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Abstract—Services are increasingly being hosted on cloud
nodes to enhance their performance and increase their avail-
ability. The virtually unlimited availability of cloud resources
enables service owners to consume resources without quantitative
restrictions, paying only for what they use. To avoid cost
overruns, resource consumption must be controlled and capped
when necessary. We present a distributed tree-based protocol
for managing quotas in clouds that minimizes communication
overheads and reduces the time required to determine whether
a quota has been exhausted. Experimental evaluation shows that
our protocol reduces communication costs by 42% relative to a
distributed baseline solution and is up to 15 times faster.

Keywords-, Distributed Quota Monitoring, Distributed Quota
Enforcement and Management, Distributed Credit Management,
Clouds

I. INTRODUCTION

The growing popularity of cloud infrastructure has led to
large number of services being hosted in the cloud. These
services are complex software artifacts composed of many
individual applications that are integrated to enable advanced
functionalities such as social networks, e-commerce, or music
streaming. To satisfy users’ demands, services are deployed
across geographical locations over hundreds or even thousands
of nodes.

The virtually unlimited availability of resources in clouds
enables them to be used as needed and without restrictions,
following a pay-as-you-go pattern. While enticing, access to
unlimited resources may be a liability in the absence of
adequate control over resource usage. Careless use, misuse by
end users (whether malicious or accidental), and programming
errors can all cause service owners to go over budget. To
avoid financial losses due to unintended consumption, service
owners may choose to impose upper limits, i.e. quotas, on
resource consumption.

Managing and enforcing quotas in clouds is challenging due
to the large scale of the infrastructure, the potential number
of end users accessing services, and the unpredictability (see
[1]) of the ways in which services are used—for example, how
often users arrive and how many resources they consume per
visit. Accordingly, the key challenges for managing quotas in
clouds are [2]:

1) To monitor services in real time, ensuring that resource

usage across all nodes remains within specified global
limits.

2) To satisfy resource demands immediately provided that
the global quota is not exhausted.

3) To minimize network communication overheads.
4) To manage quotas with minimal intrusion and overhead

to services.
5) To achieve scalability and fault tolerance.

Centralized approaches which verify that all resource con-
sumption is within quota limits cannot be used due to the sheer
scale of cloud infrastructures. Quota management techniques
from distributed file systems [3] or grid computing [4] are also
not suitable for clouds due to the unpredictability of services’
resource demands. There are also distributed solutions in
which a coordinator—which can be selected either statically
[5] or dynamically [2] among nodes—performs global opera-
tions such as verifying that quotas have not been exceeded.
While these distributed solutions (cf. [2] and [5]) address
each of the challenges enumerated above to various extents,
they require the coordinator to query every node before it
can determine whether a quota has been exhausted. Querying
every node causes latency and communication overheads as the
number of nodes and the distances between them increase.

Here, we address these latency and communication overhead
problems by proposing a tree-based protocol for enforcing
quotas in clouds. In our protocol, all nodes running a service
maintain a local quota allocation so that permissions can be
given immediately provided that the local allocation is not
exhausted. When local quota allocations are exhausted, nodes
request extra quota only from nearby neighbors instead of
polling all nodes (see Section IV). Our protocol has negligible
computational overhead because the quotas are set using a
simple exponential moving average (EMA) (see Section III)
and communication is performed only with close neighbors.

Our solution is highly available and scalable because each
branch of the tree can set quotas for its children and sev-
eral of these operations can be performed concurrently. In
practice, quota allocations are dynamically transfered from
idle nodes to active nodes without affecting normal service
operation. Experimental evaluations showed that our protocol
reduces communication costs by 42% relative to our previous
distributed solution [2] and is up to 15 times faster (see



Section V).

II. RELATED WORK

The problem of online, distributed quota management and
enforcement has been addressed by several distributed storage
and network systems. A number of works have focused on
how to monitor a global count of resources used at different
nodes. Their aim was to ensure communication efficiency
and guarantee correctness while continuously monitoring a
specific parameter at each node and reporting violations to
a coordinator node as they occur. The coordinator processes
the collected monitoring data for different purposes such as
finding top-k items [9], calculating sums and counts [10],
or detecting violations over distributed data streams with
guaranteed error bounds [11], [12]. However, these works
focus on soft limit enforcement where temporary violations of
quota limits are tolerated. Moreover, these solutions employ a
single coordinator that is selected a priori, which limits their
scalability.

