
Task Scheduling on the Cloud with Hard
Constraints

Long Thai, Blesson Varghese and Adam Barker
School of Computer Science, University of St Andrews, Fife, UK

Email: {ltt2, varghese, adam.barker }@st-andrews.ac.uk

Abstract—Scheduling Bag-of-Tasks (BoT) applications on the
cloud can be more challenging than grid and cluster environ-
ments. This is because a user may have a budgetary constraint
or a deadline for executing the BoT application in order to
keep the overall execution costs low. The research in this paper
is motivated to investigate task scheduling on the cloud, given
two hard constraints based on a user-defined budget and a
deadline. A heuristic algorithm is proposed and implemented
to satisfy the hard constraints for executing the BoT application
in a cost effective manner. The proposed algorithm is evaluated
using four scenarios that are based on the trade-off between
performance and the cost of using different cloud resource
types. The experimental evaluation confirms the feasibility of
the algorithm in satisfying the constraints. The key observation
is that multiple resource types can be a better alternative to using
a single type of resource.

I. INTRODUCTION

Bag-of-Tasks (BoT) is the term given to a collection of
independent and identical tasks, which can be executed in any
order. BoT applications are a common way of breaking up
a complex problem into smaller independent tasks in both
scientific and industrial communities. BoT applications are
normally executed on distributed environments in order to
achieve high degrees of parallelism. BIONIC [1] is an example
of a BoT framework, it assigns tasks to volunteer computing
resources and is used in more than 80 different projects
ranging from astronomy to the physical sciences1.

BoT applications are commonly executed on Grid and
Cluster systems. Both environments consist of multiple in-
terconnected machines, which are already running and shared
between different organisations (Grid environment), or groups
in the same organisation (cluster environment).

Cloud computing [2] is considered as a more accessible
alternative as it offers resources, which a user can acquire on-
demand through a pay-per-use model. However, in contrast to
other forms of distributed computing environments, a cloud
user has to decide which resources (instance types etc.) and
how many resources need to be acquired before actually using
and paying for them. A user cannot therefore greedily acquire
as many resources as possible before deciding which ones are
suitable for her application. Moreover, as cloud resources are
pay-per-use the cost of the execution has to be taken into
account. As a result, there is a trade-off between performance
and cost: in order to have better performance, i.e. lower

1https://boinc.berkeley.edu/projects.php

execution time, the cost has to be increased. Nevertheless, it is
challenging to balance the trade-off so a that user can achieve
the best performance with the lowest cost.

This paper explores executing BoT applications on the cloud
with user defined hard constraints. Hard constraints are defined
as conditions that always need to be satisfied. For example,
consider the following two hard constraints: one user might
want to keep the cost of execution within a certain budget
constraint, while another user would prefer that the application
execution must be finished within a given time frame or
deadline constraint.

In this paper, we aim to optimise the execution of BoT
applications on the cloud. We investigate two scenarios in
which a user provides a hard constraint in the form of a budget
(the maximum amount of money that a user can spend) or a
deadline (the maximum amount of time that an execution can
take). If the budget constraint is given, our approach not only
satisfies the constraint, but also minimises the execution time.
Similarly, if the deadline constraint is provided, our approach
aims to also minimise the total cost for executing the BoT.

The contributions of this paper are as follows: i) the mathe-
matical model for scheduling tasks on the cloud with a given
hard constraint, ii) the heuristic algorithm for cost effective
scheduling, and iii) the evaluation considering different trade-
off between multiple options provided by Cloud providers.

The remainder of this paper is organised as follows. Section
II presents a mathematical model of the platform and the
problem. Section III proposes a heuristic algorithm considering
the hard constraints for executing tasks on the cloud. Section
IV describes the scheduling of tasks. Section V presents an
evaluation of the heuristic algorithm on four possible scenar-
ios. Section VI highlights the work related to the research
reported in this paper. Section VII concludes this paper.

II. MATHEMATICAL MODELS

In this section, mathematical models that represent the cloud
platform and the problem of executing the BoT on the platform
given the hard constraints are considered.

A. Platform Model

Let IT = {it1...itM} denote the list of M types of cloud
instance (for example, public cloud providers such as Amazon
provide a variety of instance types2). Each instance type it ∈

2http://aws.amazon.com/ec2/instance-types/

ar
X

iv
:1

50
7.

