, we put the
service with best QoS in the first place of the rank sequence).
For example, a consumer would choose a service other than
the first one in the service rank sequence due to its much
lower price though its performance and reliability are worse.
This fact shows that compared with the congruent ones,
unequal weights, particularly the customer-specific weights,
are more meaningful for customers.

Furthermore, if the historical records of service selection
of customers are available, our framework can recommend
the most suitable service to consumers according to the
weights self-learned from the historical data in the case that
the customers don’t provide any clues about the weights
when they send the service discovery requirements.
Therefore, as the running of the services at runtime, this
approach is proposed to handle service ranking and selecting
in a dynamic situation.

In our framework, from the above description, the
optimal service is selected by the formula (16) which with a
weight wi that indicates customer’s preference to each QoS
attribute. When consumer’s selection cannot follow the
framework rank sequence, we need to change the value wi
for QoS attribute to coordinate the preference. In order to
adjust the rank sequence, we expect to build a dynamic
self-accommodate network to revise the correlate weight.
ANN (Artificial Neural Network) automatically learns from
the former experiences through adjusting the connection
weights and can use the knowledge learned before. In this
paper, we use the BP algorithm (Back Propagation
Algorithm) in neutral network to learn the weight
information in our framework, which is widely used as an
effective autonomy method.

In the beginning, we suppose each QoS attributes weight
has a same value. With the accumulation of the application
record, we can adjust the weight value to satisfy customer’s
preference. In order to obtaining an appropriate weight value,
a neural network needs a fixed expecting value and training
weight. During the learning process, neutral network shorten
the distance between expect value and output value with the
adjusting weight.

In this paper, we consider neurons number of Input layer
can be confirmed by the QoS attribute number. The output
layer has two neurons note which contain the values of
customer contentment and discontent. Similarity, we get a
vector (x, y) to represent the output. Our framework take the
vector (1, 0) as the marking of consumer’s acceptation and (0,
1) represents the consumer’s rejection. On behalf of making
our neutral network to reach stable state, we compute the
error between consumer’s choice and (1, 0) or (0, 1) and then
send it to neutral network. It is a contradictive issue to ensure
the number of hidden neurons because there is no terminal
verdict at present. In our framework, the hidden layer has
three units because such design can solve the core functions
problem, and if we add more layers or more units in the

1 rrecommend(ܵ݁݁ܿ݅ݒݎ݁ݏݐ ܿݏݐ݁ܵ 22 ((ܿݏ)ܵ , ← ݁ܿ݅ݒݎ݁ݏݐ݁ܵ ݀݊݁݉݉݋ܿ݁ݎݐ݁ܵ 33 ← {new set of <s>} 44 ݂ܵ݁ݐ ݈ܽݑ݉ݎ݋ ← ܿݏݐ݁ܵ foor each item inn 5 ((ܿݏ)ܵ)ݐ݈݁ܵܽݑ݉ݎ݋ܨݐ݁݃ 6 do 7 ݏݎ݋ݐܿ݁ݒ = .݉݁ݐ݅)ݎ݋ݐܸܿ݁݁ݐܽ݁ݎܿ ,ܿݏ ݐ݂݁ܵ ݈ܽݑ݉ݎ݋) 88 item.distance=getDistance(ݏݎ݋ݐܿ݁ݒ); ݀݊݁݉݉݋ܿ݁ݎݐ݁ܵ 9 ← ݀݊݁݉݉݋ܿ݁ݎݐ݁ܵ SSort 110 ;(݉݁ݐ݅) ݀݊݁݉݉݋ܿ݁ݎݐ݁ܵ rreturn 111 ݁ܿ݊ܽݐݏ݅݀ ݋ݐ ݃݊݅݀ݎ݋ܿܿܽ
1 ccreateVector(sc,݂ܵ݁ݐ ݈ܽݑ݉ݎ݋ ݏݐ݁ܵ 22 (← ݏݎ݋ݐܿ݁ݒ 33 ܿݏ ← ݏݐ݁ܵ ffor each item in 44 (݊)ݎ݋ݐܿ݁ݒ ݓ݁݊ 5 ddo formula = getFormula(ܵ݋ܳ݉݁ݐ݅ ݁݌ݕܶ ݐ݂݁ܵ , ݈ܽݑ݉ݎ݋) 6 iif (formula==null)
7 then ݏݎ݋ݐܿ݁ݒ൫݅ܵ݋ܳ݉݁ݐ ݁݌ݕܶ ൯ = 0
8 else ૢ ݏݎ݋ݐܿ݁ݒ൫݅ܵ݋ܳ݉݁ݐ ݁݌ݕܶ ൯ ܵ݋ܳ݉݁ݐ݅)݊݋݅ݐ݂ܿܽݏ݅ݐܽܵݐ݁݃ = ݁ݑ݈ܽݒ , (݈ܽݑ݉ݎ݋݂
10 return ݏݎ݋ݐܿ݁ݒ

