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Abstract—The relevance of the service interfaces’ granular-
ity and its architectural impact have been widely investigated
in literature. Existing studies show that the granularity of
a service interface, in terms of exposed operations, should
reflect their clients’ usage. This idea has been formalized in
the Consumer-Driven Contracts pattern (CDC). However, to
the best of our knowledge, no studies propose techniques to
assist providers in finding the right granularity and in easing
the adoption of the CDC pattern.

In this paper, we propose a genetic algorithm that mines the
clients’ usage and suggests Façade services whose granularity
reflect the usage of each different type of clients. These services
can be deployed on top of the original service and they become
contracts for the different types of clients satisfying the CDC
pattern. A first study shows that the genetic algorithm is
capable of finding Façade services and it outperforms a random
search approach.

Keywords-SOA; services; granularity; genetic algorithms;

I. INTRODUCTION

One of the key factors for deploying successful services
is assuring an adequate level of granularity [9], [4], [16],
[8], [15]. The choice of how operations should be exposed
through a service interface can have an impact on both per-
formance and reusability [9], [16]. This level of granularity
is also know in literature as functionality granularity [8]. For
the sake of simplicity we refer to it simply as granularity
throughout this paper. Choosing the right granularity is
not a trivial task. On the one hand, fine-grained services
lead their clients to invoke their interfaces multiple times
worsening the performance [9], [4]. On the other hand,
coarse-grained services can reduce reusability because their
use is limited to very specific contexts [9], [4]. To find a
trade-off between fine-grained and coarse-grained services
the Consumer-Driven Contracts (CDC) pattern has been
proposed [4]. This pattern states that the granularity of a
service interface should reflect their clients’ usage satisfying
their requirements and becoming a contract between clients
and providers.

In literature several studies have investigated the impact of
granularity (e.g., [9], [4], [16], [8], [15]), have classified the
different levels of granularity (e.g., [8]), and have proposed
metrics to measure them (e.g., [13], [3]). However, to the
best of our knowledge, there are no studies proposing

techniques to assist service providers in finding the right
granularity and adopting the CDC pattern. This task can be
expensive because many clients invoke a service interface
in different ways. Providers should, first, analyze the usage
of many clients and, then, design a service interface that
satisfies all the clients’ requirements.

In this paper, we propose a genetic algorithm to assist
services providers in finding the adequate granularity and
adopting the CDC pattern. This algorithm mines the clients’
usage of a service interface and it retrieves Façade services
[14] whose interfaces have an adequate granularity for each
different type of clients. These Façade services become
contracts that reflect clients’ usage easing the adoption of
the CDC pattern. Moreover, providers can deploy them on
top of the existing service making this approach actionable
without modifying it.

The contributions of this paper are as follows:
• a genetic algorithm designed to infer Façade services

from clients’ usage that represent contracts with the
different types of clients.

• a study to evaluate the capability of the genetic algo-
rithm compared to the capability of a random search
approach.

The results show that the genetic algorithm is capable
of finding Façade services and it outperforms the random
search.

The remainder of this paper is organized as follows.
Section II presents the problem and the proposed solution.
Section III shows the proposed genetic algorithm. Section IV
presents the study, its results, and discusses them. Related
work is presented in Section V while in Section VI we draw
our conclusions and outline directions for future work.

II. PROBLEM STATEMENT AND SOLUTION

In this section, first, we introduce the problem of finding
the adequate granularity of services interfaces presenting the
Consumer-Driven Contracts pattern. Then, we present our
solution to address this problem.

A. Problem Statement

Choosing the adequate granularity of a service is a rel-
evant task and a widely discussed topic [9], [4], [16], [8],
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[15].
On the one hand, fine-grained services can lead to service-

oriented systems with inadequate performance due to an
excessive number of remote calls [9]. Consider for instance
the fragment of a service interface to order an item shown
in Figure 1. Figure 1a shows a fine-grained design for
this service that exposes methods to set shipment and
billing information for ordering an item. This design is
efficient if the methods’ invocation happens in a local
environment (e.g., in a software system deployed on a
single machine) [9]. In a distributed environment (e.g., in
a service-oriented system) a client needs to invoke three
methods (i.e., setBillingAddress(), setShippingAdress(), and
addPriorityShipment()) to set the needed information. This
causes a significant communication overhead since three
methods needs to be invoked over a network.