05
47

0v
1

 [
cs

.D
C

]
 2

0
Ju

l 2
01

5

https://boinc.berkeley.edu/projects.php
http://aws.amazon.com/ec2/instance-types/

IT can be characterised by two properties: (i) cost per hour
cit, which is the amount spent for using a Virtual Machine
(VM) of an instance type in an hour, and (ii) performance pit,
which is the time taken to execute a task in seconds. Assume
T = {t1...tN} is the list of N tasks.

As the goal is to create VMs of different instance types
and assign tasks to each VM, let VM = {vm1...} be the
execution plan containing the collection of VMs. For a given
vm ∈ VM , the instance type is itvm ∈ IT and the tasks
assigned on it are Tvm ⊆ T . A VM can be represented as
vm = (itvm, Tvm), which is a pair of the instance type and
the tasks assigned to it. It should be noted that the upper bound
of VM , the instance type, and the collection of tasks assigned
to each VM are unknown and needs to be determined.

Normally, some amount of time is required to boot a VM
into a usable state. If st be this time for each VM regardless
of its instance type, then the execution time of a VM is:

execvm =
∑

t∈Tvm

pvm + st = |Tvm|×pvm + st (1)

Cloud VMs, for example, from public providers, such as
Amazon, are charged by the hour (3600 seconds). A user pays
for an hour even if only a few seconds of the hour are utilised.
The cost of running a VM is:

costvm = dexecvm
3600

e × citvm
(2)

Since all VMs are running simultaneously, the overall
execution time is the execution time of the slowest VM:

exec = max
vm∈VM

execvm (3)

The total cost of executing all tasks is the sum of costs of
each VM represented as:

cost =
∑

vm∈VM

costvm (4)

B. Problem Model

In this paper, two hard constraints are considered. The first
referred to as a ‘budget constraint’ is the maximum amount
of money that a user is willing to spend for executing a BoT
on the cloud. The second is a ‘time constraint’, which is
the maximum time that can be allowed for completing the
execution of the BoT.

The problem of executing a BoT on the cloud given a budget
constraint B is to minimise the overall execution time while
keeping the cost less than or equal to the budget at the same
time. This is represented as follows:

minimise exec

such that cost ≤ B
(5)

Similarly, the problem of executing a BoT on the cloud
given a time constraint D is to minimise the total cost while
keeping the overall execution time less than or equal to the
deadline. This is represented as follows:

minimise cost

such that exec ≤ D
(6)

C. Accounting for Throughput

In order to find an optimal execution plan based on the given
hard constraints, the number of VMs for each instance type
and the assignment for each tasks must be decided. This is a
hard problem since the number of tasks in an application are
large. In this section, we simplify the problem by modelling
it using throughput, which is the number of tasks that can be
executed during a fixed period of time on a VM.

For any instance type it ∈ IT , as considered above, pit is
the time in seconds required to execute a task. The number of
tasks executed per second is 1

pit
, and the throughput of a VM

in one hour is:
th3600

it = b3600− st

pit
c (7)

The floor function is applied since a task has to be fully
executed by a VM.

The total throughput of all VMs of an instance type it in
one hour is:

THit = |VMit|×th3600
it (8)

and the total throughput of all VMs is:

TH =
∑
it∈IT

THit (9)

Performance on the cloud is maximised when TH is max-
imised.

The cost of running one VM for two hours is the same
as the cost of running two VMs for one hour. Hence, it is
assumed that all VMs run for no more than one hour, and the
total cost is calculated as:

cost =
∑
it∈IT

|VMit|×cit (10)

Given the budget constraint B, the problem of executing a
BoT on the cloud is modelled as:

maximise TH

such that cost ≤ B
(11)

If the time constraint D is given, the number of tasks that
can be executed by an instance type it within the deadline is:

thD
it = bD − st

pit
c (12)

Given the time constraint D, the total throughput is:

THD =
∑
|VMit|×thD

it (13)

Then, taking throughput into account, the problem model is:

minimise cost

such that THD ≥ N
(14)

In comparison to solving Equation 5 (or Equation 6),
Equation 11 (or Equation 14) is less complex and can be
solved easily since it depends on the instance types rather
than the tasks.

