
IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

A Novel Graph-based Computation Offloading
Strategy for Workflow Applications in Mobile

Edge Computing
Xuejun Li, Member, IEEE, Tianxiang Chen, Dong Yuan, Member, IEEE, Jia Xu, Student Member,

IEEE, and Xiao Liu, Senior Member, IEEE

Abstract—With the fast development of mobile edge computing (MEC), there is an increasing demand for running complex
applications on the edge. These complex applications can be represented as workflows where task dependencies are explicitly
specified. To achieve better Quality of Service (QoS), for instance, faster response time and lower energy consumption,
computation offloading is widely used in the MEC environment. However, many existing computation offloading strategies only
focus on independent computation tasks but overlook the task dependencies. Meanwhile, most of these strategies are based on
search algorithms such as particle swarm optimization (PSO), genetic algorithm (GA) which are often time-consuming and
hence not suitable for many delay-sensitive complex applications in MEC. Therefore, a highly efficient graph-based strategy
was proposed in our recent work but it can only deal with simple workflow applications with linear (namely sequential) structure.
For solving these problems, a novel graph-based strategy is proposed for workflow applications in MEC. Specifically, this
strategy can deal with complex workflow applications with nonlinear (viz. parallel, selective and iterative) structures. Meanwhile,
the offloading decision plan with the lowest energy consumption of the end-device under the deadline constraint can be found
by using the graph-based partition technique. We have comprehensively evaluated our strategy using both a real-world case
study on a MEC based UAV (Unmanned Aerial Vehicle) delivery system and extensive simulation experiments on the
FogWorkflowSim platform for MEC based workflow applications. The evaluation results successfully demonstrate the
effectiveness of our proposed strategy and its overall better performance than other representative strategies.

Index Terms—Mobile Edge Computing, Workflow Management, Energy Consumption, Computation Offloading, Directed
Acyclic Graph

——————————  ——————————

1 INTRODUCTION

ITH the continuous improvement of the computing
capacity of various smart end-devices, an increasing

number of intelligent applications are deployed on mo-
bile end-devices such as smart traffic, smart healthcare,
smart logistics and so on. Meanwhile, massive computa-
tion requests submitted by the end-devices can be han-
dled by cloud datacentres with unlimited computing re-
sources. However, massive data transmission over public
networks with limited bandwidth will cause significant
delays, which is unacceptable for many delay-sensitive
applications. Nowadays, mobile edge computing (MEC)
has been widely used to provision computing resources
from the network edge to the end-device in order to re-
duce response delay [1]. Computation tasks on the end-
devices can be offloaded to the edge servers for execution
through low-cost and high-bandwidth transmission such
as the 5G and WIFI networks [2]. Computation offloading
plays a key role in effectively improving the QoS of MEC-

based applications by reducing the response delay and
the energy consumption of end-devices [3], [4].

Given the success of MEC, there is an increasing de-
mand for running complex applications on the edge. For
example, in the UAV (Unmanned Aerial Vehicle) based
smart delivery system, there are many complex applica-
tions such as dynamic route planning, obstacle detection
and face recognition [5]. These applications are important
parts of the whole delivery process. However, like most
smart end-devices, UAVs are limited by their computing
power and battery life so that they are unable to execute
computation-intensive tasks as mentioned above. Fortu-
nately, the UAV’s energy consumption and task response
time can be effectively reduced by the computation of-
floading technology in the MEC environment [6]. Mean-
while, as will be shown in the motivating example in the
next section, most complex applications in the real-world
can be rep-resented by workflows where task dependen-
cies are explicitly specified [7]. However, currently many
studies only focus on independent tasks without consid-
ering task dependencies. A few of them considered sim-
ple linear task dependencies where tasks are executed in a
sequential manner [8], [9], [10]. Generally speaking, all
real-world applications can be represented by a mix of
linear (namely sequential) and nonlinear (viz. parallel,
selective, and iterative) structures [11]. Therefore, com-
putation offloading for complex applications should be

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————
 X. Li, T. Chen and J. Xu are with the School of Computer Science and

Technology, Anhui University, Hefei, Anhui, China. E-mail:
xjli@ahu.edu.cn; biyisi_96@qq.com; xujia@stu.ahu.edu.cn.

 D. Yuan is with the School of Electrical and Information Engineering,
University of Sydney, Sydney, NSW 2006, Australia. E-mail:
dong.yuan@sydney.edu.au.

 X. Liu is with the School of Information Technology, Deakin University,
Geelong, Australia. E-mail: xiao.liu@deakin.edu.au.