On the other hand, coarse-grained services interfaces can
solve these issues. The coarse-grained OrderItem (shown in
Figure 1b) exposes only one method (i.e., setShipmentInfo())
to set all the information related to the shipment and the
billing. In this way clients invoke the service only once
reducing the communication overhead. However, if the ser-
vices are too coarse-grained they can limit the reusability
because their use will be limited to very specific contexts
[9], [16], [4]. In our example in Figure 1, the clients of
the coarse-grained service (Figure 1b) are constrained to
set the billing address, the shipping address, and to add
the priority shipment details. The service is not suitable
for contexts where, for instance, priority shipments are not
allowed. Maintenance tasks are needed to adapt coarse-
grained services to different contexts. Hence, finding the
adequate granularity of a service requires finding a trade-off
between having a too fine-grained and having a too coarse-
grained service. This allows to publish a service with an
acceptable communication overhead and an adequate level
of reusability.

OrderItem
<<FineGrained>>

-setBillingAddress()

-setShippingAddress()

-addPriorityShipment()

(a) Fine-grained version exposing
different methods for setting each
different needed information.

OrderItem
<<CoarseGrained>>

-setShipmentInfo()

(b) Coarse-grained version expos-
ing a method to register all the
needed information.

Figure 1: An example of fine-grained and coarse-grained
service interfaces to set the shipping and the billing data for
ordering an item.

To find such an adequate level of granularity the
Consumer-Driven Contracts (CDC) has been defined for
services interfaces [4]. The Consumer-Driven Contracts
(CDC) pattern states that a service interface should reflect

OrderItem
<<FineGrained>>

1-setBillingAddress()
2-setShippingAddress()
3-setPriorityShipment()

5-addWishCardType()
4-addPaymentDetails()

6-addWishCardMsg()
7-trackShipmentByApp()
8-trackShipmentByEmail()
9-trackShipmentBySMS()
10-notifyArrivalTime()

Client1

Client2

Client3

Client4

Figure 2: An example of a service interface to order an
item for an e-commerce system. The rectangles represent
independent methods that are invoked by a client.

their clients needs through its granularity. In this way the
service interface is considered a contract that satisfies the
clients’ requirements.

Applying the CDC pattern is not a trivial task. A ser-
vice has usually several clients with different requirements
invoking differently its interface. To deploy a service with
an adequate granularity (using the CDC pattern) providers
should know all these requirements. Within an enterprise or a
corporate environment providers know their clients and they
can understand how clients expect to use a service. However,
clients are usually not known a priori and they bind a service
only after it has been published and advertised. Moreover
the number of clients and their different requirements can
be huge and it can evolve over time.

B. Solution

Our solution to the aforementioned problem consists in
applying a cluster analysis. This analysis consists in cluster-
ing the set of methods in such a way that methods in the
same cluster are invoked together by the clients. The goal
of our cluster analysis is to find clusters that minimize the
number of remote invocations to a service.

To better understand the cluster analysis for the granular-
ity problem consider the example in Figure 2. The OrderItem
extends the service shown in Figure 1a exposing further
methods to 1) add payment details (addPaymentDetails()),
2) add a wish card to an order (addWishCardType() and
addWishCardMsg()), and 3) to track the shipment (track-
ShipmentByApp(), trackShipmentByEmail(), trackShipment-
BySMS(), and notifyArrivalTime()). Imagine this service
has four clients (Client1, Client2, Client3, and Client4).
These clients invoke different sets of independent methods
denoted in Figure 2 by rectangles (e.g., Client1 invokes
setBillingAddress(), setShippingAddress(), and setPriority-
Shipment()). These methods are considered independent
because the invocation of one method does not require the
invocation of the other ones [20]. In total there are 13 remote
invocations: 3 performed by Client1, 3 by Client2, 3 by
Client3, and 4 by Client4.

