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Abstract— Service-Oriented Architecture (SOA) provides a 
flexible framework for service composition. In a service 
market scenario, given a functional description of service, 
different providers may offer diverse service implementations 
that match such a functional description, but differ for some 
QoS attributes. It is increasingly vital to provide a service 
selection and recommendation mechanisms that best meet the 
QoS requirements of the service user. Different from most of 
the existing approaches to service selection, we consider a Web 
service selection and ranking mechanism with multi-QoS 
attributes, focusing on simulating degree of consumer 
satisfaction and hypothesizing consumer preference historical 
information. Efficient service selection mechanism and 
heuristic algorithm for consumer preference of multi-QoS are 
presented in this article and their performances are studied by 
simulations. 

Keywords-web service; multi-QoS; consumer satisfaction 

I.INTRODUCTION 
The Serviced-oriented Architecture (SOA) strongly relies 

on mechanisms for advertising and discovering available 
services.  In this vision, providers offer similar competing 
services corresponding to a functional description of a 
service, these offerings can differ significantly in some 
Quality of Service (QoS) attributes. On the other side, 
prospective users of service need to dynamically choose the 
best offerings for their purpose. 

Web Service description Language (WSDL) describes 
Web service mainly addressing communication issues and 
syntactic description of service interfaces. Besides, current 
service registries such as Universal Description Discovery 
and Integration protocol (UDDI [1]) do not enable discovery 
and selection based on service capabilities and 
non-functional properties, since they primarily rely on the 
approach of keyword matching of WSDL information. Using 
the SOA paradigm to build applications, services can be 
dynamically selected, enabling system properties like 
flexibility, adaptability, and reusability. In this context, the 
key point is to build a mechanism to assure that the 
advertised service is effectively provided: i) the overall 
mechanism of service selection and recommendation, ii) the 
fulfillment of comprehensive QoS constraints, such as 
application response time and cost, (a comprehensive QoS 
constraints regards as many aspects, including performance, 
reliability, scalability, capacity, robustness, exception 
handling etc), iii) dynamic recommendation approach to 
adapt user’s preference.  

   Due to current SOA approaches only partially address 
this comprehensive vision. Therefore, QoS-aware service 
selection and recommendation become a very active area of 
research and standardization. In this paper, we propose a 
reasonable web service mechanism which allows the service 
discovery based on the multi-QoS constraints. Suppose we 
have found a set of candidates of target service which are 
same in the functionality but differ in QoS. With our 
mechanism, we can get them ordered by the given multi-QoS 
constraints. We focus on the measureable QoS attributes, 
such as performance, reliability, availability, and so on. For 
the other QoS attributes, reputation is a method to solve 
service selection problem. Reference [2], an earlier work of 
our research team, has proposed an effective reputation 
model to rank the services.  

The rest of this paper is organized as follows. In Section 
, we reviews related works in this area. Section  

describes the framework of our mechanism, and presents 
how to presume the consumer’s preference with to ANN 
(Artificial Neutral Network). Section  provides some 
simulations to demonstrate our method. In the final section, 
we conclude this paper and discuss some future works. 

II.RELATED WORK 
Service selecting and recommending are crucial in SOA. 

The SOA model enables different service providers (SP) to 
provide loosely coupled and interoperable services at 
different Quality of Service (QoS) and cost levels in a 
number of service domains. It provides a unique opportunity 
for businesses to dynamically select services that better meet 
their business and QoS requirements powerfully in a 
cost-effective manner.  

QoS is an important factor for Web service selection 
when there is more than one service offering the same or 
similar functionality. Currently, it is known that QoS 
research mainly includes QoS model design, QoS 
management [3], QoS discovery [4, 5] and optimal service 
selection based on QoS [6, 7, 8].  

