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Abstract—1It is a challenging task to ensure quality in service-
oriented systems deployed in cloud computing owing to the
dynamicity of its environment. Many approaches have been
adopted to identify and evaluate bottlenecks and problems in
performance. The most common scenario consists of distributed
systems that use a workload capable of enabling clients to exploit
the target system in different operational conditions. However,
one requirement that tends to be overlooked is to determine
how the workload is executed, as software and hardware faults
can lead to its mischaracterization. In this paper, a number
of problems in the workload generation have been identified
and summarized. A new architecture, called PEESOS-Cloud,
is proposed which allows these services to be evaluated as
well as to improve the ability of the workload so that it
conforms with its described characteristics. Experiments in a
cloud environment were conducted to show how PEESOS-Cloud
works and validate its capabilities. Our experiment also showed
that the mischaracterization of the workload leads to poor results,
whereas an workload-aware implementation leads to a better
performance evaluation.

Index Terms—Web Service, Service-oriented Systems, Perfor-
mance Evaluation, Workload Characterisation

I. INTRODUCTION

Cloud Computing is a model based on the idea of sharing
computational resource (eg, networks, servers, storage and ap-
plications) on the Internet as a service [1]. When applications
are available in the cloud, these services can be called Web
Services, since they enable the features of a given application
to be re-used by external entities. The services are provided
on demand in a transparent way and the clients usually follow
’pay-as-you-go” scheme [2].

The attributes of Quality of Service (QoS) are used to
measure the quality of services offered and thus ensure their
efficiency and effectiveness. Thus, the provider is able to
ensure the functionality of these applications for the clients,
which is defined in a Service Level Agreement (SLA). More-
over, the QoS attributes are used for service selection and
composition, which is necessary to avoid any violation of the
SLA [3], [4].

Several conditions can cause a violation of the established
SLA such as unexpected traffic. Examples of this were found
in: a) the portal of the American health care system called
Obamacare [5], b) technical failures and security as recorded
by Xbox Live [6], c) a lack of capacity planning applications

in abnormal periods of traffic, such as Black Friday [7]. This
violation was caused by the inability of these systems to
support many simultaneous requests and adapt to the demands
of the users [8]. These problems can be avoided or mitigated
by making a comprehensive evaluation of their performance,
before a deployment and final delivery.

In the literature, there are studies with various approaches
that seek to ensure the correct levels of QoS in different con-
texts, (such as capacity planning) through load testing, stress
testing, performance testing and setting benchmarks. These
approaches require the application of workloads in the target
system that can measure variables related to resources and
performance. In carrying out these studies, the experimental
environment generally consists of three key components: the
orchestrator of the experiments, the clients responsible for gen-
erating the workload and the target system. These components
are combined with a set of computational resources, such as
servers and service providers, that can be allocated in the cloud
owing to their ability to provide resources on demand.

However, these environments are subject to failures with
regard to hardware, software, communication and synchro-
nization between the parties involved. In particular, there
may be unpredictable noises that are added to the workload
imposed on the target system. Thus, the workload might be
uncharacteristic and have unexpected results in scenarios that
lead to inconsistencies in the analysis. It is a complex task
to detect the occurrence of failures during an experiment and
quantify the effects these cause. The reason for this is that the
losses incurred go beyond the question of defining the QoS
levels of the service measured, or the extent of the wasted
resources [9].

In this context, this paper proposes an architecture for
conducting experiments in services that are able to take into
account the features of the workload used. We investigated
the literature and identified which problems are linked to the
workload generation used to evaluate service-oriented systems
(SOS). Thus, we describe a generic and extensible architecture
that makes it possible to evaluate the features of the resulting
workload in a target system. Finally, our proposal is applied in
a case study that demonstrates how it can be used to evaluate
a cloud-based SOS. The results show the importance of the
workload characteristics employed in the evaluation. The main



contributions made by this paper are: 1) to give a summary
and analysis of current problems in the literature about how
to carry out experiments with prototypes in service-oriented
systems; 2) to propose a new architecture, called Planning
and Execution for Experiments in Service Oriented Systems
based on Cloud (PEESOS-Cloud), for conducting experiments
in hosted cloud applications. In addition, we describe a model
of a distributed workload, with extensible and generic modules
that comprise the proposed architecture. This architecture is
based on the problems identified in the literature where there
are solutions to generate the workload for evaluating the
service-oriented system.