Manuscript received X. 2020; revised X. 2020; accepted X. 2020.
Date of publication X. 2020; date of current version X. 2020.
(Corresponding author: Xiao Liu.)

W

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

able to deal with both linear and nonlinear structures.
Meanwhile, given the complex nature of the computa-
tion offloading problem, the greedy type of strategies
have been widely used to obtain a feasible solution in a
short time [12], but they cannot produce optimal offload-
ing decisions. Therefore, in order to improve the quality
of the decisions, many studies employed search algo-
rithms such as particle swarm optimization (PSO) and
genetic algorithm (GA) to search for the optimal offload-
ing decision by iterative process, which could produce
significant time overhead [13], [14], [15], [16]. In [17], Hu
et al., proposed a learning-driven algorithm to achieve
efficient offloading decision plans, which need lots of pri-
or data training to get an effective model. Therefore, at
present, most computation offload-ing strategies are ei-
ther simple but not good enough, or they are too time-
consuming to be suitable for delay-sensitive complex ap-
plications [18],[19].

To address the above issues, a novel computation of-
floading strategy using graph partition technology is
proposed in this paper for workflow applications in MEC.
To distinguish with our previous preliminary work which
can only deal with linear work-flow structures [20], we
name the previous strategy Graph4Edge-Linear, name the
new strategy proposed in this paper Graph4Edge-
Nonlinear. Our proposed strategy considers the influence
of the complex task dependencies on the computation of-
floading decisions, and the end device’s energy consump-
tion is optimized effectively under the given deadline con-
straints. Please note that the energy consumptions of edge
servers are not considered in this paper. This is because
edge servers are usually connected to the power grid, and
hence their energy consumptions are not regarded as limit-
ing factors in a MEC environment.

Specifically, the novel contributions of this paper are
summarized as follows:

1) A novel nonlinear workflow model for complex
MEC-based applications is proposed. The model is
based on WDG (Workflow Dependency Graph)
which considers both complex task dependencies
and the objective of reducing the end-device’s ener-
gy consumption.

2) We propose a novel graph-based computation of-
floading strategy named Graph4Edge-Nonlinear
based on the WDG which can find the best compu-
tation offloading decision with the minimum end-
device’ energy consumption under the given
deadline. Its performance is significantly better
than popular search-algorithm based strategies.

3) Both a case study on a real-world UAV delivery
system [21] and extensive simulation experiments
on the FogWorkflowSim platform for MEC based
workflow applications [22] are presented. The ex-
perimental results demonstrate the effectiveness of
our proposed strategy and its overall better per-
formance than other representative strategies.

The rest of this paper is structured as follows: Section 2
introduces a motivating example on a MEC-based UAV
delivery system. Section 3 presents some preliminaries for
this study. Section 4 proposes our novel graph-based com-

putation offloading strategy for workflow applications
with nonlinear structures. Section 5 presents the evaluation
results. Section 6 reviews the related works for computa-
tions offloading. Finally, Section 7 makes the conclusions
and points out some future work.

2 MOTIVATION EXAMPLE AND PROBLEM ANALYSIS
An example of the MEC-based UAV last-mile delivery
scenario is presented to describe the problem of computa-
tion offloading in the MEC environment in this section.

In the MEC-based UAV last-mile delivery system, there
are various delay-sensitive applications such as dynamic
flight route planning and autonomous obstacle avoidance
for UAVs, pose and face recognition for receivers [23], [24].
These applications usually consist of object detection, pat-
tern recognition and video stream processing, which are
computation intensive tasks. In fact, because of the UAV’s
limited battery life and computing power, these computa-
tion intensive tasks are not suitable for executed locally
under the fast response and energy efficiency requirements.
Therefore, computation offloading to the edge server is
often required.

Final Parcel Delivery Workflow

Edge Servers

LANWLAN

Computation Offloading

Frame
Filtering

Target
Detection

Image
Segmentation Pre-processing

Pose
Recognition

Pose
Recognition

Face
Recognition

Face
Recognition

Confirm
Receiver



Fig. 1. Computation offloading for an example workflow in a MEC-
based UAV delivery system