III. ALGORITHMS

In this section, we propose a heuristic algorithm to find
an execution plan based on budget and time constraints.
As a starting point, a baseline solution is considered that
provides a list of VMs of a single instance type and satisfies
the constraints. Then, the solution is optimised to either (i)
increase the performance when the budget constraint is given,
or (ii) reduce the cost when the budget constraint is provided.
The proposed algorithm accepts a single constraint at a time
and simultaneously considering multiple constraints will be
investigated in the future.

A. Select the Most Cost Effective Instance Type

For an instance type it ∈ IT , the number of VMs affordable
under a budget constraint B is:

|VMit|B= b
B

cit
c (15)

As presented by Equation 8, THit is the throughput per
hour of one VM of it. Hence, the total throughput produced
by it, based on cost constraint B is:

THB
it = |VMit|B×THit (16)

Hence, for a given budget, the most cost effective instance
type itB is:

itB = argmax
it∈IT

THB
it (17)

that results in the highest total throughput.
The number of tasks that can be executed on an instance

type under a time constraint is thD
it (refer Equation 12). So,

the number of VMs required to satisfy the time constraint is:

|VMit|D= d N

thD
it

e (18)

The cost for the VMs is:

costDit = |VMit|D×cit (19)

The most cost effective instance type is:

itD = argmin
it∈IT

costDit (20)

B. Optimise Instance Type Selection Algorithm

The execution plan by applying budget or cost constraints
is generated using a single instance type. However, when
multiple instance types are utilised in the execution plan, it
is possible to obtain better performance and also reduce costs
further.

Algorithm 1 optimises the execution plan by replacing VMs
initially present in the execution plan with VMs of other
instance types. This not only increases the throughput but also
reduces the costs while satisfying the constraints.

The inputs to Algorithm 1 are the list of instance types, the
selected instance type it0 (which is obtained from Equation
17 or Equation 20), the remaining budget (which will be
explained shortly), the time constraint, the number of VMs
to be replaced and a boolean flag indicating if the goal is

Algorithm 1 Optimise Instance Type Selection

1: function OPTIMISE(IT, it0, B,D, num,minCost)
2: exec← D − st
3: if numit0 = 0 ∨ numit0 < num then
4: return
5: end if
6: (it′, thm, numrped, numrping)← (NULL, 0, 0, 0)
7: for it1 ∈ {it ∈ IT | it 6= it0} do
8: if cit1 > B + num× cit0 then
9: continue

10: end if
11: num′ ← 0
12: if cit1 > B then
13: num′ ← num
14: end if
15: num vms← bB+num′×cit0

cit1
c

16: if minCost = TRUE ∧ num vms× cit1 = B +
num′ × cit0 then

17: num vms← num vms− 1
18: end if
19: th′ ← th−b execthit0

×num′c+ b execthit1
×num vmsc

20: if minCost = TRUE ∧ th′ < |T | then
21: continue
22: else if th′ < th then
23: continue
24: else if th′ > thm ∨ (th′ = thm ∧ cit1 < cit′) then

25: (it′, thm, numrped, numrping) ←
(it1, th

′, num′, num vms)
26: end if
27: end for
28: if it′ = NULL then
29: REPLACE(IT, it0, B,D, num+ 1,minCost)
30: else
31: numit0 ← numit0 − numrped

32: numit′ ← numit′ + numrping

33: if minCost = TRUE then
34: B ← 0
35: else
36: B ← B+numrped×cit0−numrping timescit′

37: end if
38: REPLACE(IT, it0, B,D, num,minCost)
39: end if
40: end function

to minimise cost (TRUE for minimising cost and FALSE
maximising throughput).

The boolean flag determines the calculation of the remainder
of the budget. If the goal is to maximise throughput, then the
budget is the difference between the cost constraint initially
provided and the current cost of execution. On the other hand,
if the goal is to minimise cost, then no more VMs can be
added since the budget is depleted.

Algorithm 1 is recursive and in each iteration, either the
performance is improved or the cost is reduced without
violating the given constraint. The algorithm terminates when
the number of VMs of it0 is either zero or less than the number
of VMs to be replaced (Line 3).

The algorithm firstly loops through all instance types except
it0. Instance types that cannot be afforded within the budget
are ignored (Line 8). The allowance to add new VM(s) is
the sum of the remaining budget and the cost of VMs of it0
which are allowed to be replaced (if the remaining budget is
not enough, some VMs of it0 will have be removed to not
exhaust the budget).