Many solutions which support QoS-based WS selection 
have existed in this area. For instance, UDDIe[9] has been 
used with QoS information which is advertised by the 
provider. In reference [10], it focuses on augmenting web 
service clients as a means for determining optimal service 
providers. Reference [11] has implemented a 
reputation-enhanced service discovering algorithm, which is 
based on the consumer’s performance feedbacks to compute 
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QoS. In order to meet the needs of both consumers and 
providers, some researchers addressed one issue of selecting 
web services by maximizing user’s satisfaction expressed as 
utility functions over QoS attributes [12]. In reference [13], 
the researchers treated the selection of QoS-driven web 
service with dynamic composition as a fuzzy constraint 
satisfaction problem and applied an optimal search approach 
with adjustments to service composition. Reference [14] 
advocates using fuzzy set to express the user's QoS 
preference on a specific QoS criteria and using fuzzy 
expression to represent the user's trade-off among QoS 
criteria. Considering a set of services implement the same 
functionality but differ for the quality parameters, in the 
work presented in [11], two main approaches have been 
proposed: local and global optimization. For the global 
optimization, Reference [15] proposes a global approach for 
Web services selection and optimization. During the process 
of composing web services, it is crucial to consider the 
services’ QoS, Reference [16] proposes an approach to 
combine the same or similar functional services into classes 
of service which is convenient for selection. Reference [17] 
also presents a global QoS optimizing and multi-objective 
web services selection algorithm based on multi-objective 
ant colony optimization. 
   These researches advanced the research in QoS-aware 
service discovery. However, there is no practical and 
comprehensive research on service recommendation yet. 
Many problems still need to be addressed. For example: 

 In order to satisfy the consumer’s preference, the 
QoS attributes should be consumer-aware which 
means that they need to be dynamically updated.  

 The contribution weight of each QoS attributes to 
the selecting decision should be determined 
objectively but not subjectively.  

  In this paper, to provide an effective multi-QoS-aware 
service discovery, a new web service selecting and 
recommending mechanism is proposed. This mechanism 
can: 

 Model the QoS constraints accurately. In this paper, 
we propose a mathematic approach to model QoS 
constraints according to the preferences given by 
the service consumers in the process of selecting 
web services. 

 Dynamically adjust the contribution weights of QoS 
attributes by self learning. We keep and handle the 
historical service selecting information for each 
service consumers to update the contribution 
weights of QoS attributes. This approach results in 
the improvement of the effectiveness of service 
discovery. 

Detailed introduction about this model is described in 
the next sections. 

III.FRAMEWORK OF THE SERVICE RANKING AND 
SELECTING 

In this section, we present the model of service   
selection and recommendation framework, and then 

introduce the front-end and back-end used. Figure 1 
illustrates a high-level architecture view of the framework 
we consider.  

On behalf of the further discussion, we begin by making 
the assumption as follows: 

 There is an existing efficient and effective solution 
for functional selection. This paper just focuses on 
the approach to manage the same functional services 
with different QoS. 

 As a dynamic feature of services, the QoS attributes 
are changed from time to time. This implies that we 
have to use them as variables to calculate the indexes 
of services, such as customer’s satisfaction, to be 
convincing.  
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Figure 1.  Service selecting mechanism 

 The QoS data is feedback by service providers and 
kept in Service registry. 

 We consider measurable QoS attributes such as 
performance, response time as individual attributes 
and treat all the immeasurable QoS attributes as a 
single attribute which is reputation [2]. 

As is shown in Figure 1, the Font-end is a consumer 
client which is divided into two parts: MAP (Multi-QoS 
Attributes Process Part) and CFP (Consumer Functional 
Process Part). In MAP, consumers give their QoS constraints 
by specifying the degrees of satisfaction of a set of reference 
points of each QoS attribute. In CFP, consumer input their 
functional requirement. Both of the two parts data will be 
packed by Front-end and sent to Back-end.  

Back-end is composed by multi-components. Service 
Controller can receive consumer data which come from 
front-end and save data to Consumer History Database. It 
also transfers the result of Qos normalization part to 
Intelligent Ranking part to recommend service. QoS 
normalization part unifies the QoS attributes unit to 
consumer’s satisfaction. Service functional management can 
generate a service set which contain the same functional 
requirements. All the services’ QoS values are maintained by 
Service QoS dynamic Database. ANN is commanded by 
Service Controller which can accommodate consumer’s 
preference. 

Next Sections would illustrate each component in detail.  
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A. Framework introduction 
Our framework provides a multi-selection client for each 

QoS attributes. Due to various QoS attributes differing in 
measurement span and meaning, it will be convenient for 
consumer to compose multi-constraint in a composite 
constraint. For example, response time and reliability is 
measured by seconds and errors/month separately. If all of 
these measures can be measured by a unified unit, it will be 
helpful for statistics. In our framework, consumer’s 
multi-constraint is formatted as a vector where response time 
and reliability are normalized by consumer’s satisfaction.   