Here, we illustrate the computation offloading problem
with a partial workflow of the whole UAV delivery process,
namely the final parcel delivery workflow. The MEC-based
UAV delivery system is conceptually divided into two lay-
ers. As shown in Fig. 1, the upper layer is the edge server
layer, which consists of various edge servers. These edge
servers can provide computing resources close to the UAV.
The bottom layer is the final parcel delivery workflow
which consists of a set of computation tasks with depend-
encies. Generally speaking, dependencies can be generated
in two situations. The first situation is where a task has one
or multiple predecessors and/or successor tasks, namely
they have temporal dependencies. The second situation is
where data transfer is required between the two neigh-
bouring tasks, namely they have data dependencies. In this
paper, we simply refer them as task dependencies, and
they can be explicitly specified using DAG (Directed Acy-
clic Graph) as will be introduced in the next section. Specif-
ically, as shown in Fig. 1, there are many computation-

AUTHOR ET AL.: TITLE 3

intensive tasks in the UAV last-mile delivery scenario, for
example, target detection, image segmentation, pose and
face recognition. Specifically, in the real world, the video
frames may contain multiple persons and hence it is neces-
sary to segment the images and run multiple poses and
face recognition tasks in parallel to ensure timely detection
of the actual receiver from the crowd. Once the UAV de-
tects the actual receiver, it will approach the receiver and
begin to land and unload the parcel. Obviously, these real-
time tasks are delay-sensitive, and fast response time is
essential.

According to different characteristics (such as task
workload, data size and deadline constraints) of the com-
putation tasks, some of them are offloaded to edge servers
to achieve better QoS such as faster response time and low-
er energy consumption [25]. However, computation of-
floading is a difficult decision-making problem.

While there are some existing strategies which are based
on heuristic algorithms or search algorithms, they all have
some limitations. For example, heuristic algorithms have
the premature convergence issue so that they may not be
able to find the best computation offloading decision.
While search algorithms such as particle swarm optimiza-
tion (PSO) and genetic algorithm (GA) can find the best
decisions in theory, they are usually very time-consuming
and hence not suitable for delay-sensitive applications.
Meanwhile, to the best of our knowledge, none of the exist-
ing strategies can effectively deal with complex task de-
pendencies which can be represented by nonlinear work-
flow structures such as parallel, selective and iterative
structures.

For solving the above issues, a novel graph-based strat-
egy is proposed to solve the computation offloading prob-
lem in the MEC environment. Our proposed strategy can
deal with nonlinear workflow structures and find the best
computation offloading decision with the minimum energy
consumption under the deadline constraint.

3 PRELIMINARIES
Generally speaking, for the purpose of computation of-
floading, there are two kinds of computation tasks in the
workflow, which are general tasks and local execution
tasks. General tasks are those tasks which are executed
either at end-device or edge server via computation of-
floading. Local execution tasks are those tasks that can
only be executed on end-device due to the required input
data is only available at the end-device and cannot be
moved due to security restrictions, or some tasks which
require user input at the end-device [20]. In this situation,
edge servers cannot handle these tasks. In other words,
these tasks must be processed on the end-device.
This paper uses the workflow dependency graph (WDG)
to represent the workflow model and its task dependen-
cies. WDG is a directed acyclic graph (DAG) that is com-
posed of workflow tasks with dependencies. Each task 𝑇௜
of WDG contains three basic attributes 𝑥௜, 𝑦௜, 𝑧௜ , which
represent the energy consumption in different situations
of the end-device.

In Fig. 2, the symbol → denotes that there is a depend-
ency relationship between two task nodes. For example,
the 𝑇௜ → 𝑇௝, indicates that 𝑇௜ is the predecessor of 𝑇௝ in the
WDG. There are 𝑇ଵ → 𝑇ଶ, 𝑇ଶ → 𝑇ଷ, 𝑇ଶ → 𝑇ହ, 𝑇ଷ → 𝑇ସ, 𝑇ହ → 𝑇଺,
etc. 𝑇ଵ points to 𝑇ଶ, which means there is a direct depend-
ency between 𝑇ଵ and 𝑇ଶ. We use the task 𝑇ଵ’s output data
as task 𝑇ଶ’s input data. In addition, → is defined as having
transitivity, where 𝑇௜ → 𝑇௞ → 𝑇௝ ⇔ 𝑇௜ → 𝑇௞⋀𝑇௞ → 𝑇௝ ⇔
𝑇௜ → 𝑇௝.

The symbol ↮ indicates that there is no dependency
between the two tasks, where 𝑇௜ ↮ 𝑇௝ means the 𝑇௜ and 𝑇௝
are disparate branches in WDG. For instance, we have
𝑇ଷ ↮ 𝑇ହ, 𝑇ସ ↮ 𝑇଺, etc. in Fig. 2.