Then the number of VMs to be replaced is calculated (Lines
12 and 13). After that, based on the allowance, the number of
replacing VM is calculated (Line 15). If the goal is to minimise
cost and the cost of additional VMs is exactly equal to the
allowance, the number of replacing VM has to be decreased
by one so that its cost can be lower than the allowance (Line
16).

Next, the resulting throughput is calculated by adding
the additional throughput from the newly added VMs and
the current throughput. VMs of it0 are removed, and their
throughput is deducted (Line 19).

If the goal is to minimise the total cost, the new throughput
must not be less than the total number of tasks as all tasks must
be executed within the deadline (Line 20). On the other hand,
if the goal is to maximise throughput, the new throughput
cannot be less than the current throughput (Line 22).

All replacement instance types are compared; the instance
type with the highest throughput and lowest cost is selected
(Line 24). Then, VMs of the new instance type are added and
VMs of it0 are removed if required. This process is performed
by changing the number of VMs of each instance type (Lines
31 and 32). The remaining budget is updated (Line 36); the
remaining budget is always zero (Line 33) if the goal is to
minimise cost.

The algorithm continues execution with updated values
(Line 38). However, if no replacing instance types are found,
the number of VMs of type it0 is increased by one (Line
29). Each iteration can result in the following: (i) increase
the overall throughput, or (ii) decrease the total cost, or (iii)
increase the number of VMs of it0 to be replaced by one.

IV. ASSIGN TASKS TO VMS

The result of Algorithm 1 is a list of VMs of different in-
stance types. However, the VMs do not have any tasks assigned
to them. Therefore, we propose an additional algorithm (refer
to Algorithm 2) for assigning tasks to VMs. The algorithm

finds a VM in the list which can complete the execution of
the task in the lowest time if a task were assigned to it. This
ensures that the overall execution is as low as possible.

For example, given two instance types whose performances
are 5 and 8, and assuming there are two VMs of the first type
and one VM of the second type, the execution time for each
VM is 10, 12 and 9. If a task is added to each VM, their new
execution will be 10 + 5 = 15, 12 + 5 = 17 and 9 + 8 = 16.
Hence, a new task should be added to the first VM, whose
performance is 5 and current execution time is 10, so that the
overall execution time after the assignment is lower than the
other options.

Algorithm 2 Assign Tasks to VMs

1: function ASSIGN(T, V M)
2: for t ∈ T do
3: vm0 ← NULL
4: exec← 0
5: for vm ∈ VM do
6: exec′ ← execvm + pitvm

7: if vm0 = NULL ∨ exec′ < exec then
8: vm0 ← vm
9: exec← exec′

10: end if
11: end for
12: Tvm0

← Tvm0
∩ {t}

13: end for
14: return VM
15: end function

V. EXPERIMENTAL EVALUATION

Our approach of scheduling tasks on the cloud based on a
given budget or cost constraint is evaluated in this section. The
evaluation considers four different scenarios which are based
on the difference in cost and performance between different
instance types.

A. Performance Gain vs Cost Increase

One important criteria for selecting a cloud instance is the
trade-off between performance and cost. For example, how
much quicker does a task execute when it is moved from one
instance type to another with a higher cost. Given an instance
type it0, the trade-off when employing a more expensive
instance type it1, where cit1 > cit0 can be calculated as:
toit1,it2 =

pit0

pit1
/
cit1
cit0

(ratio of the change in performance and
change in cost).

There are three cases for the trade-off between performance
and cost:
• Fair trade-off (to = 1), when the performance gain is

equal to the increase in cost. When the trade-off is fair, it
does not make much difference between using expensive
or cheaper instances.

• Cost-effective trade-off (to > 1), when the performance
gain is more than the monetary increase. It is profitable
to use an expensive instance type.

Instance Type Cost Performance
it1 1 32
it2 2 16
it3 4 8
it4 8 4
it5 16 2

TABLE I: Fair Trade-off

Instance Type Cost Performance
it1 1 32
it2 2 18
it3 4 10
it4 8 6
it5 16 4

TABLE II: Cost-ineffective Trade-off

• Cost-ineffective trade-off (to < 1), when the performance
gain is less than the monetary increase. In this case, it is
advisable to use cheap instance types.