The relation between consumer’s satisfaction and each 
QoS attribute value is depicted in a rectangular coordinate.  
According to such discipline, for each QoS attributes, 
consumer’s selection constraint would form a set which 
contains disperse coordinate points. All the selected sets are 
undoubtedly taken as consumers’ preference. As a result, our 
framework sends each selection sets and functional 
requirements to back-end. 

After back-end has received consumer’s data, at first, 
Service Functional Manage part obtains a service set with 
customer’s functional requirements. Each element in service 
set contains its QoS attributes values which are dynamically 
managed by Service QoS Dynamic Database. And then, 
according to consumer’s preference in Consumer History 
Database, QoS Normalization part will normalize each 
service’s QoS attributes values as a vector. At last, 
Intelligent Ranking part will recommend the best service to 
front-end according to each service’s vector. In Section C, a 
detailed description will be given on this mechanism.  

If the service recommended by Intelligent Ranking part 
is not in accord with the consumer’s selection, our 
framework would accommodate the customer’s preference 
automatically through ANN part.  ANN part will coordinate 
relating data with consumer’s choice so as to shorten the 
disparities between the recommended and the actual 
selection. Consumer’s preference will be modified and saved 
in Consumer History Database. This paper exploits the 
inverted diffuse method in Neural Network to handle the 
case of service accommodation. Section D will introduce 
detailed solution. 

B. Front-end 
According to Figure 1, suppose we have registered a 

group of services with the functional requirement. As 
different service QoS attributes may lead to different results 
in service selection, we assume that each service consumer’s 
satisfaction has a relation which is defined as follow:  

      fs={(fd , fc)}                          (1) 

Where fd is denoted as the value of single service’s QoS 
attribute. fc denotes the weight of the consumer’s satisfaction 
of service. For each service selection, for example, when fd 
(eg.. response time)reach 1s, consumer a considers its 
satisfaction as 99%, while consumer b may consider it as 
90%. The relation can be described as follows:  

ܽݏ݂       = (1s, 99%)          (2) 
 (3)      (1s, 90%) =ܾݏ݂       

We build a data table for each customer as follow: 

TABLE I. REFERENCE OF RESPONSE TIME 

FD(second) 1 10 20 30 40 50 
FS (%) 99 99 81 72 20 10 

 In the case that we have: 

   fs= (900s, 99%)  (4) 

In this mechanism, we consider the fs as a noise datum 
for the reason that it should be a bad service when a service’s 
response time reaches 900s. But in this function fs, the 
consumer’s satisfaction is 99%. Single datum cannot reflect 
the trend of customer’s satisfaction as regards the specific 
QoS attributes. According to different requirements, each 
with different service consumer satisfaction and different 
QoS attributes, all together we have studied 300 cases. After 
simulating each of these cases, the exponential function is 
selected as the model to simulate the relation between 
service customer satisfaction and QoS attributes. 

In exponential function, when x comes to zero, the value 
of exponent function is on the verge of maximum infinity. 
This function form can simulate the response time of QoS 
attributes exactly. For example, when response time targets 
zero infinitely, consumer’s satisfaction reaches the maximum 
value. On the other side, when x is approximately infinite, 
consumer’s satisfaction reaches the minimum value 
correspondingly. So choosing the exponent curve as the 
above relation formalize style can provide the consumer 
accurate satisfaction value. Given consumers’ satisfaction 
discipline our exponent curve needs to be a decreasing 
function. Although the consumers’ selected points are 
dispersive and random, utilizing exponent curve model, we 
can describe their satisfaction accurately. 

                     
Figure 2.   exponent curve of response time  

We tackle the simulating problem through transforming 
it into the exponent curve with the conic fitting method in 
Figure 2, and the data are from the table . 

With the above definition, we define fs as the relation of 
a single QoS attributes xi and consumer’s satisfaction yi .  

݅ݏ݂        ݅ݔ) =  ݅ݕ  , ) (i=0,1,2,3……..)     (5) 
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  According to each QoS attribute, the relation Sc is 
defined as follow: 

     Sc = { ݂݅ݏ}(i=0,1,2,3………)        (6) 

For each set Sc, we utilize conic fitting method to 
simulate the model. According to above description, our 
model is a decreasing function. The function is described as: 

ݕ       = ݔܾ−݁        (7) 

For each consumer, constant b would be given different 
values according to consumer’s selected data. In the 
front-end part, we expect to get a formula set for each 
consumer’s selected QoS attributes. So after selecting 
appropriate values with QoS attributes, we iterate each set Sc 
to formulize the formula. If correlative QoS attribute data Sc 
are vacant, we consider that the consumer ignore this QoS 
attribute. 