The remainder of this paper is structured as follows: Section
IT provides a literature review of approaches that can be
adopted to assess service-oriented systems. Section III defines
the research problem being addressed. Section IV outlines the
PEESOS-Cloud architecture that was developed to evaluate
the service-oriented systems in cloud, The experiment con-
figuration and results are shown in section V, as well the
benefits obtained from PEESOS-Cloud. Finally, Section VI
summarizes the conclusions and makes suggestions for future
work.

II. RELATED WORKS

Recently research has been conducted on a number of fronts
to explore the main features of the workload. In this section
we will examine several studies that provide workloads for
system evaluation in local and cloud environments.

Dillenseger (2009) [10] propose a framework called CLIF
to generate a distributed workload in heterogeneous compu-
tational systems. The framework consists of three main parts:
1) The workload injector which handles the requests for the
target system; 2) The probes which monitor the metrics in
environment; 3) other components which store and analyse the
metrics derived from the probes. The work adopts a flexible
approach which can be extended to new proposals as discussed
by Tchana et al. (2013) [11] who set a benchmark with the
aid of this architecture.

Tchana et al. (2015) draw on the work carried out by
Dillenseger (2009) [10] and Tchana et al. (2013) [11] to
propose a Benchmark as a Service (BaaS) model, which is
capable of generating self-scalable distributed workloads. A
protocol is added to manage the workload injector in the
CLIF framework. The results show that the proposed policies
to manage the workload injector improved the original CLIF
framework.

Oberle and Szabo (2015) [12] summarize the available load
tests that can be performed by cloud. Thus, an architecture was
designed to specify the kind of test scenario and the distributed
nodes that should be used in accordance with the Test as a
Service (TaaS) model. A case study was carried out to validate
the prototype of the architecture. The results showed that the
prototype is functional and able to measure the metrics of the
target environment.

Cunha et al. (2013) [13] create a programmable environment
to evaluate the performance of IaaS.The environment allows

several performance test parameters to be set up, such as
the number of providers and their features. A performance
evaluation for two levels of workload was conducted using an
environment consisting of TaaS EC2 and Rackspace machines.
The collated results were drawn on to analyse the relationship
between the cost and performance of the providers within the
described scenario. Chhetri et al. (2013) 14, examine the Smart
cloud Bench, which is a benchmark for IaaS platforms. The
virtual machines are deployed with pre-designed images which
have enough packages to handle the requests. Test agents are
responsible for handling the requests and stating what are the
desired metrics. A case study was performed and the results
made it possible to determine which virtual machines are
suitable according to specifics workloads.

Minzhi et al. (2012) [15] establish a cloud distributed
load test platform called WSTaaS, which has the ability to
deploy, set up and scale the components used to conduct
the experiments. The experiments compare the approach with
others and used a single node to represent several clients. The
results gave rise to overload problems when only one node was
used, owing to the bandwidth and number of threads required
to meet the requests and this had an adverse effect on the
final analysis. Budai et al. (2014) [16] employ a distributed
framework for workload generation to evaluate the services
hosted in the cloud. The architecture of this framework com-
prises several agents and a controller module. The agents
are virtual machines that are responsible for handling the
requests in the target environment. The workload is operated
through messages that are exchanged between the experiment
controller and the agents. A case study was conducted to
evaluate the MySQL cluster and the performance metrics and
to expose scalability problems.

Nunes et al. (2014) [17] enploy the PEESOS tool, a mech-
anism designed to study the performance and QoS attributes
of a service-oriented architecture called WSARCH. A case
study shows the performance of the WSARCH architecture in
different scenarios. However, this mechanism is restricted to
the WSARCH architecture and has problems in generating the
workload.