The trade-off is highly specific to a user’s application and
instance type. For example, if an application can use only one
CPU core, using expensive instance types with multiple cores
may not be cost-effective. On the other hand, instance types
with more cores, each of which has higher clock speed, can
be beneficial to a parallel application.

In order to effectively select the optimal execution plan for
an application, the trade-off between performance gain and
monetary increase must be taken into account. It is more
beneficial to have many VMs of the cheap instance type if
the trade-off is cost-ineffective. On the other hand, with the
cost-effective trade-off, a user can opt for VMs of expensive
instance types.

B. Setup

This section presents a comparison between using only
one instance type or combining multiple instance types. We
compare two approaches, the first one is simple and only uses
the most cost-effective instance type selected by Equations 17
or 20 while the other applied Algorithm 1 to use a combination
of multiple instance types.

Four different scenarios corresponding to the three trade-
off cases and an additional mixed trade-off (cost-effective and
cost-ineffective VM types were used) case were considered.

For each scenario, we used 10 different values of budget
and deadline constraints and an application with 1000 tasks.
The instance start up time, i.e. st, is set to 10 seconds.

1) Scenario 1 - Fair Trade-off: Table I shows that the
performance and cost of an instance increases in the same
ratio. For example, it2 is two times more expensive than it1
and the time it takes to execute an application is half of it1’s.

2) Scenario 2 - Cost-ineffective Trade-off: Table II shows
that the performance gain is lower than the monetary increase.
For example, toit1,it2 = 0.9

3) Scenario 3 - Cost-effective Trade-off: Table III shows
that the performance gain is more than the monetary increase.
For example, toit1,it2 = 1.07.

Instance Type Cost Performance
it1 1 32
it2 2 15
it3 4 7
it4 8 3
it5 16 1

TABLE III: Cost-effective Trade-off

Instance Type Cost Performance
M3.Medium 0.077 87.37
C3.Large 0.12 25.33
M3.Large 0.154 27.08
C3.Xlarge 0.239 12.7
M3.Xlarge 0.308 13.79

TABLE IV: Mixed Trade-off

4) Scenario 4 - Mixed Trade-off: Table IV shows in-
stance types with cost-effective and cost-ineffective trade-
off. We obtained the performances by executing the genome
pattern searching application on five Amazon instance
types. For example, toM3.Medium,C3.Large = 2.2 and
toC3.Large,M3.Large = 0.7.

C. Results

The four scenarios (each scenario took ten values for budget
and cost constraints) considered above were simulated on a
custom built simulation framework developed using Scala.
The framework took as input the cost and performance of
the instances considered in Table I - IV. The framework then
executed Algorithm 1 to generate an execution plan. The plan
was then executed and the resulting cost and performance were
found to satisfy the constraints.

Instead of demonstrating the results of overall cost and
execution time, we compared two approaches (one using single
instance types and the second using multiple instance types)
by taking the ratio of their results. When the budget (or
deadline) constraint is given, the ratio between execution times
(or actual costs) of using only the most cost-effective instance
type and using the combination of different ones is noted. Both
approaches have the same performance if the ratio was equal to
1 and when multiple instance types are used the performance
is better if the ratio was greater than 1. Single instance types
perform better when the ratio was less than 1.

Figure 1 presents the results for Scenarios 1, 2 and 3. In
scenario 1 and 2, two approaches behaved similarly most of the
time. It is because they both used VMs of the cheapest instance
type, which had either the same (scenario 1) or more (scenario
2) performance per cost in comparison with the remaining
instance type. Hence, the remaining budget was not enough
to add any more VMs of other instance types. The only time
when the second approach out-performed the first was when
deadline was 1800 seconds in Scenario 1 (Figure 1b). It can
be explained by looking into the total number of VMs used
by each approach: if only one instance type was used, an
execution plan contained 19 VMs of it1, whose cost was 1.
However, Algorithm 1 replaced 17 VMs of type it1 with one
VM of it5, whose cost was 16. As the result, the cost could

10 15 20 25 30

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Budget

E
xe

cu
tio

n
R

at
io

Scenario 1
Scenario 2
Scenario 3

(a) Results for budget constraint

2000 2500 3000 3500

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Deadline

C
os

t R
at

io

Scenario 1
Scenario 2
Scenario 3

(b) Results for deadline constraint

Fig. 1: Comparison between two approaches for Scenarios 1, 2 and 3

be reduced, however, the execution time increased from 1706
to 1790 which was still below the deadline constraint.