Our work is similar to that of Raghavan et al. [1], who
focused on controlling the network bandwidth consumed by
services in a cloud. In their method, requests at a local site
are served as long as the requested bandwidth is less than
the local threshold. Temporary bursts are dropped even if the
global limit is not surpassed, which may be intolerable from a
service point of view. In contrast, our approach does not drop
temporary bursts because quotas are monitored and adjusted
on demand as long as the global limit is not exceeded.

Relevant work has also been conducted on hard limit
enforcement in storage and grid environments [4], [3]. Karmon
et al. [4] presented a solution that utilizes a tree structure to
efficiently distribute and enforce quotas in grid environments.
However, their work does not address key issues such as
determining surpluses and demands. Moreover, their approach
denies requests if the local quota allocation is lower than
the amount requested even if the global limit has not been
exhausted. The solution of Pollack et al. [3] is similar in
some respects but introduces the use of vouchers with defined
periods of validity that are given to nodes. A node’s allocated
quota is taken away if it is not used during its period of
validity. However, the control and assignment of vouchers is
done using a single quota server whereas our work operates
in a decentralized manner. The work in [2] also addresses
distributed quota enforcement in a multi-cluster environment
by querying every cluster during quota distribution. However,
querying every node causes latency and communication over-
heads as the number of nodes and the distances between them
increase.

Various researchers have investigated prepaid accounting
frameworks and protocols [13] [14] [15] [16]. While these
works provide flexible solutions for charging for service usage,
their accounting systems are centralized. This may generate
a bottleneck in cases where large numbers of services are
consuming resources simultaneously.

III. SOLUTION OVERVIEW

We investigate ways of managing quotas (governing re-
sources such as prepaid credit, CPU hours, CPUs, RAM
allocation, storage space, and network resources) consumed
by customers’ services running on multiple nodes in a cloud
infrastructure. We assume that each customer’s service, run-
ning on a physical node, is associated with a quota daemon.
The quota daemon is a lightweight process that manages the
node’s local quota and coordinates with other quota daemons
belonging to the same customer on other physical nodes when
the local quota is not sufficient to satisfy local demand. When
the local quota budget is below or close to a predefined
threshold, the local quota daemon gathers additional quota
allocations from nearby nodes and redistributes them based
on the rates of service consumption on each node.

This section presents the system model and a high-level
view of our solution.

A. System Model

We assume that a given customer (tenant) has services run-
ning on several physical nodes. In addition, a single physical
node may host services belonging to multiple tenants, each
of which is isolated using a virtual machine (VM). The goal
of quota management is to make sure that the sum of the
quotas consumed concurrently by an individual tenant over all
of the physical nodes running their services does not exceed
that tenant’s global limit. A decentralized approach in which
a quota daemon is attached to each tenant’s service on each
physical node is used to manage their quota consumption.
Figure 1 shows the architecture of the quota daemon running
on a single physical node. The quota daemon interacts with
other quota daemons running on other physical nodes and
communicates information about the availability of free quota
units with other physical nodes running services belonging to
the same tenant. It ensures that the service running on any
given node does not consume resources at a level that would
cause the tenant to exceed their global quota.

We assume that the physical nodes running the tenant’s
services are connected using a tree topology that is constructed
and maintained using distributed spanning tree algorithms such
as that described by Garg et al. [17]. Thus, if the local quota
on a given node becomes insufficient to meet the tenant’s local
resource demands, the local quota daemon interacts recursively
with its neighboring nodes1 in the tree to identify those with
unused quota allocations. These “free” quota allocations are
then transferred to the overloaded node until its demand is
satisfied.