TABLE I
SUMMARY OF RELATED WOR

Experiments
Environment
Local
Local
Cloud
Cloud
Cloud
Local
Cloud
Cloud
Local
Cloud

Objective Workload-aware

Dillenseger (2009) [10] Load Test
Tchana et al. (2015) [9] Stress Test
Oberle and Szabo (2015) [12] TaaS
Cunha et al. (2013) [13] Performance Test
Chbhetri et al. (2013) [14] Bechmark
Nunes et al. (2014) [17] Load Test
Minzhi et al. (2012) [15] Load Test
Budai et al. (2014) [16] Load Test

PEESOS-Cloud

| 3] 3¢ 3| 3| x| x| x|

Flexible

Table I summarizes the main features of the related works.
It ishould be noted that all the related works set out a range
of choices to generate and apply their systems in different
contexts. Dillenseger (2009) [10], Tchana et al. (2015) [9] and
Nunes et al. (2014) [17] rely on the local network to generate
workloads and do not take account of the level of noise in



this environment, which can influence the expected workload.
Other works such as those of Cunha et al. (2013) [13], Oberle
and Szabo (2015) [12], Chhetri et al. (2013) [14], Minzhi et
al. (2012) [15], Budai et al. (2014) [16] make use of the cloud
environment to generate the workload. However they are not
able to ensure the quality of the generated work or in some
cases, fail to make use of distributed hosts.

In summary, the related works seek to introduce an assess-
ment system that automates the evaluation process by allocat-
ing previous or on demand resources that can deploy, manage
and gather performance metrics and applications. On the other
hand, these works fail to take account of faults that can occur
during the workload generation and are not able to provide
the desired workload. Thus, PEESOS-Cloud architecture has a
workload generation that uses a distributed environment where
the requests are performed and sychronized with the aid of
a Uniform Resource Identifier (URI). This workload can be
generated through a local environment or in the cloud and is
capable of analyse the resulting workload that is required due
to the dynamics and constraints of the cloud environment.

III. THE PROBLEM STATEMENT

In this section, there is a brief description of the issues
involved in our research. The workload test denotes that any
workload used in performance studies can be classified as
either real or synthetic [18], [19]. Since there are two types of
load, there is the possibility that the execution and application
may be either centralized or distributed.

The real or known workload is derived from traces or
any basic information that can identify the incoming requests
within a given target system. One advantage is that this
workload is a closer representation of reality. On the other
hand, it may be difficult to obtain and handle trace data due to
their complexity and the amount of information involved. The
difficulty of represent different scenarios is another constraint
for a current workload, since it restricts the evaluation of
the system to a single perspective [3]. Alternatively, synthetic
workloads can be constructed by means of a pseudo-random
number generator with a probability distribution and descrip-
tive parameters to create a desired behavior or extracted by
modeling a real load [3], [20]. The main advantage of this
type of load is that it has the ability to test the system under
different conditions and variations.

Whatever type of workload, is employed, every attempt is
made to ensure its quality so that the generated workload can
be as similar as possible to what is specified. When the work-
load is executed centrally, the mischaracterisation caused by
the presence of noise occurs as a result of problems such as the
overloading of the components responsible for generating the
workload, especially when a single machine has to represent
many clients [9], [14]. [21] shows how the excessive number of
threads created in the instances that carry out load generation
have an adverse effect on the generation of the workload. In
addition to these problems that can occur on the machines that
host the environment, network noise is also a serious issue,
(especially when cloud is used) because the resources tend

to be even more distant geographically. Moreover, when the
cloud is used as a resource, factors such as the performance
of the service provider and the communication and network
conditions can influence the generation workload. This is
because the quality of the generated workload depends on how
the system will distribute and coordinate the clients who carry
out the requests within the target system. If a fault occurs
in the contracted resources at runtime, it is difficult to make
a decision in time and thus be able to avoid impairing the
workload generation [22].

This work makes direct use of the workload generation
whether it is a synthetic or real distribution. Thus, it is a
challenging task to quantify the noise since it depends on the
approach that is adopted. Since the workload is individually
configured for each client, it is difficult to know a) when a
request should be handled, b) when this was done, and c)
which client carried it out. To obtain this information from
an experiment, it would be useful to assess and quantify the
noise that affects the generation of the workload. Furthermore,
metrics can be employed to quantify the difference between the
characteristics of the workload which reaches the target system
rather than the workload that was specified. The metrics can
include the position, dispersion, central tendency, focus and
skew, and correlation measured, as well as, the characterization
by means of statistical distributions that best fits the data [18],
[19].

Thus, maximizing the generated workload so that it is nearer
the specified workload is a non trivial task. However, it makes
it possible to check the final characteristics of the workload
that is generated and imposed on the target system to have an
analysis of the real workload before performance metrics.