On the other hand, in Scenario 3 in which the trade-off
was cost-effective, the second approach out-performed the
first approach most of the time (black and squared lines in
Figure 1). It can be explained as follow: due to the cost-
effectiveness, the most expensive instance type was selected
by both Equations 17 and 20. While the first approach only
tried to create as many VMs of the selected instance type as
possible, the second approach took advantage of the remaining
budget by either adding or replacing the existing VMs with
VMs of other types.

Figure 2 presents the result for the mixed trade-off scenario.
It is similar to Scenario 1 or 2 in that there is no significant
difference between using only one or a combination of dif-
ferent instance types. This can be explained as follows: two
most cost-effective instance types are C3.Large and C3.Xlarge,
which is understandable since they both were CPU optimised
instance type and the genome search application is CPU inten-
sive. As a result, either instance was always selected by Equa-
tions 17 and 20. Since Algorithm 1 optimises the execution,
it never selects instance types M3.Large or M3.Xlarge since
they are more expensive and has poorer performance when
compared to C3.Large and C3.Xlarge. C3.Large and C3.Xlarge
demonstrate fair trade-off (toC3.Large,C3.Xlarge = 1.002);
consequentially, Scenario 4 is similar to Scenario 1. Even
though VMs of M3.Medium type could be added due to the
remaining budget, there was no significant improvement in
performance since the instance performs poorly.

The experiments show that the hard constraints can be

satisfied by the heuristic algorithm proposed in this paper. The
results from the experiments show that single instance types
can sometimes be as effective as multiple instance types. As
a general trend, we note that when there is a cost effective
trade-off multiple instance types perform better than a single
type of instance.

VI. RELATED WORK

There is extensive research focusing on executing BoT in
the Grid environment. The MyGrid framework [3] supports the
execution of BoT on the distributed environment and improves
performance by replicating tasks. Similarly, algorithms to
assign a collection of tasks to grid resources in order to
minimise execution time has been developed [4]. Scheduling
tasks based on deadline constraints in the grid [5] and based
on the location of input for each task [6] are considered. The
execution of independent but file-sharing tasks is investigated
and a heuristic algorithm to achieve better performance in
comparison to greedy approaches is proposed [7]. Scheduling
tasks while satisfying both deadline and budget constraints are
considered assuming that each task requires distributed data
at multiple sources [8]. Scheduling multiple BoTs is another
avenue that is investigated [9], [10]. Executing parallel tasks
on a single machine is presented as an alternative approach to
improve performance [11].

For clusters, Hadoop’s YARN [12] and Mesos [13] are
resource management frameworks that allocate compute re-
sources to applications in order to maximise performance.
Task scheduling systems such as Apollo [14] and Omega [15]
predict the execution time of each task on a resource and use

1.0 1.2 1.4 1.6 1.8 2.0

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Budget

E
xe

cu
tio

n
R

at
io

Scenario 4

(a) Results for budget constraint

2000 2500 3000 3500

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Deadline

C
os

t R
at

io

Scenario 4

(b) Results for deadline constraint

Fig. 2: Comparison between two approaches for Scenario 4

this prediction for assigning tasks. Sparrow [16] performs task
assignment by evaluating the length of a waiting queue of tasks
to be executed on a resource.

The cost factor is usually not taken into account while
scheduling tasks on Grid and Cluster environments. On the
other hand, in cloud computing, a user has to pay for the
resources employed, and therefore, the monetary cost must be
considered. Numerous attempts have been made to model costs
related to executing BoTs on different platforms. However,
these models either take into account the cost for transferring
data and execution of individual tasks [8] or are auction-based
models which may not be most suited for the cloud [17].

Recently, many researchers have started to apply cloud
computing for executing BoT applications. Statistical learning
and constraint solvers are used to maximise the execution
performance while satisfying a budget constraint [18]. Dead-
line constraints have also been investigated by considering
the workload of VMs [19]. Methods for optimising the cost
and performance on multiple clouds [20] and scheduling
algorithms are considered [21]. In our previous work, we
investigated the trade-off between performance and cost when
executing Bag-of-Distributed-Tasks on the cloud and proposed
a method to find an execution plan based on a given budget
constraint [22].