B. High Level View of the Solution

Quota enforcement policies can be roughly divided into two
categories: soft limits [18], [5], [19] and hard limits [2]. Soft
limit quota enforcement ensures that resource consumption
does not exceed a predefined global limit for an extended

1We use the term node to denote the physical machine running a particular
tenant’s service and its associated quota daemon. The terms node and quota
daemon are therefore used interchangeably henceforth.



Figure 1: Architecture of the quota system on an individual
physical node. Quota requests issued by applications belonging
to different tenants are handled by different Quota Daemons.
If a tenant’s local resource demands exceed their local quota
allocation, their Quota Daemon communicates with other
nodes running the tenant’s applications to identify unused
quota allocations elsewhere that can be used to satisfy this
demand.

Table I: Notation used throughout the paper
nk an arbitrary node on which a quota daemon is

hosted
nk · child, nk · parent the child and parent of nk , respectively.

nroot the outermost node or the root of the tree struc-
ture, where nroot ·parent =ø. If nk ·child =ø,
then nk is a leaf of the tree.

yk a set of nodes whose parent is nk , where ∀na ∈
yk , na · parent = nk .

|yk| the number of nodes constituting the set yk .
qk the number of quota units available at nk in any

particular instance.
Q0 the tenant’s initial global quota
Qk the sum of the number of quota units available

to children of nk in any particular instance.
∆tc(kh) the time interval required to calculate the avail-

ability of quota units and distribute them from
nk to nh.

∆td(kh) the time interval required for nk to receive a
reply from nh.

τk a threshold below which quota re-allocation is
triggered.

θk the time interval over which τk is expected to
be valid during re-allocation by the node nk .

Qak the aggregate quota allocation available at nk in
any particular instance.

Tak the aggregate threshold value known to nk in
any particular instance during the aggregation
and distribution phases.

period of time but tolerates intermittent or temporary viola-
tions of the global limit; it is typically used in applications
such as network traffic control or DDoS attack control. On
the other hand, hard limit quota enforcement ensures that re-
source consumption never exceeds the global limit. Hard limit
enforcement is applicable when regulating the consumption
of resources such as prepaid credit, CPU hours, number of
CPUs, RAM allocation, and storage space. This work focuses
on hard limit quota enforcement.

When a service is initiated, the user’s global quota alloca-
tion may be distributed randomly over all nodes within the
spanning tree. Once a node nk exhausts its local quota (i.e.
its local quota falls below or gets close to the threshold τk),
it triggers a re-allocation event and requests the allocation of
additional quota units from either its parent (if the node is
a leaf or the total number of quota units available from its
descendants is not sufficient) or its descendants (see Section

IV). The threshold τk for node nk is equal to the maximum
number of quota units that are expected to be consumed by
the tenant’s service that is running on that node under normal
conditions. A given node nk will therefore reserve τk quota
units for its own use before making any surplus units available
to its parent. This is done to avoid service suspension during
quota redistribution. The value of τk is dependent on the rate
at which quota units are consumed by nk and the time interval
required for the transfer of additional quota units. Therefore,
τk is estimated on the basis of a time interval that is denoted
by θk and whose value is calculated as follows:

θk = ∆tc (kh) + ∆td (kh) (1)

∆tc(kh) and ∆td(kh) can be estimated using recent historical
data and adjusted accordingly.

Let ts and te denote the start and end of a time interval
within which the quota on node nk is consumed continuously,
where te = ts + θk. Moreover, let f(nk, t) denote the
consumption rate of the service hosted on nk, which may vary
with consumption time (denoted by t). Based on the above,
τk can be estimated as follows:

τk =

te∫
ts

f (nk, t) dt (2)

When nk receives an allocation request (either from its
parent or one of its children), it will collect allocatable quota
units from its children. When each child nh receives a request
from its parent nk2, it first reserves τh quota units that it
expects to consume over the time interval θk. Each child nh
then reports its consumption rate and the number of quota
units that it has available for reallocation (i.e. its total number
of quota units minus the number of reserved units) to nk.