T1 T2

T3 T4

T7

T5 T6

T8

Fig. 2. An example workflow dependency graph

Here, 𝑥௜ means the energy consumption of the data
transmission when decide offloading 𝑇௜ to edge server.
The data transmission between 𝑇௜ and 𝑇௝ (MB) indicated
as 𝐶𝑜𝑚𝑚ሺ𝑇௜, 𝑇௝ሻ . 𝑇௜ ’s direct predecessor node is 𝑇௝ .
𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ is data transfer speed of the computation
tasks (Mbps). 𝑃௧௥௔௡௦ denotes the end-device’s transmission
power (W).

 i j

i trans

Comm T T
x P

Bandwidth

ሺ , ሻ
* (1)

Where y୧ is end-device’s idle energy consumption
when decide offloading T୧ to edge server. The task T୧ ’s
workload (Megacycles) is denoted as l୧. The edge server’s
CPU frequency (GHz) is fୣୢ୥ୣ. The end-device’s idle pow-
er (W) is P୧ୢ୪ୣ.

 i

i idle

edge

l
y P

f
* (2)

The end-device’s load energy consumption is denoted
as z୧ when T୧ is executed on the end-device. The end-
device’s CPU frequency (GHz) and execution power (W)
is denoted as fୣ୬ୢ and Pୣ ୬ୢ respectively.

 i

i end

end

l
z P

f
* (3)

In our previous work [20], the proposed method can
convert the computation offloading problem of the linear
WDG into the shortest path problem. There are two types
of virtual nodes in the WDG, which are the start node and
end node in problem of the shortest path. The weight of
the edge between two nodes is expressed as 𝑤 ൏ 𝑇௜, 𝑇௝ ൐,
which is the end-device’s energy consumption. At this
time, the computation task 𝑇௜ and 𝑇௝ are decided offload-
ing to edge server and the tasks between 𝑇௜ and 𝑇௝ are
executed locally. All possible offloading decisions in
WDG can be mapped to edges between different task
nodes. The weight of each edge represents the energy
consumption of end-devices. As mentioned before, the

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

energy consumptions of edge servers are not considered
as edge servers are usually connected to the power grid.

According to the WDG, an Energy consumption Tran-
sitive Graph (ETG) is constructed. Specifically, we design
a one-to-one mapping for all paths in the graph to all pos-
sible offloading decisions of the workflow, and the classic
Dijkstra algorithm is used to find the shortest path in ETG.
Since the complexity of graph-based algorithm is low, this
strategy can efficiently obtain excellent results.

4 GRAPH-BASED MINIMUM ENERGY

CONSUMPTION COMPUTATION OFFLOADING

STRATEGY
We present the strategy of Graph4Edge-Nonlinear in this
section. This strategy will find the best offloading deci-
sion with minimum energy consumption of the end-
device under the given deadline. First in Section 4.1, we
introduce our model definition and how to convert work-
flow structure to WDG. Then in Section 4.2, we discuss
how to find the best offloading decision plan for complex
WDG with Graph4Edge-Nonlinear. Finally, in Section 4.3,
we use pseudo-code to describe the detailed process for
our strategy and the discussion of its algorithm complexi-
ty is also presented.
4.1 Problem Formulation
We introduce the model definition in this section. Then
the conversion from nonlinear workflow structure to
WDG is described.
4.1.1 Model Definition
For the computation offloading purpose, the attributes of
task 𝑇௜ are defined as 〈𝑥௜, 𝑦௜, 𝑧௜, 𝑓𝑙𝑎𝑔௜, 𝐸௜〉. 𝑓𝑙𝑎𝑔௜ denotes the
constraint whether 𝑇௜ is local execution task or not. Specif-
ically, 𝑓𝑙𝑎𝑔௜ ൌ 1 means that 𝑇௜ is a local execution task.
Otherwise, the task 𝑇௜ is sending to the edge server for
execution. 𝐸௜ denotes the 𝑇௜’s execution energy consump-
tion in end-device. The calculation method of 𝐸௜ as fol-
lows:









 
  



1

1

1

1

, ;

, ;

, ;

, ;

i i i i

i i i i
i

i i i

i i i

x y if T is offloaded and T is not
x z if T is offloaded and T is not

E
y if T and T are offloaded
z if T and T are not offloaded

 (4)

According to the offloading decision of 𝑇௜ and 𝑇௜ିଵ, the
calculation method of 𝐸௜ has two situations. When either
of them offloaded, the data transmission appears between
the two tasks. In this situation, the end device’s energy
consumption depends on 𝑇௜ ’s task offloading decision
plan. When both of them are offloaded or not offloaded,
there is no data transmission between the two tasks. The
end device’s energy consumption depends on offloading
decision plans of two tasks. According to the above defi-
nition, the optimization goal is defined as 𝑀𝑖𝑛𝐸𝐶, which
is calculated as follows:



 
{ | }

min ()
i j

i
T T WDG

MinEC E (5)

The final optimization goal is to find the best computa-
tion offloading plan with the minimum energy consump-
tion of the end-device under the deadline constraints.