The research presented in this paper distinguishes itself
from the current state-of-the-art in many ways. First of all,
it does not put a limit on the number of cloud resources; most
research assume a limit, for example, [18], [20], [21], [22].
The resource limit is defined by either budget or deadline
constraints assuming the availability of unlimited number

of resources. Moreover, our approach focuses not only on
resource provisioning, but also task scheduling; this is often
not considered in other research, for example, [18], [19]. Task
scheduling offers the flexibility of controlling the execution of
BoT on the cloud.

VII. CONCLUSION

In comparison to other distributed environments, such as the
grid and the cluster, scheduling tasks on the cloud is complex
since (i) there are multiple types of resources with different
performance and varying costs offered on the cloud, and (ii)
a user can impose a budget or a deadline constraint. It is
challenging to make a decision on the type or combination
of resources that can satisfy the constraints.

To address the above challenge, in this paper, we proposed a
heuristic algorithm to schedule tasks or Bag-of-Tasks (BoT) on
the cloud such that the hard constraints imposed by a user can
be satisfied. The algorithm first generates an execution plan
comprising the most cost effective resource and then modifies
the initial plan with different resource types. We evaluated the
algorithm on four scenarios which were developed by taking
into account the trade-off between performance and cost of
the cloud resources. If the trade-off was either fair or cost-
ineffective, there was not much difference between using a
single or multiple types of resources. However, if the trade-
off was cost-effective, a combination of different resources was
able to reduce the cost and/or increase the performance. The
experiments confirms that the budget and deadline constraints
can be satisfied.

In the future, we plan to generalise our approach so that it

can be applied for multiple applications. Moreover, dynamic
scheduling and resource provisioning will be investigated so
that the failure of a virtual machine can be handled.

ACKNOWLEDGMENT

This research is supported by the EPSRC grant ‘Working
Together: Constraint Programming and Cloud Computing’
(EP/K015745/1), a Royal Society Industry Fellowship ‘Bring-
ing Science to the Cloud’, an Impact Acceleration Account
(IAA) grant and an Amazon Web Services (AWS) Education
Research Grant.

REFERENCES

[1] “Boinc.” http://boinc.berkeley.edu/. Accessed: 2014-01-23.
[2] A. Barker, B. Varghese, J. S. Ward, and I. Sommerville, “Academic

cloud computing research: Five pitfalls and five opportunities,” in 6th
USENIX Workshop on Hot Topics in Cloud Computing, HotCloud ’14,
2014.

[3] W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto, F. Brasileiro, J. Sauve,
F. Silva, C. Barros, and C. Silveira, “Running bag-of-tasks applications
on computational grids: the mygrid approach,” in Parallel Processing,
2003. Proceedings. 2003 International Conference on, pp. 407–416, Oct
2003.

[4] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund,
“Dynamic matching and scheduling of a class of independent tasks
onto heterogeneous computing systems,” in Proceedings of the Eighth
Heterogeneous Computing Workshop, HCW ’99, (Washington, DC,
USA), pp. 30–, IEEE Computer Society, 1999.

[5] A. Takefusa, H. Casanova, S. Matsuoka, and F. Berman, “A study of
deadline scheduling for client-server systems on the computational grid,”
in High Performance Distributed Computing, 2001. Proceedings. 10th
IEEE International Symposium on, pp. 406–415, 2001.

[6] K. Ranganathan and I. Foster, “Decoupling computation and data
scheduling in distributed data-intensive applications,” in Proceedings
of the 11th IEEE International Symposium on High Performance Dis-
tributed Computing, HPDC ’02, (Washington, DC, USA), pp. 352–,
IEEE Computer Society, 2002.

[7] K. Kaya and C. Aykanat, “Iterative-improvement-based heuristics for
adaptive scheduling of tasks sharing files on heterogeneous master-slave
environments,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 17, pp. 883–896, Aug 2006.

[8] S. Venugopal and R. Buyya, “A deadline and budget constrained
scheduling algorithm for escience applications on data grids,” in in Proc.
of 6th International Conference on Algorithms and Architectures for
Parallel Processing (ICA3PP-2005, pp. 60–72, Springer-Verlag, 2005.