According to conic fitting method and taking the 
exponent curve as compute model, we get a normal equation 
with the Table data. The equation form can be depicted as 
the following:   

     ൜cA + db = fbA + eb = g                          (8) 

The values of A, c, d, e, f, g, is calculated by the 
satisfaction data. Then with the normal equation (8) being 
solved, the constant b could be calculated. In the end, we get 
customer’s satisfaction with function y =e−bx . 

Before we describe our algorithm, we define S(sc) as an 
Sc set that comes from the customer’s choice. Our algorithm 
is shown as follow: 

 
 
 
 
 
 
 

Figure 3.  Algorithm 1 

As is described by above algorithm, input parameter is 
S(sc) that indicates the consumer’s choice. Line 3 states that 
we create a new empty set to contain the formula. Line 4 to 
Line 5 iterates every Sc set in set S(sc) to generate the 
formula and insert into the formula set  Setformula . Line 6 
returns the formula set. After these steps, we have a utility to 
put and generate formula to multiple QoS constraints.  

C. Back-end 
Due to formula set we have proposed, for each QoS 

attribute, we get a formula Fb. Taking fc as the satisfaction 
of consumer, we can get the function as follows:  

    ݂ܿ݅  = Fb( ݅ݔ)(i = 0,1,2….and where each i delegates the 
single QoS attributes)             (9) 

As different service QoS attributes may lead to different 
results in service selection, we assume that each service has 
an associated vector:   

fc(ܽ1 ܽ2, ܽ3, ܽ4,……ܽ݅ ….)(i=1,2…….n)         (10) 

Where n is the number of different QoS classes. The 
element of this vector delegates the consumer’s satisfaction 
of each QoS attributes, such as response time. Suppose we 
have an optimal service which contains the best value of 
QoS attributes. Since we take percentage as the customer 
satisfaction, the max value should be number 1. Here we 
take fp as the optimal service: 

   fp( 1,1,1, 1,……  1……)                    (11) 

Suppose we get a group services with the same function 
requirement. The services have a vector set as follow: 

    Fc = {fci}(i=1,2,3…………. )              (12) 

In order to select the optimal service, we compare the 
distance between each service’s vector and optimal vector.          Di=fcifpതതതതതത (i=1,2,3……..)                  (13) 

According to the formula of space vector, we can 
calculate the distancei:    Di  = ඥ∑ |1 − ai|2ni=1  (i=1,2,3…………)       (14) 

In our study, we consider that the further distancei   is, 
the worse the service evaluated. From the vector set we 
consider the optimal service i need to satisfy the following 
condition:  

   Dmin = Min{Di (i=1,2,3……..)}              (15) 

Although we can use such method to rank service, the 
distance cannot represent the actual situation because in 
above situation the QoS attributes they selected are merely 
taken into equal consideration. In this paper, we set weight 
for each QoS attribute in order to coordinate consumer’s 
requirements. We define wi  to denote each QoS attribute 
weight. In the following, the vector distance formula is 
transformed as: 

D = ට∑ (1−ai )2wi n∑ wini=1ni=1                        (16) 

Section D would discuss in detail on how to adjust the 
weight value wifor consumer’s preference. 

Based on the computing model introduced in the above 
two sections, we can define the recommendation algorithm 
as Algorithm 2. 

In line 1, the input element Setservice  indicates a group 
service with the same functional requirement and S (sc) 

1 ggetFormulaSet( S(sc) ) 
ݏݐ݁ܵ 2 ←   (ܿݏ)ܵ
ݐ݂݁ܵ  3 ݈ܽݑ݉ݎ݋  ← {new set of <s>} 4   ffor each item inn ܵ݁ݏݐ  55   do  ݂ܵ݁ݐ ݈ܽݑ݉ݎ݋  ←getformula(item); 66   return  ݂ܵ݁ݐ ݈ܽݑ݉ݎ݋     
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represents customer’s choice for each QoS attribute from the 
front-end. Line 2 and Line 3 initialize operation set and 
recommendation set. In line 4, we can use the former 
algorithm to get a formula set for compute customer’s 
satisfaction. And then, we iterate every service in Setsc  
from line 5 to line 10. Line 7 uses a function which is 
defined in Algorithm 3 to create a new vector. Line 8 
computes the distance between input service’s satisfaction 
and optimal with a function which employing formula (16) 
for calculation. After each service’s distance has been 
calculated, we sort all the input service by their distance in 
line 10. The last line returns the result. 
     