Assuming that node nk is coordinating the re-allocation
process, it will calculate the total number of allocable quota
units Qk available from its children and itself as:

Qk = qk +

|yk|∑
j=1

q(h), where q(h) =

{
0 qh − τh ≤ 0

qh − τh qh − τh > 0

(3)
The quota units are dispensed dynamically based on each

node’s demand, enabling the system to react rapidly to changes
in demand in a local manner. Demand is likely to be heaviest
in nodes where it has previously been heavy. Therefore, over
time, quota units are transferred to nodes with high demand.
Specifically, quota units are allocated across nodes based on
each node’s reported rate of consumption. This is done on the
assumption that a node will continue consuming quota units at
the same rate as it has in the past. We use exponential moving
averages (EMA) [2], [1] to calculate consumption rates for

2This operation is a recursive process. That is, when collecting quotas the
request is forwarded to the leaf nodes while during the reply process, the quota
is aggregated at each level by the parents until it reaches the destination node,
which would be nk or nk’s parent in this case.



individual nodes because they enable fair allocation, smooth
out transient peaks in demand, and reduce lag by applying
greater weightings to more recent rates.

Let rpk denote the consumption rate on nk after aggregation
event p − 1 where p > 1 or after the first aggregation where
p = 1. The quota consumption rate rpk can be calculated for
any node nk as:

rpk =

{ (
q0i − q1k

)
/Q0 p = 1

(1 − α)rp−1k +
(
α(qp−1k − qpk

)
)/Q0 p > 1

(4)

The coefficient α in Equation (4) represents the degree by
which a given rate’s weighting is reduced. We chose an α value
of 0.50 in our experiment because preliminary evaluations
showed that this provided effective smoothing of transient
spikes.

The number of quota units qk allocated to the parent nk can
be calculated as:

qk = (Qk) ×
rpk

rpk +

|yk|∑
j=1

rpj

(5)

The number of resource units receieved by the child na after
re-allocation is denoted by qa and can be calculated as:

qa = (Qk) × rpa

rpk +

|yk|∑
j=1

rpj

(6)

IV. THE PROTOCOL

This section presents an overview of the protocol and the
method used to aggregate and distribute quota units across the
participating nodes.

A. Overview Of The Protocol

The quota management protocol is highly scalable and
distributed cloud-wide. It uses a tree-based overlay network to
exchange free quota units with other nodes. We assume that
the nodes in the system are completely connected, forming a
tree-based topology over a real network (e.g., [17]). The global
quota is initially distributed randomly over the tree’s nodes.
The goal is that the system should operate locally, giving a
node immediate permission to use its own free quota units
when its current level of demand is well below its total quota
allocation. However, in the event that one or more of a node’s
children needs more quota units than it has available locally,
every parent in the tree can act as a coordinator of quota
redistribution by identifying its own ‘spare’ quota units and
those on other (idle) child nodes, and reallocating them to the
child with high demand. If the parent, after collecting free
quota units from its children, does not have enough to satisfy
the child’s demand, it can in turn request quota from its parent.
This process continues recursively until it reaches the root of
the tree provided that the upper bound is not reached.

Each coordinating parent performs operations such as col-
lecting extra quota units from child nodes, executing quota

re-allocation, and redistributing the new quota units to child
nodes that are participating in the re-allocation process. This
allows multiple independent quota re-allocation decisions to
be executed simultaneously within different subtrees having
non-overlapping nodes.

The protocol has two phases: aggregation and distribution.
When triggered, the protocol first performs aggregation of
surplus quota units and then distribution of quota units to
nodes where they are needed. Information on surplus quota
units and the thresholds of each participating node across
the spanning tree is aggregated incrementally via a series of
local computations during the aggregation phase. Each parent
computes partial aggregate data on the thresholds and available
quota units within its subtree by combining the partial aggre-
gate data for its children’s quota units and thresholds with its
own free quota and threshold values respectively. For a node
nk, the partial quota aggregate Rak and the partial threshold
aggregate are computed using Equations 7 and 8, respectively.