225

hidden layer, we’ll find that the precision couldn’t be
improved remarkably, on the contrary, the training time
would be prolonged greatly. According to the principle
above, our framework builds the ANN as Figure 6:

 output layer

 hidden layer

 input values ..

Figure 6. The form of ANN

 In ANN, the learning process includes forward
propagation and back propagation. During forward
propagation, input information is managed by hidden layer
to arrive at output layer. According to formula (16), we take
a service’s each QoS attribute as an input unit ai and
initialize the weight ݅ݓ to a small random number. Input
information is transmitted to hidden layer by active formula
(18). Here we take ݆݅ݓ to represent the weight of each
input unit of hidden layer. The formula is transformed as
follow:

 f1(ai)= ට∑ (1−ai)2wij n∑ wijni=1ni=1 (i= 1,2,3……n) (17)

And then, when the hidden layer enters into output layer,
the output unit is activated by the following formula:

 ok = ⎩⎨
⎧1 − 3∗∑ bj wjk3j=1∑ wjk3j=1 if k = 13∗∑ bjwjk3j=1∑ wjk3j=1 if k = 2 (18)

The value of ok is the customer’s anticipant output. The
value o1 indicates the output satisfy degree of customer’s
requirement and o2 indicates the output indicates that the
output does not satisfy degree of customer’s requirement. If o1 is three times larger than o2, we consider this service has
satisfied the customer’s requirements. On the contrary, if o2
is three times larger than o1, we deem the service does not
satisfy customer’s requirements. In actual situation, if there
is contradiction between customer’s choice and expected
output, the information will be transferred to back
propagation process.

At the back propagation phase, feedback path shortens
the distance between actual output and expected output by
regulating weight of each neuron. Then we repeat iterations
in this way for reducing the errors to the permissible error
range.

Before we introduce the method of adjusting weight, we
define the following variable for neutral network:

 Variableη indicate the learning rate. It is a constant
with very small value.

 Variable nin is the dimension of the network input
vector.

 Variable nout is the dimension of the network
output vector. Here we evaluate it as 2.

 Variable nhid is the number of units in the hidden
layer, we evaluate it as 3.

 The input from unit i to unit j is denoted xij .
 The weight from unit i to unit j is denoted wij .
 .is a momentum constant which is very small ߙ
ݑ݋ indicates the output of each unit u in the

network.
݇ݐ represents the expect output of each unit

For each network output unit k, we calculate its error
term: δk ← ok(1 − ok)(tk − ok) (19)

For each hidden unit h, we calculate its error δh term:

 δh ← oh (1 − oh)∑ wkhk∈output δk (20)

 When output can’t satisfy the expect value, we should
adjust the weight wij . Increment is computed as follow:

 ∆wij = ηδixij + α∆wij (n − 1) (21)

And then the weight wij is adjusted to:

 wij ← wij + ∆wij (22)

Variable ∆wij would be changed to coordinate wij
until output meets the customer’s preference. Through this
operation, neutral network will continue to make the whole
system reach a stable state spontaneously.