As shown in Fig. 3, the WDG has a sub-branch within
one block. If the task offloading decision with minimum
energy consumption in WDG can be found, only one
branch is chosen to construct the ETG which is called
“main branch” (indicated as MB). The rest of branches are
called “sub-branches” (indicated as SB). such as the
𝑀𝐵 ൌ ሼ𝑇ଵ, 𝑇ଶ, 𝑇ଷ, 𝑇ସ, 𝑇଻, 𝑇 ሽ and 𝑆𝐵 ൌ ሼ𝑇ହ, 𝑇଺ሽ in Fig. 3. The
energy consumption of the SB in the block is mapped to
the weight of the MB. The weight of the SB in Fig. 3 is
defined as 𝐸ହ ൅ 𝐸଺. To better present our problems and
methods, here are some detailed definitions.

T1 T2 T3 T4 T7 T8

T5 T6

Ts Te

Sub Branch

min(E5+E6)

Main Branch Block

Fig. 3. An example of building ETG for single-block WDG

Block: In WDG, A block (denoted as B) is defined as a
set of sub-branches which are forked from one task node
and merged at another task node. A WDG with simple
block 𝐵 ൌ ሼ𝑇ଷ, 𝑇ସ, 𝑇ହ, 𝑇଺ሽ is shown in Fig. 3.

In-block edge: In-block edge 𝑒〈𝑇௜, 𝑇௝〉 represents the edge
begins with 𝑇௜ preceding the block, and points to 𝑇௝ in the
block, for example, 𝑒〈𝑇ଵ, 𝑇ଷ〉, 𝑒〈𝑇ଵ, 𝑇ସ〉 in Fig. 3. Formally,
𝑒〈𝑇௜, 𝑇௝〉 is an in-block edge, where ∃𝑇௞ ∈ 𝑊𝐷𝐺 ∧ 𝑇௜ → 𝑇௞ ∧
𝑇௝ ↮ 𝑇௞.

Out-block edge: Out-block edge 𝑒〈𝑇௜, 𝑇௝〉 represents the
edge begins with 𝑇௜ in the block, and points to 𝑇௝ succeed-
ing the block, for example, 𝑒〈𝑇ଷ, 𝑇 〉 , 𝑒〈𝑇ସ, 𝑇 〉 in Fig. 3.
Formally, 𝑒〈𝑇௜, 𝑇௝〉 is an out-block edge, where ∃𝑇௞ ∈
𝑊𝐷𝐺 ∧ 𝑇௜ ↮ 𝑇௞ ∧ 𝑇௝ → 𝑇௞.

Over-block edge: Over-block edge 𝑒〈𝑇௜, 𝑇௝〉 represents the
edge crosses over the block. 𝑇௜ is the task node which pre-
cedes the block and 𝑇௝ is the task node which succeeds the
block. For example, 𝑒〈𝑇ଵ, 𝑇 〉, 𝑒〈𝑇ଶ, 𝑇 〉 in Fig. 3. Formally,
𝑒〈𝑇௜, 𝑇௝〉 is an over-block edge, where ∃𝑇௞, 𝑇௛ ∈ 𝑊𝐷𝐺 ∧ 𝑇௜ →
𝑇௞ → 𝑇௝ ∧ 𝑇௜ → 𝑇௛ → 𝑇௝ ∧ 𝑇௛ ↮ 𝑇௞.

Ordinary edge: An ordinary edge 𝑒〈𝑇௜, 𝑇௝〉 means that
tasks between 𝑇௜ and 𝑇௝ when they are totally ordered,
such as 𝑒〈𝑇ଵ, 𝑇ଶ〉 , 𝑒〈𝑇ଷ, 𝑇ସ〉 , 𝑒〈𝑇଻, 𝑇 〉 in Fig. 3. Formally,
𝑒〈𝑇௜, 𝑇௝〉 is an ordinary edge, where ൓∃𝑇௞ ∈ 𝑊𝐷𝐺 ∧

ቀ൫𝑇௜ → 𝑇௞ ∧ 𝑇௞ ↮ 𝑇௝൯ ∨ ൫𝑇௜ ↮ 𝑇௞ ∧ 𝑇௞ → 𝑇௝൯ ∨ ൫𝑇௛ ∈ 𝑊𝐷𝐺 ∧

𝑇௛ ↮ 𝑇௞ ∧ 𝑇௜ → 𝑇௛ → 𝑇௝ ∧ 𝑇௜ → 𝑇௞ → 𝑇௝൯ቁ.