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Algorithm 2 

 The algorithm of created vector is described as 
Algorithm 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.   Algorithm 3 

Input parameters conclude a service’s QoS attributes and 
a formula set. Line 2 and Line 3 initialize the QoS attributes 
set and a new empty vector. Line 4 to Line 9 iterates each 
QoS attribute in Sets  to form a vector. For each QoS 
attribute, Setformula  contains corresponding formula to 
compute customer’s satisfaction. So in line 5, we use 
function to get the formula with QoS type. If the formula is 
null, it represents that customer have no constraint on this 
QoS attribute. As the line 7 represents, the element of this 
vector is defined as 0. If the formula is not null, we should 
record the customer’s satisfaction with the formula. Line 9 
indicates such situation. At last, vectors  would return as the 
result. 

D. Optimizing attribute weight 
The above sections describe the web service static 

ranking method. However, it is possible for the consumer to 
choose a service in the service rank sequence other than the 
first one in practice. (In our service registry, we put the 
service with best QoS in the first place of the rank sequence). 
For example, a consumer would choose a service other than 
the first one in the service rank sequence due to its much 
lower price though its performance and reliability are worse.  
This fact shows that compared with the congruent ones, 
unequal weights, particularly the customer-specific weights, 
are more meaningful for customers. 

Furthermore, if the historical records of service selection 
of customers are available, our framework can recommend 
the most suitable service to consumers according to the 
weights self-learned from the historical data in the case that 
the customers don’t provide any clues about the weights 
when they send the service discovery requirements. 
Therefore, as the running of the services at runtime, this 
approach is proposed to handle service ranking and selecting 
in a dynamic situation. 

In our framework, from the above description, the 
optimal service is selected by the formula (16) which with a 
weight wi  that indicates customer’s preference to each QoS 
attribute. When consumer’s selection cannot follow the 
framework rank sequence, we need to change the value wi 
for QoS attribute to coordinate the preference. In order to 
adjust the rank sequence, we expect to build a dynamic 
self-accommodate network to revise the correlate weight. 
ANN (Artificial Neural Network) automatically learns from 
the former experiences through adjusting the connection 
weights and can use the knowledge learned before. In this 
paper, we use the BP algorithm (Back Propagation 
Algorithm) in neutral network to learn the weight 
information in our framework, which is widely used as an 
effective autonomy method. 

In the beginning, we suppose each QoS attributes weight 
has a same value. With the accumulation of the application 
record, we can adjust the weight value to satisfy customer’s 
preference. In order to obtaining an appropriate weight value, 
a neural network needs a fixed expecting value and training 
weight. During the learning process, neutral network shorten 
the distance between expect value and output value with the 
adjusting weight. 

In this paper, we consider neurons number of Input layer 
can be confirmed by the QoS attribute number. The output 
layer has two neurons note which contain the values of 
customer contentment and discontent. Similarity, we get a 
vector (x, y) to represent the output. Our framework take the 
vector (1, 0) as the marking of consumer’s acceptation and (0, 
1) represents the consumer’s rejection. On behalf of making 
our neutral network to reach stable state, we compute the 
error between consumer’s choice and (1, 0) or (0, 1) and then 
send it to neutral network. It is a contradictive issue to ensure 
the number of hidden neurons because there is no terminal 
verdict at present. In our framework, the hidden layer has 
three units because such design can solve the core functions 
problem, and if we add more layers or more units in the 