IV. PEESOS-CLOUD ARCHITECTURE
A. Overview

In this paper we propose an architecture to evaluate
oriented-service system using distributed workloads. Explor-
ing how cloud environments can be used to generate a work-
load, requires an analysis of how the environment is used
and how the target system handles it. Thus, it is extremely
important to establish what impact the workload has on the
target system and anticipate possible problems that may occur
during the experiment.

The proposed architecture is formed of three modules:

o PEESOS-Cloud Manager: this orchestrates and man-
ages the components of the PEESOS-Cloud architecture.
The experimental information (such as workload, service,
clients, target system and database for match-fixing) is
defined in this module. In addition, it is responsible for
communication with the other modules.

o Target System:: this hosts the target application and
receives the client requests — usually through a RESTful
interface. This means that the target system does not rely
on technology and uses an URI to call the service. The
metrics regarding usage of the systems resources such as
CPU, memory and disk are measured.



o Clients: performs the imposed workload for the target
system. It simulates real users and collects pre-defined
metrics. The clients are allocated in hosts that are able
to communicate with the PEESOS-Cloud server and the
target system. The workload is generated by requests
from a client to a URI service. Some metrics are collected
for these clients such as execution time, response time,
rate of successful requests and the status of the requests.

Figure 1 represents an abstraction of the PEESOS-Cloud

architecture. It should be stressed that each module has a
monitor with different responsibilities. It provides a commu-
nication channel for the client with PEESOS-Cloud Manager
and is capable of performing requests for the Target System
module. In the target system, the monitor is able to render
the desired service and provide experiment information to
the PEESOS-Cloud Manager. Finally, in the PEESOS-Cloud
Manager, the monitor is responsible for exchanging messages
that orchestrate the experiment with the Clients and Target

System.
PEESOS-Cloud Monitor
PEESOS-Cloud Manager
Client

PEESOS-Cloud Monitor

Target System

Fig. 1. Modules of PEESOS-Cloud

B. Workload Generation Model

A generic model was purposed to be employed for dis-
tributed workload generation and check its main characteristics
regardless of the noise present in the environment. To achieve
this, the proposed model is based on the decomposition of the
desired workload and will be applied in the target system as
a time series. Regardless of the used workload (synthetic or
real), it is possible to express its arrival rate in an application
server via a time series containing the number of requests to
be performed per second. Thus, a time series must express
the number of requests as a workload (w) at a predefined
instant of time (i), represented by (t), which can be expressed
with a demand d(t) and a possible noise n(t) represented by

TABLE 11
TIME SERIES WORKLOAD
Time ti [t [t | tm |
| Number of Requests | r¢1 | re2 | oo | Tem |

On the basis of the number of desired requests at a specific
time and the current noise level, it is possible to adopt a
new approach to generate and evaluate workloads. The use
of a time series means that the number of requests can be
established in an instant of time, and in this way, the workload
imposed on the target system can be characterized. On the

other hand, it is essential to decompose and synchronize
the requests properly to avoid decharacterizing the desired
workload. Table II provides an example of a time series, in
which a set of requests is defined for each point in time.

As the time series is defined, the decomposition process
is initiated in accordance with the number of requests to be
handled at each instant of time and the number of available
clients. Table III represents the decomposition workload that
is set out in Table II. This expresses the number of requests
and the number of clients required to represent this workload
in a predefined instant of time, as well as which client will
make those requests at each instant of time. For this reason,
a request matrix is established with dimension m x n, where
m represents an instant of time, n corresponds to the total
number of available clients and the intersection between m x
n indicates if the client n will be perform the request in the
instant of time m.

TABLE III
WORKLOAD DECOMPOSITION
Clientes/

Requisicbes/t °1 °2 (.. “(n—-1) °n
Tty Tt1,1 Tt1,2 Tt1,(...) Tt1,(n—1) Ttl,n
Tto Tt2,1 Tt2,2 Tt2,(...) Tt2,(n—1) Tt2,n

Tt(...) Tt(...),1 Tt(...),2 (), (een) Tt(...),(n—=1) Tt(..)n
Ttm Ttm,1 Ttm,2 "tm,(...) "tm,(n—1) Ttm,n

C. Integration of the Modules

The proposed architecture acts in a distributed and indepen-
dent way, which means that it is necessary to address questions
regarding communication and synchronization. A Network
Time Protocol (NTP) server is set for the whole environment.
Figure 2 shows the flow of the operating system architecture
which is used to evaluate the system. In this scenario, the
question of the availability of potential clients was taken into
account. Thus, to evaluate a system the following stages must
be followed:

PEESOS-Cloud Clients.