Qak = Qk +

|yb|∑
j=1

Qaj (7)

Tak = τk +

|yb|∑
j=1

Taj (8)

The aggregation operation terminates when the aggregated
value is greater than the aggregated thresholds of its children
and its own local threshold multiplied by a constant (i.e. when
Qak > βTak, where, β = 1, 2, ..., n) or when it reaches
the root of the entire tree. The parameter β is a constant
that specifies how many quota units should be aggregated for
distribution. Increasing the value of β increases the number of
aggregated quota units available for distribution, which may
avoid the need for the immediate invocation of the protocol
since nodes with high demand will receive more quota units
to begin with. As a result, high values of β can reduce
communication overheads and improve performance. In our
experiment, we set β to 1.

The aggregation phase can be triggered by any node if
its local quota allocation falls below or becomes close to its
threshold. If it is triggered by a leaf node, the leaf node sends
a request to its parent asking for more quota units. The parent
then collects quota surpluses and thresholds from all of its
children. To facilitate the process for non-leaf children the
parent also transfers its own surplus quota units and threshold.
Each non-leaf child can in turn recursively collect quota
surpluses and thresholds from their children if the surplus
received from parent plus its local surplus is less than the
product of β and the combined thresholds of the node itself
and its parent (surpluses are calculated using Equation 3).
After collecting data from all of its descendant nodes, the
parent node will pass on the aggregated data to its own parent
if Qak ≤ βTak, at which point the process will be repeated
by the parent’s parent. In the worst case, i.e. if Qak ≤ βTak
remains true after the process has been performed by the
parent’s parent, the aggregated quota and thresholds will be



passed further down the tree until they eventually reach the
root, at which point the process will terminate. This situation
will only occur if the tenant’s overall quota allocation is very
low and may indicate that the service should be terminated
unless the tenant’s quota can be replenished or increased.

When the protocol is triggered by any non-leaf node, the
parent collects surplus data from all of its children instead
of asking its parent. The operations disucssed above are then
performed. Section IV-B presents the algorithm used in the
aggregation phase.

Once the aggregation phase is complete, quotas are dis-
tributed to all of the nodes that participated in the aggregation
phase during what is termed the distribution phase. The dis-
tribution phase is based on another recursive process in which
new quota units are distributed from the parent, where the
aggregation phase terminated, to each node in the subtree that
participated in the aggregation phase. This is done according to
Equations 5 and 6. Note that the quota consumption rate rpj of
child node j in Equation 5 may represent an aggregated quota
consumption rate (i.e. the child’s local consumption rate plus
that of its descendants if those descendants participated during
aggregation phase). Section IV-B2 presents the algorithm used
in the distribution phase.

B. The Algorithm

As stated previously, a quota re-allocation event is triggered
when the local quota balance of a node nk is below or close
to its threshold τk. The first phase of quota re-allocation
is aggregation, where extra quota units are collected from
descendant nodes (and from ancestors if sufficient quota
units cannot be collected from the descendants). During the
subsequent distribution phase, the collected ‘extra’ quota units
are then redistributed to each participating node based on their
rates of consumption. Algorithms 1 and 2 outline the processes
used in the aggregation and distribution phases, respectively.

1) Aggregation phase: The aggregation phase is a recursive
process that aggregates ‘spare’ quota units for redistribution
over a subtree. Any node nk that is not participating in another
aggregation process (i.e, nk.PARTICIPATING=0) can trigger
aggregation if qk ≤ τk (depicted on lines 5–8). Any node
receiving an aggregation request will in turn perform the
aggregation process (depicted on lines 9–19).

The procedure AGGREGATE() (lines 22–46) governs what
happens during the aggregation phase. First it checks whether
the node is already participating in the process; if so, it returns
PARTICIPATING (lines 23–24). Otherwise, the node changes
its state to participating and calculates the numbers of local
quota units to reserve and ‘free’ local quota units that can be
returned to the parent (lines 26–28). The next action depends
on who initiated the aggregation. If the node itself initiated
the aggregation event or was signalled to do so by its child,
it updates the aggregated quota and threshold values and calls
the AGGREGATE() procedure in its children (lines 32–35). On
the other hand, if the aggregation request was received from
a parent node, the receiving node updates the aggregate quota
and threshold. If the number of aggregated free quota units

exceeds the product of the aggregated threshold and β then the
aggregated quota, aggregated threshold and aggregate average
consumption rate are returned. Otherwise, the aggregation
request is sent to the node’s children. This process is shown
on lines 36–44.