In this example we can retrieve three clusters (shown in
Figure 3a) that minimize the number of remote invocations:
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OrderItem
<<FineGrained>>

1-setBillingAddress()
2-setShippingAddress()
3-setPriorityShipment()

5-addWishCardType()
4-addPaymentDetails()

6-addWishCardMsg()
7-trackShipmentByApp()
8-trackShipmentByEmail()
9-trackShipmentBySMS()
10-notifyArrivalTime()

Client1

Client2

Client3
Client4

Shipment

-setShipmentInfo()

WishCard

-setWishCard()

TrackShipment

-setTrackingShip()

<<Cluster1>>

<<Cluster2>>

<<Cluster3>>

(a) The Shipment, WishCard, and TrackShipment have been
introduced. This design has 9 local invocations and 6 remote
invocations.

OrderItem
<<FineGrained>>

1-setBillingAddress()
2-setShippingAddress()
3-setPriorityShipment()

5-addWishCardType()
4-addPaymentDetails()

6-addWishCardMsg()
7-trackShipmentByApp()
8-trackShipmentByEmail()
9-trackShipmentBySMS()
10-notifyArrivalTime()

Client1

Client2

Client3
Client4

Shipment

-setShipmentInfo()

Client2

-setClient2Details()

TrackShipment

-setTrackingShip()

<<Cluster1>>

<<Cluster2>>

<<Cluster3>>

(b) The Shipment, Client2, and TrackShipment have been
introduced. This design has 10 local invocations and 6 remote
invocations.

Figure 3: Two possible refactorings of the service interface shown in Figure 2 using the proposed cluster analysis and using
the Façade pattern. Black arrows indicate local invocations while non-black arrows indicate remote invocations.

• Cluster1 (i.e., Shipment): consists of setBillingAd-
dress(), setShippingAddress(), and setPriorityShip-
ments().

• Cluster2 (i.e., WishCard): consists of addWishCard-
Type() and addWishCardMsg().

• Cluster3 (i.e., TrackShipment): consists of trackShip-
mentByApp() trackShipmentByEmail(), trackShipment-
BySMS() and notifyArrivalTime().

Once we know the clusters we can combine the fine-
grained methods belonging to a cluster into a single coarse-
grained method. These coarse-grained methods can be ex-
posed through Façade services [14] as shown in Figure 3a.
Façade services (i.e., Shipment, WishCard, and TrackShip-
ment in our example) have been defined to provide differ-
ent views of lower level services (i.e., OrderItem in our
example). Since the invocations from Façade services to
lower-level services are local invocations (shown with black
arrows in Figure 3), the total number of remote invocations
(shown with non-black arrows in Figure 3) has been reduced
to 6. Moreover, adopting this design choice allows us to
keep public the fine-grained OrderItem whose methods can
always be invoked by future clients and by current clients
without breaking their behavior.

However, choosing the clusters that minimize the num-
ber of remote invocations cannot be performed fully-
automatically. Imagine for instance that we change Clus-
ter2 adding the method addPaymentDetails() as shown in
Figure 3b. This cluster is optimal for Client2 that should
perform only one remote invocation. However, Client3 can-
not invoke anymore the Façade service associated to the
Cluster2 because it contains a method (i.e., addPaymentDe-
tails()) in which it is not interested. The number of remote
invocations is still equal to 6. At this point an engineer
should decide which architectural design is more suitable
for her specific domain. The decision might be influenced
by three different factors:

• Cohesion of Façade services: the design in Figure 3a
might be preferred because the WishCard service is

more cohesive than the Client2 service since it exposes
related methods (methods related to the wish card
concern).

• Number of local invocations: the design in Figure 3a
might be preferred because it has 9 local invocations
while the design in Figure 3b has 10 local invocations.

• Relevance of different clients: the service provider
might want to give a better service (e.g., upon a higher
registration fee) to Client2 and, hence, adopt the design
in Figure 3b.

C. Contributions

In this paper we propose a search-based approach to
retrieve the clusters of methods that minimize the number
of remote invocations. As explained previously, the methods
belonging to the same cluster can be exposed through a
Façade service whose granularity reflects clients’ usage and,
hence, satisfy the CDC pattern.