IV.SIMULATION
We built a prototype to simulate our computing

mechanism. In the prototype, we measure 5 QoS attributes:
response time (unit: milliseconds), availability (unit: TTR
which means the cost time of modifying an inefficacy
service), interoperability analysis (unit: % which means ratio
of the errors and the warnings reported), cost of service (unit:
cent per service request), reliability (unit: errors/month).
According paper [18], we build a registry center to save and
manage register service’s QoS attributes feedback by the
service consumers. We developed the front-end and
background-end with Eclipse 3.4.

In our simulation environment, there are three
consumers and five sets of services, each of which has eight
services which are same in functionality but differ in QoS.
We depict the process of service discovery and how the
contribution weights of QoS attributes are adjusted as
follows.

Suppose the consumer A input the multi-QoS constraints
from the front-end. The Next Tables show the font-end data.

226

TABLE II. THE REFERENCE POINTS OF PERFORMANCE

FD(milliseconds) 1 10 20 25 30 31 35
FS (%) 98 80 50 48 10 8 5

TABLE III. THE REFERENCE POINTS OF PERFORMANCE

FD(second) 1 5 7 10 15 18 20
FS (%) 99 95 89 70 50 30 5

TABLE IV. THE REFERENCE POINTS OF INTEROPERABILITY

FD (%) 1 15 25 32 48 50 80
FS (%) 99 96 88 75 61 30 10

TABLE V. THE REFERENCE POINTS OF COST

FD ($) 9 11 17 19 21 23 27
FS (%) 97 91 80 76 61 22 8

TABLE VI. THE REFERENCE POINTS OF COST

FD (errors/math) 1 10 15 20 21 25 30
FS (%) 98 90 79 72 63 25 3

Applying the curve fitting described in algorithm 1 on the
data in above tables, we can get the following formula to
express the multi-QoS constraints.

TABLE VII. FORMULAE OF QOS ATTRIBUTE

QoS attribute Formula
Performance ݕ = ݔ0.0293−݁
Availability ݕ = ݔ0.0491−݁
Interoperability ݕ = ݔ1.2482−݁
Cost ݕ = ݔ0.0490−݁
Reliability ݕ = ݔ0.0324−݁

All the services we developed are registered in the
service registry. Here we take the services A-G which are
same in functionality as an example. The QoS of these eight
services is shown in Table .

TABLE VIII. QOS ATTRIBUTES OF SERVICES

Applying the QoS data of the eight services into the
formula set shown in Table , we can get the QoS vectors
of each service’. In terms of formula (18), we get the
distances of the services as well as their ranks. The result is
shown in Table :

TABLE IX. SIMILARITIES OF RANK

Service Vector Distance Rank

A (0.91,0.67,0.99,0.45,0.69) 0.7180 4
B (0.78,0.74,0.89,0.50,0.68) 0.6919 3
C (0.97,0.95,0.98,0.41,0.97) 0.6283 2
D (0.62,0.94,0.98,0.36,0.76) 0.7833 7
E (0.95,0.53,0.66,0.54,0.76) 0.7824 6
F (0.38,0.65,0.99,0.70,0.96) 0.7705 5
G (0.64,0.88,0.86,0.75,0.84) 0.5056 1
H (0.32,0.29,0.35,0.23,0.37) 1.5405 8
Suppose even though the service G is the best one in

Table , consumer A selects service C but not service G
due to the perfect performance of service C. Then, the ANN
will update weights of each QoS attribute to accommodate
the customer’s preference. In our ANN, we take η as 0.05
and α as 0.1. The results of self-learning on contribution
weights of QoS attributes are listed in Table in which
each row indicates the result after iteration.