Algorithm 1 Aggregation algorithm.

1: nk .PARTICIPATING=0
2: nk.Qak=0
3: nk.Tak=0
4: loop
5: if qk < τk && nk · child = ø && nk .PARTICIPATING=0 then
6: Send request to nk · parent for more quota
7: else if qk < τk && nk · child 6= ø && nk .PARTICIPATING=0 then
8: nk · parent· AGGREGATE(nk ,ø)
9: if nk.Qak ≤ βnk.Tak && nk 6= root then

10: nk · parent· AGGREGATE(nk · parent,ø)
11: end if
12: else if Received request for more quota from child nodes then
13: AGGREGATE(nk ,ø)
14: if nk.Qak ≤ βnk.Tak && qk 6= root then
15: AGGREGATE(nk · parent,ø)
16: end if
17: else if Received for aggregate from parent node nk · parent then
18: AGGREGATE(nk, nk · parent)
19: end if
20: DISTRIBUTE( np)
21: end loop

22: function AGGREGATE(nk, np)
23: if nk .PARTICIPATING=1 then
24: return PARTICIPATING
25: end if
26: nk .PARTICIPATING=1
27: estimate localThreshod τk using Equation 2
28: temp=nk.localQouta− nk.localThreshold
29: if temp<0 then
30: temp=0
31: end if
32: if np =ø then
33: nk.Qak = temp
34: nk.Tak = nk.localThreshold
35: sendToChild(nk)
36: else if np 6= ø then
37: nk.Qak = np.Qap + temp
38: nk.Tak = np.Tap + nk.localThreshold
39: if nk.Qak > βnk.Tak OR nk is leaf node then
40: store the consumption rate and that of each child locally
41: return nk.Qak , nk.Tak and consumption rate
42: else
43: sendToChild(nk)
44: end if
45: end if
46: end function

47: function S(e)ndToChild(np)
48: for each child nc do . call child aggregate method
49: nc.AGGREGATE( nc, np)
50: end for
51: end function

2) Distribution phase: The distribution phase is the reverse
of the aggregation phase: it distributes quota units to all
nodes that participated in the aggregation phase. Algorithm
2 presents the operations performed during distribution phase.
Each node in the hierarchy that participated during the ag-
gregation phase recursively iterates through its children and
performs redistribution operations. This is shown in lines 2–
10.



Algorithm 2 Distribution Algorithm.

1: function DISTRIBUTE( nk)
2: Update nk · localQuota using Equation 6
3: Adjust nk · localThreshold
4: for each child nc do
5: if nc · PARTICIPATING = 1 then
6: Calculate nc.localQuota using Equation 5
7: nc·DISTRIBUTE( nc)
8: end if
9: end for

10: nk · PARTICIPATING = 0
11: end function

3) Complexity of the Algorithm: The complexity of the
algorithm in terms of the number of messages sent depends
on the number of children (branching factor) and the number
of participating nodes during the two phases of the protocol.
Let N denote the total number of nodes and M the number of
children for a non-leaf node in the spanning tree. Three mes-
sages are exchanged between each child and the parent: two
during the aggregation phase (one to request extra quota units
from the parent and another conveying the child’s response to
the request) and one during the distribution phase to distribute
quota units from parent to child. As a result, the total number
of messages exchanged to complete the protocol is between
3M and 3N .

C. Fault Tolerance of the Protocol

There are different kinds of failures that would affect
the protocol. To structure our discussion, these failures are
categorized into three scenarios. 1) Link disconnection or node
failure during protocol execution, which may result in quotas
being deducted from the source’s quota allocation but not
added to the target (if the failure occurs during the aggregation
phase) or quota units being distributed but not received by the
target daemon (if the failure occurs during the distribution
phase). 2) A node crashes, taking with it any quota units in
its possession. 3) Network partitioning, which would result in
a set of different independent and disconnected subtrees.