A first approach to find these clusters consists in adopting
brute-force search techniques. These techniques consist of
enumerating all possible clusters and checking whether they
minimize the number of invocations. The problem of these
approaches is that the number of possible clusters can
be prohibitively large causing a combinatorial explosion.
Imagine for instance to adopt this approach for finding
the right granularity of the AmazonEC2 web service. This
web service exposes 118 methods in the version 23 [18].
The number of 20-combinations of the 118 methods in
AmazonEC2 are equal to:

(
118
20

)
=

118!

20!98!
≈ 2 ∗ 1021

This means that for only evaluating all the clusters with
20 methods the search will require executing at least 2 ∗
1021 computer instructions, which will take several days on
a typical PC. Moreover, we should evaluate clusters with
size ranging from 2 to 118 causing the number of computer
instructions to further increase.

To solve this issue we propose a genetic algorithm (shown
in Section III) that mimicking the process of natural selec-
tion finds optimal solutions (i.e., cluster that minimize the
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number of remote invocations) in acceptable time without
requiring special hardware configurations (e.g., the use of
supercomputers).

Moreover, we perform a first study aimed at investigating
the capability of the proposed approach in finding Façade
services that is presented in Section IV.

In this paper we do not cover the problem of mining
independent methods because it has already been subject of
related work [20] that can be integrated in our approach.
Furthermore, related work [20] shows that 78.1% of the
methods in their analyzed web services are independent.
This percentage shows that most of the methods can be
potentially joined in coarse-grained methods, motivating
further the need of performing this task with a proper
approach.

III. THE GENETIC ALGORITHM

Genetic Algorithms (GAs) have been proposed by Hol-
land [10] and they have been used in a wide range of
applications where optimization is required. Among all
the applications GAs have been widely studied to solve
clustering problems [11].

The key idea of GAs is to mimic the process of natural
selection providing a search heuristic technique to find
solutions to optimization problems. A generic GA is shown
in Figure 4.

Differently to other heuristics (e.g., Random Search and
Brute-Force Search) that consider one solution at a time, a
GA starts with a set of candidate solutions, also known as
population (step 1 in Figure 4). These solutions are randomly
generated and they are often referred to as chromosomes.
Since the search is based upon many starting points, the
likelihood to sample more of the search space is higher than
local searches. This feature narrows down the likelihood to
get stuck in a local optimum point in the search space. Each
solution is evaluated through a fitness function that measures
how ”good” a candidate solution is relatively to other
candidate solutions (step 2). Solutions from the population
are used to form new populations, also known as gener-
ations. This is achieved using the evolutionary operators.
Specifically, first a pair of solutions (parents) is selected from
the population through a selection operator (step 4). From
these parents two offspring solutions are generated through
the crossover operator (step 5). The crossover operator is
responsible to generate offspring solutions that combine
features from the two parents. To preserve the diversity,
the mutation operators (step 6) mutate the offspring. These
mutated solutions are added in the population replacing
solutions with the worst fitness scores. This process of
evolving the population is repeated until some condition
(e.g., reaching of max number of fitness evaluations in step
3 or achievement of the goal). Finally, the GA outputs the
best solutions when the evolution process terminates (step
7).

Create initial population of 
chromosomes

Evaluate !tness of each 
chromosome

Select next generation
(Selection Operator)

Perform reproduction
(Crossover operator)

Perform mutation
(Mutation operators)

Max
Evaluations

Output
best chromosomes

1

2

4

5

6

3

7

Figure 4: Different steps of a genetic algorithm.

To implement the GA and adapt it to find the set of
clusters that minimize the number of remote invocations
we have to define the fitness function, the chromosome (or
solution) representation, and the evolutionary operators (i.e.,
selection, crossover, and mutation).