In this paper, we can define the weight of the ordinary
edge as Eq. (6).


   

    1

iሼ | T ሽ

ሺ , ሻ
k j

i j j i j k
Tk Tk WDG T T

w T T y x x z (6)

4.1.2 Convert Nonlinear Workflow to Complex WDG
The topology of workflow is represented by WDG. In the
real-world, the structure of workflow contains four basic
topology types, viz. sequential, parallel, selective and it-

AUTHOR ET AL.: TITLE 5

erative structures [11]. Specifically, in this paper, we
name the workflow only composed with the sequential
structure as the linear workflow. If it contains the other
three structures, we name the workflow as the nonlinear
structure. Although the real-world workflow structures
can be very complex with the mix of the four basic work-
flow structures, all of them can be converted to WDGs by
a simple method are proposed in [26]. In [20], a strategy
that can find minimum energy consumption of a simple
linear structure workflow is proposed. However, the task
dependencies in the remaining three workflow structures
are much more complicated. Through the conversion pro-
cess, any structures can be converted into multiple se-
quential structures. Fig. 4 shows how the three nonlinear
basic workflow structures are converted to WDG.

T1 T2 T3

T4

T1 T2 T3

T4 T4 T4

Ts

Te

a) parallel structure

T1

T2 T3 T4

AND

2‐out‐of‐3

T5

T1

T2 T3 T4

T5 T5 T5

Ts

Te

b) selective structure

T2

T3

i:=i+1

i＜2

XOR

T1Ts
T2

T2

T3

T3 TeT2

T1

c) iterative structure

Fig. 4. Convert nonlinear workflow structures to WDG

As shown in Fig. 4 (a), three sequential structures are
obtained by constructing three subtask instances for a
parallel structure [27]. The virtual start node and end
node are added to connect these sequential structures to
form a complete WDG. Fig. 4 (b) and (c) show the conver-

sion examples for the selective and iterative structures,
respectively [7].

Any workflow is a combination of the four basic struc-
tures, and they can be converted into corresponding
WDG models. In real-world workflow applications,
WDGs with nonlinear structures are very common [28].
Due to the existence of nonlinear structures, the existing
computation offloading strategy for linear structures can-
not be used directly. For solving the problem of computa-
tion offloading for complex workflow applications with
nonlinear structures, we propose the Graph4Edge-
Nonlinear strategy. This strategy is able to optimize the
end-device’s energy consumption under the given dead-
line constraints.
4.2 Graph4Edge-Nonlinear for Complex WDG
4.2.1 Single-block WDG
In this section, the single-block WDG is analyzed as an
example to describe the problem and the detailed steps
for Graph4Edge-Nonlinear based on the above model
definition.

The purpose of the Graph4Edge-Nonlinear strategy is
to map the energy consumption of the possible offloading
decision to the weight of the edge. Therefore, the shortest
path of the linear workflow structure can be easily found
by the optimal offloading strategy. 𝑒〈𝑇௜, 𝑇௝〉 means that
tasks 𝑇௜ and 𝑇௝ are offloaded to the edge server, and tasks
between 𝑇௜ and 𝑇௝ are executed locally. As a result, it is
necessary to calculate the energy consumption of locally
executed tasks which include transmission and idle ener-
gy consumption. In the single-block WDG, Eq. (6) is suit-
able for in-block edges and ordinary edges. But when
𝑒〈𝑇௜, 𝑇௝〉 is either out-block or over-block, Eq. (6) is no
longer suitable for its weight calculation due to the tasks
succeeding the block may have more than one task as
their predecessor node. For example, the edge of 〈𝑇ଷ, 𝑇 〉
in Fig. 3 can be calculated by 𝑤〈𝑇ଷ, 𝑇 〉 ൌ 𝑥ସ ൅ 𝑥଼ ൅ 𝑦଼ ൅
𝑧ସ ൅ 𝑧଻ according to Eq. (6). However, the offloaded situa-
tion of the sub-branch tasks 𝑇ହ and 𝑇଺ is not considered.
Therefore, the obtained shortest path cannot represent the
overall decision of WDG.