We use different approaches to tackle these failures. Every
node keeps a record of the total number of quota units, unused
and used, to overcome the first failure mode. Once the nodes
are reconnected, the aggregation phase is re-run from the root
to collect all used and unused quota units from all nodes. The
root node then computes the sum of used and unused quota
units and compares the resulting value to the initial global
quota. The excess of the initial global quota over the computed
sum is the number of lost quota units. No special action is
required to handle the second and the third type of failures.
In the second case, the node can resume normal activity after
rejoining the network. In the third case, the protocol resumes
as normal after network reconnection.

V. EXPERIMENTAL EVALUATION

A. Experiment Settings

We evaluated our protocol by emulating quota enforcement
for a distributed storage service. Our prototype was imple-
mented using Java RMI. The testbed consisted of 20 hosts.
Thirteen of the hosts were equipped with AMD Opteron(TM)

Processors, with each host having 32 2.1GHz CPUs and 64GB
RAM. A further 7 hosts were each equipped with 1.8GHz
quad-core AMD Opteron(TM) CPUs and 4GB RAM. All hosts
were connected via our campus intranet, which is based on
Gigabit Ethernet. Each host ran up to seven instances (nodes)
of the prototype to support the simulation of larger networks.
We studied systems of up to 100 nodes with each node having
at most 5 neighbors (children).

The response time and communication efficiency of our
protocol were compared to those for our previous distributed
solution [2] in which each node ran a quota manager. Each
quota manager served storage requests provided that its local
quota allocation was sufficient (i.e. above a predefined thresh-
old). If the requested quota was greater than the local node
balance, the quota manager triggered an allocation event and
all other nodes sent their extra balance and the number of
quota units they had consumed since the previous allocation
event. Based on these consumption rates, the quota manager
that triggered the event then calculated the new allocations for
each node and redistributed the available quota units.

We used two datasets to generate workloads. One dataset,
WorldCup, consisted of real-world traces of HTTP requests
across a set of distributed web servers. The trace data was
obtained from the organizers of the 1998 FIFA Soccer World
Cup [20], who maintained a popular web site that was accessed
over 1 billion times between April 30, 1998 and July 26,
1998 and was served by 30 servers distributed across different
geographic locations around the world. Our experiments were
conducted using server log data consisting of 57 million page
requests distributed across servers that were active during that
period. We replayed the trace in such a way that the server
identifier was used to indicate the node that received the
request and the size of data requested was used in place of
the number of quota units requested by the storage service.

The other dataset, Synthetic, contained randomly generated
traces that gave us the freedom to evaluate parameters that
were not controlled in the real world trace. For instance, we
were able to increase the number of nodes in order to evaluate
scalability and to increase the number of requests to under-
stand the behavior of our solution as the number of requests
increased. We also varied the size of the capacity requested in
order to study how this affected the communication overhead.
The synthetic trace distributed requests to nodes according to
a Zipf distribution. We employed this distribution because it
has been conjectured that the Internet [21] is characterized by
distributions of this type, and because it allowed us to vary
the number of requests received by each node.

We ran the experiment until the global quota was exhausted.
The results presented herein are based on average values
from five different executions. The communication cost was
measured in terms of the number of messages exchanged
between different nodes for quota reallocation. For example,
a message sent or received from a parent to a child had a cost
of one while messages from a grand parent or a grand child
had a cost of two.
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Figure 2: Communication cost reductions achieved using the
baseline and new algorithms relative to a centralized approach.
The cost reductions are expressed as percentages indicating
the ratio of the total number of messages exchanged during
reallocation for the tested algorithms to that for the centralized
protocol.

B. Results

Figure 2 shows the communication cost reduction achieved
using our previous algorithm [2] and the protocol reported
herein as percentages of the communication costs incurred
when using a centralized approach for both the WorldCup and
Synthetic datasets. We refer to our previous approach [2] as
the baseline algorithm and the protocol presented herein as the
new algorithm in the remainder of this paper. For both datasets,
the baseline algorithm reduces communication costs by around
85% while the new algorithm achieves reductions of around
92%. The new algorithm thus generates less traffic than the
baseline algorithm. This is because under the new algorithm,
nodes that need extra quota units send quota requests out
progressively, initially focusing on their immediate neighbors
rather than sending messages out to all nodes immediately.