A. Chromosome representation

To represent the chromosomes we use a label-based
integer encoding widely adopted in literature [11] and shown
in Figure 5. According to this encoding, a solution is an
integer array of n positions, where n is the number of
methods exposed in a service. Each position corresponds to
a specific method (e.g., position 1 corresponds to the method
setBillingAddress() in Figure 2). The integer values in the
array represent the cluster to which the methods belong. For
instance in Figure 5, the methods 1,2, and 10 belong to the
same cluster labeled with 1. Note that two chromosomes
can be equivalent even though the clusters are labeled
differently. For instance the clusters [1,1,1,1,2,2,2,2,3,3] and
[2,2,2,2,3,3,3,3,1,1] represent the same clusters. To solve this
problem we apply the renumbering procedure as shown in
[5] that transforms different labelings of equivalent cluster-
ings into a unique labeling.

1 1 2 3 2 4 5 3 6 1

1 2 3 4 5 6 7 8 9 10

Figure 5: Chromosome representation of our candidate so-
lutions.

B. Fitness

The fitness function is a function that measures how
”good” a solution is. Our fitness function counts for each
chromosome the number of remote invocations needed by
the clients. Imagine that the clients’ usage information of
Figure 2 are saved in the data set shown in Table I.

In this data set, each row contains the id of the client
(i.e., ClientID) and the set of independent methods invoked
by it (i.e., InvokedMethods). The InvokedMethods are sets of
methods where each integer value corresponds to a different
method in the service. We labeled the methods in the
OrderItem (shown in Figure 2) from 1 to 10 depending on
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ClientID InvokedMethods
Client1 1;2;3
Client2 4;5;6
Client3 5;6;7
Client4 7;8;9;10

Table I: Data set containing independent methods invoked
by each different client in Figure 2.

the order they are declared in the service (e.g., setBillingAd-
dress() is labeled with 1, setShippingAddress() is labeled
with 2, etc.).

Once we have this data set, we compute the fitness
function as the sum of the number of remote invocations
required to invoke each InvokedMethods set in the data set. If
the methods (or a subset of methods) in an InvokedMethods
set belong to a cluster containing no other methods, the
methods in this cluster account for 1 invocation in total.
Otherwise each different method accounts for 1. Consider
for instance the chromosome [1,1,1,1,2,2,2,2,3,3]. This chro-
mosome clusters together the methods 1, 2, 3, and 4 (i.e.,
cluster 1), the methods 5, 6, 7, and 8 (i.e., cluster 2), and the
methods 9 and 10 (i.e., cluster 3). In this case the number of
remote invocations to execute the InvokedMethods of Client1
(i.e., 1;2;3) is 3 because the cluster 1 contains the method
4 that is not needed by it. Hence, Client1 cannot invoke the
Façade service represented by the cluster labeled 1 and it
should invoke the methods in the original service OrderItem.
If we change the chromosome into [1,1,1,2,2,2,2,2,3,3], the
total number of invocations is equal to 1 because Client1 can
execute once the Façade service represented by the cluster
1. If the chromosome becomes [1,1,2,2,2,2,2,2,3,3] then the
total number of remote invocations is equal to 2. The client
invokes once the cluster 1 to invoke the methods 1 and 2.
Then it should invoke method 3 in the original service.

C. The Selection Operator

The selection operator selects two parents from a popu-
lation according to their fitness. We use the Ranked Based
Roulette Wheel (RBRW) that is a modified roulette wheel
selection operator as proposed by Al Jadaan et al. [1]. RBRW
ranks the chromosomes in the population by the fitness
value: the highest rank is assigned to the chromosome with
the best fitness value. Hence, the best chromosomes have
the highest probabilities to be selected as parents.

D. The Crossover Operator

Once the GA has selected two parents (ParentA and
ParentB) needed for generating the offspring, the crossover
operator is applied to them with a probability Pc. As
crossover operator we use the operator defined specifically
for clustering problems by Hruschka et al. [11]. In order
to illustrate how this operator works consider the example
shown in Figure 6 from [11]. The operator first selects
randomly k (1≤k≤n) clusters from ParentA, where n is the
number of clusters in ParentA. In our example assume that

the clusters 2 and 3 are selected from ParentA (marked
in red in Figure 6). The first child (ChildC) originally is
created as copy of the second parent ParentB (step 1). As
second step, the selected clusters (i.e., 2 and 3) are copied
into ChildC. Copying these clusters changes the clusters 1,
2, and 3 in ChildC. These changed clusters are removed
from ChildC (step 3) leaving the corresponding methods
unallocated (labeled with 0). In the forth step the unallocated
methods are allocated to the cluster with the nearest centroid.