1 rrecommend(ܵ݁݁ܿ݅ݒݎ݁ݏݐ ܿݏݐ݁ܵ 22 ((ܿݏ)ܵ , ← ݁ܿ݅ݒݎ݁ݏݐ݁ܵ ݀݊݁݉݉݋ܿ݁ݎݐ݁ܵ 33   ← {new set of <s>} 44 ݂ܵ݁ݐ ݈ܽݑ݉ݎ݋  ← ܿݏݐ݁ܵ foor each item inn 5  ((ܿݏ)ܵ)ݐ݈݁ܵܽݑ݉ݎ݋ܨݐ݁݃      6 do 7  ݏݎ݋ݐܿ݁ݒ = .݉݁ݐ݅)ݎ݋ݐܸܿ݁݁ݐܽ݁ݎܿ ,ܿݏ ݐ݂݁ܵ ݈ܽݑ݉ݎ݋ ) 88  item.distance=getDistance(ݏݎ݋ݐܿ݁ݒ); ݀݊݁݉݉݋ܿ݁ݎݐ݁ܵ      9  ← ݀݊݁݉݉݋ܿ݁ݎݐ݁ܵ  SSort  110  ;(݉݁ݐ݅) ݀݊݁݉݉݋ܿ݁ݎݐ݁ܵ rreturn  111 ݁ܿ݊ܽݐݏ݅݀ ݋ݐ ݃݊݅݀ݎ݋ܿܿܽ      
1   ccreateVector(sc,݂ܵ݁ݐ ݈ܽݑ݉ݎ݋ ݏݐ݁ܵ   22 ( ← ݏݎ݋ݐܿ݁ݒ   33 ܿݏ  ← ݏݐ݁ܵ ffor each item  in   44 (݊)ݎ݋ݐܿ݁ݒ ݓ݁݊  5 ddo formula = getFormula( ܵ݋ܳ݉݁ݐ݅ ݁݌ݕܶ  ݐ݂݁ܵ       , ݈ܽݑ݉ݎ݋ ) 6   iif (formula==null) 
7     then  ݏݎ݋ݐܿ݁ݒ൫݅ܵ݋ܳ݉݁ݐ ݁݌ݕܶ  ൯ = 0 
8     else  ૢ         ݏݎ݋ݐܿ݁ݒ൫݅ܵ݋ܳ݉݁ݐ ݁݌ݕܶ  ൯ ܵ݋ܳ݉݁ݐ݅)݊݋݅ݐ݂ܿܽݏ݅ݐܽܵݐ݁݃                   = ݁ݑ݈ܽݒ  ,     (݈ܽݑ݉ݎ݋݂
10   return   ݏݎ݋ݐܿ݁ݒ  
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hidden layer, we’ll find that the precision couldn’t be 
improved remarkably, on the contrary, the training time 
would be prolonged greatly. According to the principle 
above, our framework builds the ANN as Figure 6: 
 
 output layer  
              
 hidden layer 

 
 input values            ..                       
 

Figure 6.  The form of ANN 

   In ANN, the learning process includes forward 
propagation and back propagation. During forward 
propagation, input information is managed by hidden layer 
to arrive at output layer. According to formula (16), we take 
a service’s each QoS attribute as an input unit ai  and 
initialize the weight ݅ݓ  to a small random number. Input 
information is transmitted to hidden layer by active formula 
(18). Here we take ݆݅ݓ  to represent the weight of each 
input unit of hidden layer. The formula is transformed as 
follow:      

      f1(ai)= ට∑ (1−ai )2wij n∑ wijni=1ni=1  (i= 1,2,3……n)          (17) 

And then, when the hidden layer enters into output layer, 
the output unit is activated by the following formula: 

                  

    ok = ⎩⎨
⎧1 − 3∗∑ bj wjk3j=1∑ wjk3j=1                 if k = 13∗∑ bjwjk3j=1∑ wjk3j=1                         if k = 2            (18) 

The value of ok  is the customer’s anticipant output. The 
value o1 indicates the output satisfy degree of customer’s 
requirement and o2 indicates the output indicates that the 
output does not satisfy degree of customer’s requirement. If o1 is three times larger than o2, we consider this service has 
satisfied the customer’s requirements. On the contrary, if o2 
is three times larger than o1, we deem the service does not 
satisfy customer’s requirements. In actual situation, if there 
is contradiction between customer’s choice and expected 
output, the information will be transferred to back 
propagation process. 

At the back propagation phase, feedback path shortens 
the distance between actual output and expected output by 
regulating weight of each neuron. Then we repeat iterations 
in this way for reducing the errors to the permissible error 
range. 

Before we introduce the method of adjusting weight, we 
define the following variable for neutral network: 

 Variableη indicate the learning rate. It is a constant 
with very small value. 