Table II shows the two algorithms’ average response times
for quota re-allocation with the tested datasets. For both
datasets, the new algorithm has a faster response time than
the baseline algorithm. This is because most of the time the
new algorithm interacts only with closer neighbors than those
contacted when using the baseline algorithm.

The table also shows that the response time for the World-
Cup dataset was greater than that for the synthetic dataset.
This is because a load balancer was used to distribute requests
across nodes when the WorldCup dataset was generated, so the
trace in this dataset contains requests which are almost uni-
formly distributed across the whole workload. Consequently,
each node’s consumption of quota units is comparatively
uniform and all nodes have a similar and high probability of
triggering quota re-allocation. This creates appreciable perfor-
mance overhead, which increases response times. In contrast,
the synthetic dataset was created using a Zipf distribution that
spreads requests across nodes. Consequently, most of the quota
consumption in this case occurs in a small number of nodes,
resulting in a shorter response time.

Figure 3 shows the relationship between the relative com-
munication cost and the proportion of global quota remaining
for the WorldCup dataset (we omitted the results for synthetic

Table II: Average response time in ms.

Algorithm Synthetic trace WorldCup trace
Baseline algoritm 69.5 75.8
New algoritm 13 22.7
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Figure 3: Relative communication costs as a function of the
remaining global quota allocation.

trace because they did not differ greatly). It is clear that
the communication cost is very low to begin with. This
is because each node can meet its demand using its local
quota. However, as the local quota becomes insufficient to
satisfy the local demand in some nodes, these nodes start
interacting with their neighbors, causing communication costs
to start rising. The communication cost becomes very high
when the amount of residual global quota is less than 10%
of the initial value because nodes immediately exhaust their
allocation and demand more. This is especially true for the
new algorithm because nodes cannot satisfy their demands
by obtaining quota units from near neighbors and therefore
end up communicating extensively with very distant nodes.
In general, nodes communicate less when the total allocation
is high. However, as the total quota alocation declines, re-
allocation requests become more frequent and communicaton
costs increase.

To investigate the scalability of the two algorithms, we
performed a number of tests with different numbers of nodes
that were run until the global quota allocation was exhausted.
These tests were performed using the Synthetic workload,
with the same initial global quota allocation in each case.
Communication costs were measured in terms of the total
number of messages exchanged and average response time
for each test. The results obtained are shown in figures 4
and 5, respectively. Figure 4 shows that as the number of
nodes increases, the new algorithm becomes more efficient
at reducing communication overheads than the baseline al-
gorithm. This is because under the new algorithm, nodes
generally communicate only with their near neighbors. The
new algorithm therefore has a better average response time
than the baseline algorithm. For example, as shown in Figure
5, when the number of nodes was increased from 10 to 100,
the average response time increased from 6.35ms to 25ms for
the new algorithm but went from 19.74ms to 346ms for the
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Figure 4: Effect of increasing numbers of nodes on the number
of messages exchanged.
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Figure 5: Effect of increasing numbers of nodes on response
times.

baseline algorithm.

VI. CONCLUSION

We present a hierarchical quota enforcement protocol for
services running on multiple nodes in a cloud environment.
Our goal was to ensure that the aggregated quota consumption
across nodes does not exceed a global limit. As part of
the quota management process, unused quota allocations are
transferred to nodes where they are in demand rather than
being wasted on idle nodes. Global polls are triggered only
when the local quota allocation at a node falls below a
defined threshold. When this happens, quota allocations are
redistributed across all polled nodes based on their rates of
resource consumption in a manner that minmizes the need for
further global polls in the short term.

We compared our solution to centralized and distributed
approaches. Our solution produces less communication over-
head and has faster response times when performing quota
redistribution among demanding nodes. Moreover, experimen-
tal results indicate that our solution is superior to the tested
alternatives with respect to various non-functional require-
ments: it offers better performance and is stronger in terms
of concurrency, scalability, availability, and fault tolerance.
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