7-Client’s Performance Metrics Report;
8-Storing inthe Database of Experiments Results.

Fig. 2. PEESOS-Cloud Workflow

1) The user configures an experiment, using scripts to
define the parameters for the workload to be applied,
the service and evaluation of the target system ;

2) The application PEESOS-Cloud Monitor of the target
system receives the information of the service to be used.



After, the service is deployed in provider on the basis of
the information provided by the module PEESOS-Cloud
Server;

3) The potential clients receive information about the ex-
periment and the workload;

4) Depending on the features of the workload, the clients
makes requests within a target system;

5) The request response and metrics of interest of the
clients as execution time, are sent to the clients. In
the same instant the providers are being monitored with
regard to the rate of resource utilization;

6) In this stage, when the experiment has already been
completed, the providers of the PEESOS-Cloud send the
results, of the monitoring, to the PEESOS-Cloud Server;

7) Like the providers, the PEESOS-Cloud Monitor sends
the results of the requests to the PEESOS-Cloud Server
when the experiment has already been completed;

8) All the information is stored in a database, and the
completed experiment is ready for analysis.

The NTP synchronism becomes essential for the experiment
execute as expected. All this process is based in message ex-
change using Sockets and JavaScript Object Notation (JSON).
The feedback from the operations in all the activities is
evaluated to control for possible mistakes.

V. EXPERIMENTAL EVALUATION

In this section, PEESOS-Cloud architecture was used to
perfom a performance evaluation of a CPU-Bound application
offered as a RESTful service . The driving-force behind
this study is the desire to make use of PEESOS-Cloud to
evaluate service-oriented systems deployed in the cloud, and
allocate resources from this infrastructure. This is followed
by adopted methodology for the planning, execution and
analysis of the experiments [18], in which the model for
the experiments was based on a full factorial design. We
performed 10 replications of each experiment, to achieve a
confidence level of 95%. The workload was analysed in all
the experiments. The characteristics of the specified workload
were taken into account for this. Thus, when conducting the
experiments for all the combinations and replications, the
resulting features of workload were analysed and compared
with the used workload. In the final stage, we analysed the
effects of workload on the evaluation.

The workload was analysed in all the experiments. The
characteristics of the specified workload were taken into
account for this. Thus, when conducting the experiments for
all the combinations and replications, the resulting features of
workload were analysed and compared with the used work-
load. In the final stage, we analysed the effects of workload
on the evaluation.

A. Experiments Design

Table IV shows the factors and levels of the experiments.
In this work, the average of number of requests per second
was used to check the application performance at different
levels of the workload. The value of its levels were utilized as

parameters of a Poisson distribution. In this way, the workload
fitted this probability distribution, and assumed that every
replication 300 seconds. The method of generating workload
refers to how the PEESOS-Cloud clients were instantiated. In
the centralized approach, all the clients were hosted in a single
physical node, since the workload generation was carried out
in a centralized way, while, in the distributed way, the clients
were divided between 5 machines. Each client only had to
carry out at most, one request per second.

TABLE IV
EXPERIMENT DESIGN
Factor Levels
Mean of Requests/s 15, 30, 45

Workload Generation Mode Centralized, Distributed

All the architecture components were hosted in a private
cloud, located at the University of Sao Paulo'. The testbed
was set (as shown in Figure 3).

PEESOS-Cloud
Clients

&

Services
PEESOS-CLOUD | Provider
Manager

Fig. 3. Experiments Environment

The analysed response variables are:

o Workload generated by clients: check if the specified
workload was correctly generated by the PEESOS-Cloud
architecture;

+ Workload processed by the provider: check the features
of the workload imposed on the target system.

o Service execution time by the provider: check the
service execution time for the defined workloads;

Table V describes the computational environment used for
the experiments. The application in which the feature is a
CPU-bound operation, calculates the factorial of the number
1000. This value is empirically defined through preliminary
tests, and takes particular account of the computational re-
sources used.