 Variable nin  is the dimension of the network input 
vector. 

 Variable nout is the dimension of the network 
output vector. Here we evaluate it as 2. 

 Variable nhid   is the number of units in the hidden 
layer, we evaluate it as 3. 

 The input from unit i to unit  j  is denoted xij . 
 The weight from unit i to unit  j  is denoted  wij . 
 .is a momentum constant which is very small ߙ 
ݑ݋   indicates the output of each unit u in the 

network. 
݇ݐ   represents the expect output of each unit 

For each network output unit k, we calculate its error 
term:        δk ← ok(1 − ok)(tk − ok)                 (19)  

For each hidden unit h, we calculate its error δh  term: 

       δh   ←  oh (1 − oh )∑ wkhk∈output δk          (20) 

   When output can’t satisfy the expect value, we should 
adjust the weight wij .  Increment is computed as follow: 

        ∆wij = ηδixij + α∆wij (n − 1)              (21) 

And then the weight wij   is adjusted to: 

          wij ←  wij + ∆wij            (22) 

Variable ∆wij  would be changed to coordinate wij   
until output meets the customer’s preference. Through this 
operation, neutral network will continue to make the whole 
system reach a stable state spontaneously. 

IV.SIMULATION 
We built a prototype to simulate our computing 

mechanism. In the prototype, we measure 5 QoS attributes: 
response time (unit: milliseconds), availability (unit: TTR 
which means the cost time of modifying an inefficacy 
service), interoperability analysis (unit: % which means ratio 
of the errors and the warnings reported), cost of service (unit: 
cent per service request), reliability (unit: errors/month). 
According paper [18], we build a registry center to save and 
manage register service’s QoS attributes feedback by the 
service consumers. We developed the front-end and 
background-end with Eclipse 3.4. 

In our simulation environment, there are three 
consumers and five sets of services, each of which has eight 
services which are same in functionality but differ in QoS. 
We depict the process of service discovery and how the 
contribution weights of QoS attributes are adjusted as 
follows. 

Suppose the consumer A input the multi-QoS constraints 
from the front-end. The Next Tables show the font-end data. 
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TABLE II.  THE REFERENCE POINTS OF  PERFORMANCE   

FD(milliseconds) 1 10 20 25 30 31 35 
FS (%) 98 80 50 48 10 8 5 

TABLE III. THE REFERENCE POINTS OF  PERFORMANCE   

FD(second) 1 5 7 10 15 18 20 
FS (%) 99 95 89 70 50 30 5 

TABLE IV. THE REFERENCE POINTS OF  INTEROPERABILITY 

FD (%) 1 15 25 32 48 50 80 
FS (%) 99 96 88 75 61 30 10 

TABLE V. THE REFERENCE POINTS OF  COST 

FD ($) 9 11 17 19 21 23 27 
FS (%) 97 91 80 76 61 22 8 

TABLE VI. THE REFERENCE POINTS OF  COST 

FD (errors/math) 1 10 15 20 21 25 30 
FS  (%) 98 90 79 72 63 25 3 

Applying the curve fitting described in algorithm 1 on the 
data in above tables, we can get the following formula to 
express the multi-QoS constraints. 

TABLE VII. FORMULAE OF QOS ATTRIBUTE 

QoS attribute Formula 
Performance ݕ = ݔ0.0293−݁  
Availability ݕ = ݔ0.0491−݁  
Interoperability ݕ = ݔ1.2482−݁  
Cost ݕ = ݔ0.0490−݁  
Reliability ݕ = ݔ0.0324−݁  

All the services we developed are registered in the 
service registry. Here we take the services A-G which are 
same in functionality as an example. The QoS of these eight 
services is shown in Table . 

TABLE VIII. QOS ATTRIBUTES OF SERVICES 

Applying the QoS data of the eight services into the 
formula set shown in Table , we can get the QoS vectors 
of each service’. In terms of formula (18), we get the 
distances of the services as well as their ranks. The result is 
shown in Table :  

TABLE IX. SIMILARITIES OF RANK 

Service Vector Distance Rank 

A (0.91,0.67,0.99,0.45,0.69) 0.7180 4 
B (0.78,0.74,0.89,0.50,0.68) 0.6919 3 
C (0.97,0.95,0.98,0.41,0.97) 0.6283 2 
D (0.62,0.94,0.98,0.36,0.76) 0.7833 7 
E (0.95,0.53,0.66,0.54,0.76) 0.7824 6 
F (0.38,0.65,0.99,0.70,0.96) 0.7705 5 
G (0.64,0.88,0.86,0.75,0.84) 0.5056 1 
H (0.32,0.29,0.35,0.23,0.37) 1.5405 8 
Suppose even though the service G is the best one in 