[9] R. Bertin, A. Legrand, and C. Touati, “Toward a fully decentralized
algorithm for multiple bag-of-tasks application scheduling on grids,”
in Grid Computing, 2008 9th IEEE/ACM International Conference on,
pp. 118–125, Sept 2008.

[10] C. Anglano and M. Canonico, “Scheduling algorithms for multiple bag-
of-task applications on desktop grids: A knowledge-free approach,” in
Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE Interna-
tional Symposium on, pp. 1–8, April 2008.

[11] A. Benoit, L. Marchal, J.-F. Pineau, Y. Robert, and F. Vivien, “Schedul-
ing concurrent bag-of-tasks applications on heterogeneous platforms,”
Computers, IEEE Transactions on, vol. 59, pp. 202–217, Feb 2010.

[12] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache hadoop
yarn: Yet another resource negotiator,” in Proceedings of the 4th Annual
Symposium on Cloud Computing, SOCC ’13, (New York, NY, USA),
pp. 5:1–5:16, ACM, 2013.

[13] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-
grained resource sharing in the data center,” in Proceedings of the 8th
USENIX Conference on Networked Systems Design and Implementation,
NSDI’11, (Berkeley, CA, USA), pp. 295–308, USENIX Association,
2011.

[14] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu,
and L. Zhou, “Apollo: Scalable and coordinated scheduling for cloud-
scale computing,” in 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), (Broomfield, CO), pp. 285–300,
USENIX Association, Oct. 2014.

[15] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: Flexible, scalable schedulers for large compute clusters,”
in Proceedings of the 8th ACM European Conference on Computer
Systems, EuroSys ’13, (New York, NY, USA), pp. 351–364, ACM, 2013.

[16] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: Dis-
tributed, low latency scheduling,” in Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, SOSP ’13, (New
York, NY, USA), pp. 69–84, ACM, 2013.

[17] A. Sulistio and R. Buyya, “A time optimization algorithm for scheduling
bag-of-task applications in auction-based proportional share systems,” in
Computer Architecture and High Performance Computing, 2005. SBAC-
PAD 2005. 17th International Symposium on, pp. 235–242, Oct 2005.

[18] A. Oprescu and T. Kielmann, “Bag-of-tasks scheduling under budget
constraints,” in Cloud Computing Technology and Science (CloudCom),
2010 IEEE Second International Conference on, pp. 351–359, Nov 2010.

[19] M. Mao, J. Li, and M. Humphrey, “Cloud auto-scaling with deadline and
budget constraints,” in Grid Computing (GRID), 2010 11th IEEE/ACM
International Conference on, pp. 41–48, Oct 2010.

[20] M. H. Farahabady, Y. C. Lee, and A. Y. Zomaya, “Non-clairvoyant
assignment of bag-of-tasks applications across multiple clouds,” in
Proceedings of the 2012 13th International Conference on Parallel and
Distributed Computing, Applications and Technologies, PDCAT ’12,
(Washington, DC, USA), pp. 423–428, IEEE Computer Society, 2012.

[21] J. O. Gutierrez-Garcia and K. M. Sim, “A family of heuristics for agent-
based elastic cloud bag-of-tasks concurrent scheduling,” Future Gener.
Comput. Syst., vol. 29, pp. 1682–1699, Sept. 2013.

[22] L. Thai, B. Varghese, and A. Barker, “Executing bag of distributed tasks
on the cloud: Investigating the trade-offs between performance and cost,”
in 6th IEEE International Conference on Cloud Computing Technology
and Science (CloudCom 2014), 2014.

http://boinc.berkeley.edu/

	I Introduction
	II Mathematical Models
	II-A Platform Model
	II-B Problem Model
	II-C Accounting for Throughput

	III Algorithms
	III-A Select the Most Cost Effective Instance Type
	III-B Optimise Instance Type Selection Algorithm

	IV Assign Tasks to VMs
	V Experimental Evaluation
	V-A Performance Gain vs Cost Increase
	V-B Setup
	V-B1 Scenario 1 - Fair Trade-off
	V-B2 Scenario 2 - Cost-ineffective Trade-off
	V-B3 Scenario 3 - Cost-effective Trade-off
	V-B4 Scenario 4 - Mixed Trade-off

	V-C Results

	VI Related Work
	VII Conclusion
	References