For the above reasons, the weight of 𝑒〈𝑇௜, 𝑇௝〉 is defined
as follows:



    

  

  
1

min

*

ሼ | ሽ ሼ | ሽ

ሺ , ሻ

ሺ ሻ
l

k k i k j l l

i j j j i

k T S
T T WDG T T T T T SB

w T T y x x

z E (7)

In Eq. (7), ൫∑ 𝐸்೗ሼ்೗|்೗∈SBሽ ൯
ௌ೘೔೙

 means the minimum en-

ergy consumption of the tasks that are in the sub-
branches of the block. 𝑥௜ାଵ

∗ represents the transmission
energy consumption of the task that directly depends on
𝑇௜. The out- or over-block edge’s shortest path length is
equal to the task’s minimum energy consumption by Eq.
7, i.e. 𝑃௠௜௡〈𝑇௜, 𝑇௝〉 ൌ ∑ 𝐸௞൛்ೖ|்ೖ∈WDG∧்೔→்ೖ→்ೕൟ . Hence, in or-
der to calculate the out- or over-block edge’s weights, the
offloaded strategy of sub-branch in single-block WDG is
essential. For instance, the weight of edge 𝑒〈𝑇ଷ, 𝑇 〉 in Fig.
3 is calculated as 𝑤〈𝑇ଷ, 𝑇 〉 ൌ 𝑥ସ ൅ 𝑥଼ ൅ 𝑦଼ ൅ 𝑧ସ ൅ 𝑧଻ ൅

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

ሺ𝐸ହ ൅ 𝐸଺ሻௌ೘೔೙
 where 𝑆௠௜௡ is the best computation offload-

ing decision of the SB.
For any sub-branch, the offloading decision of the pre-

vious node of the block decides the transmission energy
consumption of the first task node in SB. If 𝑒〈𝑇௜, 𝑇௝〉 is an
over-block edge, we need to consider two different situa-
tions. If 𝑇௜ is the previous node of the block and it will be
offloaded, then when the first task of the SB is offloaded,
the transmission energy consumption is not calculated as
they are both executed on the edge. Otherwise, the
transmission energy consumption must be calculated
when the first task of the SB is offloaded. In order to solve
this problem, when 𝑇௜ is not the previous node of the
block, a special non-offloaded virtual node 𝑇௦

′ is added
between the start node 𝑇௦ and the first task node 𝑇ଵ, and
set 𝑥௦

′ ൌ 𝑦௦
′ ൌ 𝑧௦

′ ൌ 0. In this way, we account the energy
consumption for transmission of the first node of the SB.
If the rest of the tasks in the block compose a linear WDG,
the Graph4Edge-Linear strategy can find its minimum
energy consumption decision. Otherwise, if the remaining
tasks within the block still compose a complex WDG with
nonlinear structures, the Graph4Edge-Nonlinear strategy
must be recursively called to search the best offloading
decision plan for sub-branches.

T1 T2 Ta Tb Th Tk

Ti Tj

Ts Te

Main Branch

Sub-branch

Block

……

……

Fig. 5. The initial ETG of single-block WDG

Tu Tv Ta Tb Th Tk

Ti Tj

Ts Te

Sub-branch

Block

……

…… …………

Fig. 6. Examples of in-block edges in two different situations

Ti TjTs Te……

(a) In-block edges not from the previous node

Ti TjTs'Ts Te

(x,y,z)s'=(0,0,0)

……

(b) In-block edges from the previous node

Fig. 7. Construct the ETG for branch structure

For an out-block edge 𝑒〈𝑇௜, 𝑇௝〉 , the previous task of
sub-branch is unknown. For example, for calculating the
out-block edge weight 𝑒〈𝑇ଷ, 𝑇 〉 in Fig. 3, the optimal of-
floading decision 𝑆௠௜௡ is necessary for the sub-branch
ሼ𝑇ହ, 𝑇଺ሽ. However, 𝑆௠௜௡ depends on the offloaded status of
𝑇ଵ and 𝑇ଶ . Therefore, multiple ETGs for WDG must be
constructed to measure the out-block edge’s weight. Spe-

cifically, the minimum energy consumption strategy is
the minimum length path among all ETGs. The specific
steps for Graph4Edge-Nonlinear strategy are shown be-
low:

Step 1: Construct the initial ETG of WDG. An arbitrary
branch in WDG is chosen as the main branch. At the same
time, the energy edges are added to construct ETG. And
for the set of ሼ𝑇௜|𝑇௜ ∈ 𝑙𝑜𝑐𝑎𝑙𝑆𝑒𝑡ሽ , the edges are pruned
when 𝑇௜ serves as the head or tail.