The same procedure is followed to generate the second
child ChildD. However, instead of selecting randomly k
clusters from ParentB, the changed clusters of ChildC (i.e.,
1,2, and 3) are copied into ChildD that is originally a copy
of ParentA.

1 1 2 3 2 4 5 1 2 5 4 2 1 2 3 3 2 1 2 4

4 2 1 2 3 3 2 1 2 4

ParentA ParentB

ChildC

1: copy ParentB into ChildC

4 2 2 3 2 3 2 1 2 4ChildC

2: copy clusters 2 and 3 from 
ParentA to ChildC

4 0 2 3 2 0 0 0 2 4ChildC

3: remove changed methods 
from B (i.e., 1,2,3)

4: unallocated objects are allocated to the cluster 
with the nearest centroid

Figure 6: Example of crossover operator for clustering
problems [11].

E. The Mutation Operators

After obtaining the offspring population through the
crossover operator, the offspring is mutated through the
mutation operator with a probability Pm. This step is nec-
essary to ensure genetic diversity from one generation to
the next ones. The mutation is performed selecting one of
the following cluster-oriented mutation operators (randomly
selected) [5], [11]:

• split: a randomly selected cluster is split in two dif-
ferent clusters. The methods of the original cluster are
randomly assigned to the generated clusters.

• merge: moves all methods of a randomly selected
cluster to another randomly selected cluster.

• move: moves methods between clusters. Both methods
and clusters are randomly selected.

F. Implementation

We implemented the proposed genetic algorithm on top
of the JMetal1 framework. JMetal is a Java framework
that provides state-of-the-art algorithms for optimization
problems. We calibrated the genetic algorithm as follows:

• the population is composed by 100 chromosomes. The
initial population is randomly generated;

• the crossover and mutation probability is 0.9;

1http://jmetal.sourceforge.net
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• the maximum number of fitness evaluation (step 3 in
Figure 4) is 100,000.

These parameters were chosen using a trial-and-error
procedure aimed at selecting values that, for our study shown
in the next section, allowed to obtain the best results.

IV. STUDY

The goal of this study is to evaluate the capability of
our approach in finding Façade services that minimize the
number of remote invocations and reflect clients’ usage.
The perspective is that of services providers interested
in applying the Consumer-Driven Contracts pattern using
Façade services with adequate granularity. In this study we
answer the following research question:

To which extent is the propose GA capable of identifying
Façade services that minimize the number of remote

invocations and reflect clients’ usage?

In the following subsections, first, we present the analysis
we performed to answer our research question. Then, we
show the results and answer the research question. Finally,
we discuss the results and the threats to validity of our study.

A. Analysis

To answer our research question we run the genetic
algorithm (GA) defined in Section III to find the Façade
services for the working example shown in Figure 2. To
measure the performance of our GA we register the number
of GA fitness evaluations needed to find the Façade services
shown in Figure 3. Also, we compare the GA with a random
search (RS), in which the solutions are randomly generated
but no genetic evolution is applied. Both the GA and RS are
executed 100 times and the number of fitness evaluations
required to find the Façade services are compared through
statistical tests. We use a random search as baseline because
this comparison is considered the first step to evaluate a
genetic algorithm [19]. Comparisons with other search-based
approaches (e.g., local search algorithms) will be subject of
our future work.

First, we use the Mann-Whitney test to analyze whether
there is a significant difference between the number of
fitness evaluations required by the GA and the ones required
by the RS. Significant differences are indicated by Mann-
Whitney p-values ≥0.01. Then, we use the Cliff’s Delta
d effect size to measure the magnitude of the difference.
Cliffs Delta estimates the probability that a value selected
from one group is greater than a value selected from the
other group. Cliffs Delta ranges between +1 if all selected
values from one group are higher than the selected values
in the other group and -1 if the reverse is true. 0 expresses
two overlapping distributions. The effect size is considered
negligible for d < 0.147, small for 0.147≤ d < 0.33,
medium for 0.33≤ d < 0.47, and large for d ≥ 0.47.
We chose the Mann-Whitney test and Cliff’s Delta effect

#Methods GA RS
10 100% 82%
11 100% 70%
12 100% 65%
13 100% 35%
14 100% 20%
15 100% 10%
16 100% 0%

118 100% 0%

Table II: Percentage of successful executions in which GA
and RS find the Façade services shown in Figure 3.

size because they do not require assumptions about the
variances and the types of the distributions (i.e., they are
non-parametric tests).