TABLE V
SPECIFICATION OF COMPUTATIONAL RESOURCES USED.

Operating
System
Ubuntu Server
14.04.1 LTS x64
Ubuntu Server
14.04.1 LTS x64
Ubuntu Server
14.04.1 LTS x64

Processor Memory

Virtual Machine 1 vCPU 1 GB

Intel ® Core M2 Quad 3 GB
Q9400 2.66 GHz

Intel® Core™ 17
4790 3.60GHZ

Physical Machine

Environment
PEESOS-Cloud

Uhttp://infra.lasdpc.icmc.usp.br/



B. Results

The graph in Figure 4 contains the workload generated
by PEESOS-Cloud through the evaluated application. X axis
shows the workload generator module grouped by the work-
loads with the means of requests. The Y axis shows the
means of requests per second for each workload during the
experiment.

40

Requests/s Mean

Workload Generation

Fig. 4. PEESOS-Cloud Workload Generation

It can be observed that when the workload generation mode
is distributed, 100% of requests are generated correctly in
every experiment, when the total amount of time for the
workload is 300 seconds. In contrast, when the workload
generation mode is centralized, for loads with averages of of
30 and 45 seconds, the characteristic for the mean average of
requests per second is violated. In this case, when the workload
averaged 30 requests per second (for the centralized mode),
a load lower than 23.70 requests per second was generated
(a negative difference of 21.71%). In the same way, when the
workload averaged 45 requests per second in centralized mode,
the load is also lower, averaging 20.70 requests per second was
generated by PEESOS-Cloud clients (a reduction of 54.17%).

Requests/s

40

Requests/s Mean

Workload Generation

Fig. 5. Processed workload in providers

In the graph in Figure 5, the workload processed by the
service provider can be seen. With regard to the load that
was generated by PEESOS-Cloud clients, in most of the
experiments the provider met the demand, unless the used load
had an average of 45 requests per second, and was generated
by the distributed mode. In this case, it served an average

of 7.68 requests per second. When analysing the workload
with an average of 15 requests per second, the average of the
processed workload was 14.44 and 14.42 requests per second,
for both the generation modes (distributed and centralized),
and was statistically the same. In the case of the workload
with an average of 30 requests per second, the mean average
of the processed workload was 23.62 and 29.62 requests per
second, the higher figure being for the load generated with
the distributed mode. The same applied to the load with an
average of 45 requests per second, where the average was
29.69 requests and 7.68 for the processed loads with both
distributed and centralized methods.

As well as the use of the averages of requests per second,
Figure 6 shows the Cumulative Distribution Function (CDF)
of the processed workload for each experiment, together with
the replications of the averages, standard deviation and number
of samples. From the the cumulative distribution, it can be
seen that the experiments represented in Figures 6a, 6d and
6e behave in the same way. The replication curves and the
specified workload overlap in the most graphic area, and
approximately 50% of the values are lower and the other
50% are higher than the average for workload requests. This
suggests that the execution time of the load was satisfactory,
which means that the total time of requests (represented by
Samples) was close to 300 seconds, with a maximum variation
of 2.33%, following what is specified by the load. In view
of this, it should be underlined that even the average rate of
processed workloads is similar to the specified workloads, with
only a tiny statistical difference.

The results of the experiments in Figures 6b and 6¢ showed
that there was a greater variation. In this case, it is clear
that almost 100% of the number of the requests per second
that were carried out, have a value lower than the average
of requests per second of the used load. A difference in the
specified load can be seen in Figure 6f as well, because of the
incapacity of the provider to process all the requests. Given
that the charge together with the workload that was processed
by the services providers, in the graph in Figure 7 it is possible
to observe the mean execution time of the factorial services
in the provider that were carried out for each experiment.

For the workload with an average of 15 requests per second,
the average time of service execution was 128.50 and 131.50
milliseconds, for both distributed and centralized generation
modes respectively, and it was statically the same. When the
workload had an average of 30 requests per second, the mean
execution time of service was 312.06 and 375.35 milliseconds,
which was greater in the generated load for the distributed
mode. Lastly, when verifying the execution times for the load
that has an average of 45 requests per second, there was found
to be a huge difference between centralized and distributed
modes, which were 321.20 and 771.7 milliseconds.