TABLE X. ITERATIVE RECORDS OF CONSUMER A

SetId Consumer A Iteration

N1

w1 w2 w3 w4 w5
1.00 1.00 1.00 1.00 1.00 1
1.12 1.00 0.96 0.91 1.00 2
1.18 0.99 0.92 0.89 1.02 3
……. ……. ……. ……. ……. ….
1.28 0.92 0.96 0.74 1.10 100

 The last row of Table is the weights at the time of
ANN reaching its stable status. With the weights in last
row of Table , the rank is updated as Table :

TABLE XI. THE UPDATE SIMILARITIES OF RANK

Service Distance Rank
A 0.7082 3
B 0.7364 4
C 0.6169 1
D 0.9061 5
E 0.9132 6
F 1.1132 7
G 0.7057 2
H 1.9549 8

 We simulate the behavior of consumer B and C, and
respectively calculate the contribution weights for the both
consumers in the same way as above. The results are shown
as follows:

TABLE XII. ITERATIVE RECORDS OF CONSUMER B

SetId Consumer B Iteration

N1

w1 w2 w3 w4 w5
1.00 1.00 1.00 1.00 1.00 1
0.99 1.00 1.01 0.99 0.85 2
0.91 0.96 1.01 0.91 0.81 3
……. ……. ……. ……. ……. ……
0.01 0.87 2.89 0.56 0.67 100

TABLE XIII. ITERATIVE RECORDS OF CONSUMER C

Service A B C D E F G H
Performance
(milliseconds) 3.22 8.32 1.05 16.50 1.78 33.18 15.42 38.76

Availability
(second) 8.10 6.19 1.03 1.33 12.99 8.72 2.65 25.34

Interoperability
(%) 1.03 9.00 1.00 1.99 33.32 1.00 11.77 83.21

Cost
($) 16.44 14.00 20.00 20.78 12.64 7.01 6.00 29.89

Reliability
(errors/math) 11.27 12.12 1.03 8.16 8.53 1.04 5.32 30.71

227

SetId Consumer C
Iteration

N1

w1 w2 w3 w4 w5
1.00 1.00 1.00 1.00 1.00 1
1.05 1.23 1.32 1.00 1.01 2
1.12 1.96 1.21 1.01 1.11 3
……. ……. ……. ……. ……. ……
0.23 0.12 3.68 0.55 0.42 100

After the weights have been modified, according to our
statistic, it is reported that the error term between consumer’s
choice and our calculation is only 1.23%. The simulation
proved that our mechanism can improve service selection
precision.

V.CONCLUSION AND FUTURE WORK
The quality-based selection of web services is an active

topic recently. Many researchers have taken a great deal of
investigation. The main drawback of current work in
dynamic web service selection is the inability to ensure that
service recommending algorithm is open, fair and
trustworthy. We achieved the dynamic and fair computation
of QoS values of web services through active users’
feedback and active monitoring. Our selection mechanism
concentrates on constraint which contains consumer’s
preference and multitude attributes will be taken into account.
Moreover, QoS constraint can be dynamic changed by ANN
to accommodate consumer’s preference.

However, in the process of our simulating exponent
curve, there still exist errors between our expected value and
true value. Our future work will concentrate on how to
eliminate the noise datum from the consumer’s input data
effectively for simulating the exponent curve accurately.
Further, it is still a challenge on how to condense reference
data of consumer’s preference QoS attributes.

ACKNOWLEDGE
This paper is supported by the National High-Tech

Research Development Program of China (863 program)
under Grant No. 2007AA01Z139.