Moreover, to analyze the capability of the GA in finding
Façade services for bigger services, we increase stepwise
the number of methods declared in the OrderItem in (shown
in Figure 2). For each different size of the OrderItem we
perform the same analysis: 1) we execute 100 times the GA
and RS, 2) we register the number of fitness evaluations
needed for finding the Façade services shown in Figure 3,
and 3) we perform the Mann-Withney and Cliff’s Delta
test to analyze statistically the differences between the
distributions. We increment the size of the service up to
118 methods, that is the size of the biggest WSDL interface
(AmazonEC2) analyzed in our previous work [18].

B. Results

Table II shows the percentage of executions in which GA
and RS find the right Façade services shown in Figure 3. The
results show that, while the GA is always capable of finding
the Façade services, the capability of the RS decreases with
increasing numbers of methods. For services with 16 or more
methods the RS is not capable to find the Façade services.

The number of fitness evaluations required by the GA
and RS are shown in the form of box plots in Figure 7. The
median number of fitness evaluations for the OrderItem with
118 methods required by the GA (not shown in Figure 7)
is equal to 5754 (with a median execution time of 295
seconds2). Comparing it to the median number of fitness
evaluations for the service with 10 methods (i.e., 1049
fitness evaluations with a median execution time of 34.5
seconds) shows that GA scales well with increasing numbers
of methods.

Moreover, the distributions of the numbers of fitness
evaluations required by the GA and the RS is statistically
different as shown by the Mann-Whitney p-values (<0.01)
in Table III. The magnitude of these differences is always
large as shown by Cliff’s Deltas d (=1) in Table III. All
the distributions, except RS12 in Figure 7, are not normally
distributed (normality has been tested with the Shapiro test

2Execution times has been evaluated on a MacBook Pro Mid 2010,
processor 2.66 GHz Intel Core i7, memory 4 GB 1067 MHz DDR3, OS
10.8.5.
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Figure 7: Box plots showing the number of fitness evalua-
tions (#Evaluations) required by GA and RS. GAX and RSX
label the box plots for the OrderItem with X methods.

#Methods MW p-value Cliff d
10 < 2.2e-16 1
11 < 2.2e-16 1
12 < 2.2e-16 1
13 < 2.2e-16 1
14 < 2.2e-16 1
15 < 2.2e-16 1

Table III: Mann-Whitney p-values (MW p-value) and Cliff’s
Delta d (Cliff d) between the distribution of #Evaluations
required by the GA and RS.

and a confidence level of 0.05). As a consequence the non-
parametric tests used in our analysis are the most suitable
for these distributions.

Based on these results, we can answer our research
question stating that the GA is capable to find Façade
services outperforming the RS approach.

C. Discussions

The results of this study show that the proposed GA,
differently to the RS, is capable to assist service providers in
applying the Consumer-Driven Contracts pattern. Running
the GA, providers can retrieve the Façade services that
reflect the usage of their clients and minimize the number
of remote invocations. Once the set of Façade services is
retrieved, they should manually select the most appropriate
Façade services as discussed in Section II. These Façade
services can be deployed on top of the existing service
without modifying it and preserving the compatibility of
existing clients. Furthermore, since this approach is semi-
automatic, it can be executed over time to monitor the
evolution of clients’ usage. This allows services providers
to co-evolve the granularity of their services reflecting the
evolving usage of their clients.

The main threats to validity that can affect our study are
the threats to external validity. These threats concern the
generalization of our findings. We evaluated our approach
over a small working example. However, to best of our
knowledge, there are no data sets that contain service usage
information suitable for our analysis.