C. Analysis of results

The results made it clear how the generation mode can
interfere with the final characteristic of the load. When evalu-
ating the average, it is possible to detect bottlenecks when the
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workload was generated, as it was observed in the centralized
mode and averages of 30 and 45 requests. The reason for this
is that the overload in the physical node made the PEESOS-
Cloud clients fail when generating the requests. In addition,
it should be noted, that in the cases of experiments that
underwent the mischaracterisation (Fig. 7) as a result of noises
in the specified workload, the average execution times were
statistically the same, which suggests that the mischaracter-
ization of the workload occurred when the load was being
generated. As well as this, there was a noticeable difference
when the mischaracterization of the specified workloads was
compared with the processed workloads. This reduced the
average to 21.71% and 54.17% for the loads of 30 and 45,
respectively that were generated by the centralized mode (Fig.
4).

The difference between the generated workloads and those
that were specified is 2.33% when the average number of

requests is noted; this applied to the scenarios who had
no problems when generating the workload. An increase in
execution time for all the load causes a skew due to standard
deviation, as demonstrated. In this case, there was a tiny
difference in the average processed workload due to variations
in the replications. The effect of generated workloads on the
service provider in the final load processed, suggests that,
(except for the scenario where there is an average load of
45 requests per second generated in a distributed way), the
loads were processed as expected. In the specific scenario
of the average of 45 requests per second generated in a
distributed way, the impact of the workload was greater than
the maximum that could be supported by the services provider,
and that after an initial experimental period, the provider was
unable to answer the requests. As a result, only an average
of 17.01% of requests were met. The high value in the
execution time in this case is caused by the waiting time in the
queue while the request is being processed. As every request
generates a Java process that has to be scheduled for execution
by the operating system, this experiment produced a higher
number of concurrent requests per second that the system can
handle.

The application server used to offer a service appeared to
be unstable while the experiments were being carried out. The
allocated resources in VM for the processed load, resulted
in factors such as Timeout. In addition, the requirement for
more resources to meet the concurrent requests resulted in
a failure on the part of the nprovider to reach the processing
limit, and only some of the 300 seconds of experiments where
performed. This means that it is necessary to adopt scalability
policies and optimization techniques.



VI. CONCLUSION AND FUTURE WORK

This paper proposed an architecture for conducting experi-
ments in services by taking note of the characteristics of the
workloads. We found in the literature that there are problems
arising from the workload generation when evaluating service-
oriented systems.

The workload-aware approach proposed by PEESOS-Cloud
proved to be effective, as was shown in the experimental eval-
uation. However, the centralized workload generator failed to
comply with the specifications because it reduced the number
of requests per second due to a lack of computing power in
the clients. On the other hand, when distributed clients were
used, the workload characteristics were retained by the client.
In particular, in the experiment with 45 requests per second
carried out with the distributed clients, the provider could not
handle this level of requirement s and this revealed a limited
a capacity. This meant that proving the requirement of (1) led
to an accurate generation of requests (whether centralized or
distributed) and (2) the results showed how they arrived at the
provider. Moreover there were failings on the part of the clients
in the generation of the requests and the provider lacked the
capacity to cope with the workload. This result confirms that
workload-aware systems lead to better experimental outcomes
and thus, a consistent performance analysis.

On the other hand, when distributed clients were used, the
workload characteristics have been retained at clients side.
Specifically, in the experiment with 45 requests per second
coming from the distributed clients, the provider could not
handle such level of exigency exposing a capacity limitation.
And so, proving the requirement of (1) ensuring an accurate
generation of requests (Whether centralized or distributed) and
(2) and logging how they arrive at the server side — limitation
of the clients in the generation of the requests and the provider
lack of capacity to cope with the workload, respectively.
This results confirms that workload-aware systems produce
better experiment executions and then consistent performance
analysis.

In future work, we intend to use PEESOS-Cloud to develop
and validate new QoS levels for services performance studies.
Finally, we will propose business models for TaaS (Test as a
Service) and BaaS (Benchmark as a Service) that take account
of aspects of workloads and the allocation of resources in the
cloud.
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