REFERENCES
[1] Tom Bellwood, Luc Clement “Uddi version 3.0.1,”
http://uddi.org/pubs/uddi v3.htm .
[2] Guang Yang, Hao-peng Chen, “An Extensible
Computing Model for Reputation Evaluation Based on
Objective and Automatic Feedbacks ” Proceedings of the
2008 International Conference on Advanced Language
Processing and Web Information Technology China ,2008.
[3] Sharma A, Adarkar H, Sengupta S “Managing QoS
through Prioritization in Web Services,” In Proc.of the 4ݐℎ
Inc.Conf.on Web Information Systems Engineering
Workshops(WISEW), Rome, 2003,pp.140 -148.
[4] Shupping Ran, “A Model for Web Services Discovery
With QoS, ” ACM SIGecom Exchanges, 2003, 4(1): 1-10.
[5] Yang Shengwen, Shi Meilin, “A model of Web service
discovery with QoS constraints,” Chinese Journal of
Computer, 2005, pp.589-594.

[6] Gerardo Canfora, Massimiliano Di Penta,Raffaele
Esposito,et al, “An approach for QoS-aware service
composition based on genetic algorithms,” In Pro.of the
2005 conference on Genetic and evolutionary computation
(GECCO). USA, Washington DC, 2005, pp. 1069-1075.
[7] Nizamuddin channa,Li Shanping, Abdul Wasim
Shaikh,et al, “ Constraint satisfaction in dynamic Web
service composition, ” In Pro.of the 6ݐℎ Inc.Workshop on
Database and Expert Systems Applications. Copenhagen,
Denmark, 200, pp.658 -664.
[8] Wang Hongbing,Xu Xun,Wang Yifei, “A
Multi-Dimensional Framework for Services Selection,” In
Proc.for Int.Conf.on Next Generation Web Services
Practices(NWeSP). Korea, Seoul, 2005, pp. 441-442.
[9]A.Shaikhali, O.f.Rana, R.Al-Ali and D.W.Walker, “An
Extended Registry for Web Services,” Proceedings of the
Service Oriented Computing: Models, Architectures and
Applications, 2003.
[10] Julian Day, Ralph Deters, “Selecting the best web
service, ” In Proceeding of the 2004 conference of the
Centre for Advanced Studies on Collaborative research.
Canada, Markham, Ontario, 2004, pp.293 - 307
[11]Xu Ziqiang, Martin Patrick, Powley Wendy, Zulkernine
Farhana, “Reputation-Enhanced QoSbased Web Services
Discovery,” The IEEE International Conference on Web
Services(ICWS 2007), IEEE Computer Society, 9-13 July
2007, pp.249-256.
[12] Liangzhao Zeng, Boualem Benatallah. Etc,
“QoS-Aware Middleware for Web Services Composition,”
IEEE Transactions on Software Engineering 30(5):311-327.
2004(5)
[13] Yutu Liu, Anne H. Ngu, Liang Z. Zeng, “QoS
computation and policing in dynamic web service selection,”
In Proceedings of 13th international conference on world
wide web, 2004.
[14] Lin, M., Xie, J., Guo, H, Wang, H, “Solving
QoS-driven Web Service Dynamic Composition as Fuzzy
Constraint Satisfaction,” IEEE International Conference on
e-Technology, e-Commerce and e-Service, 2005, 9-14.
[15] Ardagna, D., Pernici, B, “Global and Local QoS
Constraints Guarantee in Web Service Selection,” IEEE
International Conference on Web Services, 2005, 805–806.
[16] Hongbing Wang, Ping Tong, Phil Thompsoon,
PYinsheng Li, “QoS-Based Web Services Selection,”
Proceedings of the IEEE International Conference
e-Business Engineering, pp.617-637.
[17] Fang Qiqing, Peng Xiaoming, Liu Qinghua, Hu Yahui,
“A Global QoS Optimizing Web Services Selection
Algorithm Based on MOACO for Dynamic Web Service
Composition,” Proceedings of the 2009 International
Forum on Information Technology and Applications -
Volume 01.Chaina,ChengDu,2009.
[18] Siming Xiong, Haopeng Chen, QMC: “A Service
Registry Extension Providing QoS Support,” 2009
International Conference on New Trends in Information and
Service Science (NISS 2009), China, 2009.7, pp.145-151.

228