In literature different data sets are available for research
on QoS (e.g., [2], [21]). However, these data sets do not
contain information about the operations invoked but only

the services names and their url. As a consequence they are
not suitable for our analysis.

V. RELATED WORK

Granularity of services. The closest work to ours is the
study developed by Jiang et al. [12]. In this study the authors
propose an approach to infer the granularity of services
mining the activities of business processes. The main idea
consists of using frequent pattern mining algorithms to
analyze the invocations to service interfaces. Our approach
differs to theirs because it can mine the granularity of every
kind of services and not only services involved in business
processes. Furthermore we have not used the proposed
frequent pattern mining algorithm because they require a
special tuning of the support and confidence parameters that
are problem specific. Moreover, these parameters, together
with other relevant details, are not reported in [12] making
the replication of this study not possible. To the best of
our knowledge we are not aware of further studies aimed a
inferring the right granularity of service interfaces.

Related work have mostly proposed classifications for
different levels of granularity and have investigated met-
rics for measuring the granularity. Haesen et al. [8] have
proposed a classification of three service granularity types
(i.e., functionality, data, and business value granularity). For
each of these types they have discussed the impact on a set
of architectural attributes (e.g., performance, reusability and
flexibility). In our paper we adhered to their functionality
granularity that has been referred to as granularity for the
sake of simplicity. Haesen et al. confirm that the functional-
ity granularity can have an impact on both performance and
reusability as stated in [9], [16], [4] and already discussed
in Section II. Many other studies have investigated metrics
to measure the granularity (e.g., [13], [3]). For instance,
Khoshkbarforoushha et al. [13] measure the granularity
appropriateness with a model that integrates four different
metrics that measures 1) the business value of a service, 2)
the service reusability, 3) the service context-independency,
and 4) the service complexity. Alahmari et al. [3] proposed
a set of metrics to measure the granularity based on internal
structural attributes (e.g., number of operations, number of
messages, complexity of data types). However, these studies
are limited to measure the granularity and do not provide
suggestions on inferring the right granularity.

Refactoring through genetic algorithms. Over the last
years genetic algorithms, and in general search based al-
gorithms, have become popular to perform refactorings of
software artifacts. For instance, Ghannem et al. [7] found
appropriate refactoring suggestions using a set of refactoring
examples. Their approach is based on an Interactive Genetic
Algorithm which enables to interact with users and integrate
their feedbacks into a classic GA. Ghaith et al. [6] presented
an approach to automate improvements of software security
based on search-based refactoring. O’Keeffe et al. [17] have
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constructed a software tool capable of refactoring object-
oriented systems. This tool uses search-based techniques to
conform the design of a system to a given design quality
model. These studies confirm that genetic algorithms are a
useful technique to solve refactoring problems and satisfying
desired quality attributes.

VI. CONCLUSION & FUTURE WORK

In this paper we have proposed a genetic algorithm
to mine the adequate granularity of a service interface.
According to the Consumer-Driven Contracts pattern, the
granularity of a service should reflect its clients’ usage. To
adopt this pattern our genetic algorithm suggests Façade
services whose granularity reflect the clients’ usage. These
services can be deployed on top of existing services allowing
an easy adaptation of the Consumer-Driven Contracts pattern
that does not require any modifications to existing services.

Our approach is semi-automatic as discussed in Sec-
tion II. The genetic algorithm outputs different sets of
Façade services that should be reviewed by providers. In
our future work, first, we plan to further improve this
approach to minimize the effort required from the user.
Specifically, we plan to add parameters that can guide the
search algorithm towards more detailed goals: giving more
relevance to certain clients, satisfying other quality attributes
(e.g., high cohesion of Façade services, low number of local
invocations), etc. Then, we plan to compare our genetic
algorithm with other search-based techniques (e.g., local
search algorithms). Finally, we plan to improve the genetic
algorithm suggesting overlapping Façade services that allow
a method to belong to different Façade services. However,
an ad-hoc study is needed to investigate to which extent the
methods can be exposed through different Façade services
because it can be problematic for the maintenance of service-
oriented systems.
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