Table , consumer A selects service C but not service G 
due to the perfect performance of service C. Then, the ANN 
will update weights of each QoS attribute to accommodate 
the customer’s preference. In our ANN, we take η  as 0.05 
and α as 0.1. The results of self-learning on contribution 
weights of QoS attributes are listed in Table  in which 
each row indicates the result after iteration.  

TABLE X. ITERATIVE RECORDS OF CONSUMER A 

SetId         Consumer  A Iteration 

N1 

w1 w2 w3 w4 w5 
1.00 1.00 1.00 1.00 1.00 1 
1.12 1.00 0.96 0.91 1.00 2 
1.18 0.99 0.92 0.89 1.02  3 
……. ……. ……. ……. ……. …. 
1.28 0.92 0.96 0.74 1.10 100 

    The last row of Table  is the weights at the time of 
ANN reaching its stable status.  With the weights in last 
row of Table , the rank is updated as Table : 

TABLE XI. THE UPDATE SIMILARITIES OF RANK 

Service Distance Rank 
A 0.7082 3 
B 0.7364 4 
C 0.6169 1 
D 0.9061 5 
E 0.9132 6 
F 1.1132 7 
G 0.7057 2 
H 1.9549 8 

    We simulate the behavior of consumer B and C, and 
respectively calculate the contribution weights for the both 
consumers in the same way as above. The results are shown 
as follows: 

TABLE XII. ITERATIVE RECORDS OF CONSUMER B 

SetId          Consumer  B Iteration 

N1 

w1 w2 w3 w4 w5 
1.00 1.00 1.00 1.00 1.00 1 
0.99 1.00 1.01 0.99 0.85 2 
0.91 0.96 1.01 0.91 0.81 3 
……. ……. ……. ……. ……. …… 
0.01 0.87 2.89 0.56 0.67 100 

TABLE XIII.  ITERATIVE RECORDS OF CONSUMER C 

Service A B C D E F G H 
Performance 
(milliseconds) 3.22 8.32 1.05 16.50 1.78 33.18 15.42 38.76 

Availability 
( second ) 8.10 6.19 1.03 1.33 12.99 8.72 2.65 25.34 

Interoperability 
( %) 1.03 9.00 1.00 1.99 33.32 1.00 11.77 83.21 

Cost 
($) 16.44 14.00 20.00 20.78 12.64 7.01 6.00 29.89 

Reliability 
(errors/math) 11.27 12.12 1.03 8.16 8.53 1.04 5.32 30.71 
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SetId Consumer  C 
Iteration 

N1 

w1 w2 w3 w4 w5 
1.00 1.00 1.00 1.00 1.00 1 
1.05 1.23 1.32 1.00 1.01 2 
1.12 1.96 1.21 1.01 1.11 3 
……. ……. ……. ……. ……. …… 
0.23 0.12 3.68 0.55 0.42 100 

After the weights have been modified, according to our 
statistic, it is reported that the error term between consumer’s 
choice and our calculation is only 1.23%. The simulation 
proved that our mechanism can improve service selection 
precision.   

V.CONCLUSION AND FUTURE WORK 
The quality-based selection of web services is an active 

topic recently. Many researchers have taken a great deal of 
investigation. The main drawback of current work in 
dynamic web service selection is the inability to ensure that 
service recommending algorithm is open, fair and 
trustworthy. We achieved the dynamic and fair computation 
of QoS values of web services through active users’ 
feedback and active monitoring. Our selection mechanism 
concentrates on constraint which contains consumer’s 
preference and multitude attributes will be taken into account. 
Moreover, QoS constraint can be dynamic changed by ANN 
to accommodate consumer’s preference.  

However, in the process of our simulating exponent 
curve, there still exist errors between our expected value and 
true value. Our future work will concentrate on how to 
eliminate the noise datum from the consumer’s input data 
effectively for simulating the exponent curve accurately.  
Further, it is still a challenge on how to condense reference 
data of consumer’s preference QoS attributes. 
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