Step 2: Set the weight of edges in the ETG. The weights
of the ordinary and in-block edges are set by Eq. (6). For
the over-block edges, the Graph4Edge-Nonlinear strategy
is recursively called to find its 𝑆௠௜௡, then set the weights
by Eq. (7). Finally, the weight of all out-block edges is set
to infinity. The initial ETG is shown in Fig. 5.

Step 3: Construct two different branch ETG models
based on in-block edge situations. The specific description
is as follows:

1) If the in-block edge is not from the previous node of the
block, and firstly discovered. A new ETG is created,
and then the Graph4Edge-Nonlinear strategy pro-
cesses the sub-branch in the block to find the opti-
mal energy consumption offloading decision. For
example, when we find 𝑒〈𝑇௨, 𝑇௔〉 in Fig. 6, mark the
current situation and create a new ETG to record
according to the current ETG. First of all, the infor-
mation of the current ETG is copied to the new ETG.
Then, we prune all the in-block edges which head
from the previous task of this block, which ensures
the correct calculation of the sub-branch’s minimum
energy consumption strategy. At this time, the ETG
generated by the linear branch WDG is shown in
Fig. 8 (a). Finally, the weights of all out-block edges
for this block in ETGs are updated.

2) If the in-block edge is from the adjacent predecessor task
of block, and this situation was first discovered. We can
make adjustments in the current ETG. Specifically,
when the in-block edges from the previous task
node of this block were discovered for the first time,
such as 𝑒〈𝑇௩, 𝑇௕〉 in Fig. 6, situation (1) has been
completely traversed, so it can be processed directly
on the current ETG. Prune all in-block edges that
are not from the previous task node, and it ensures
that all sub-branches can be directly calculated us-
ing the Graph4Edge-Nonlinear strategy. At this
time, the ETG created by the linear branch WDG is
shown in Fig. 8 (b). Finally, all out-block edge
weights are updated for this block in ETGs.

Step 4: Use the Dijkstra algorithm to search the mini-
mum length path in ETGs, and perform verification to
ensure that deadline constraints are met. The nodes on
the shortest path are the minimum energy consumption
offloading strategy have found.
4.2.2 Multiple-blocks WDG
In real workflow-based applications, WDG’s structures
can be complex with multiple blocks in the WDG. There-
fore, Graph4Edge-Nonlinear strategy should be able to
deal with multiple-blocks in the WDG.

AUTHOR ET AL.: TITLE 7

Ta Tb Tc Td TkTs Te

Sub-branch Br1 …

…… Tv Tw

…

…

Sub-branch Br2

Tu ……

Block B1 Block B2

Fig. 8. WDG with multiple serial blocks

Ta Tb Tc Tk

Ti

Ts Te

…

…… Tv Tw

Tj …

… …

…

……

……

Sub-branch Br1

Sub-branch Br2

Block B1

Block B2

Fig. 9. WDG with nested branches

Ti Tb Tc TkTs Te…… Tv Tw… ……

… …

……

… …

… …

Block

Block

Tj Th

Fig. 10. The ETG of WDG

A WDG may consist of many blocks. At first, any
branch can be selected as the main branch. This main
branch is used to construct the initial ETG. Then, multiple
ETGs are built for different blocks. In the calculation pro-
cess of out-block and over-block edge weights, two new
situations need to search minimum energy consumption
offloading decision for the sub-branch.

1) WDG with multiple serial blocks. In this situation,
there is an edge that is both an out-block edge for one
block and an in-block edge for another block, e.g. 𝑒〈𝑇௖, 𝑇௩〉
in Fig. 8. In our strategy, depending on the head node of
the in-block edge for B1, the offloaded strategy with the
sub-branch is different. As a result, both the head node
and the in-block edge weight for 𝐵𝑟ଶ will change. In order
to calculate the out-block edge weight for B2, e.g. 𝑒〈𝑇௪, 𝑇௞〉,
the offloading strategy of 𝐵𝑟ଶ for B2 must make sure,
which depends on the offloading strategy of SB1 for B1.
So it is necessary to find its minimum energy consump-
tion offloading strategy from 𝐵𝑟ଵ of B1.

2) WDG with nested branches. In this situation, it is nec-
essary to recursively call the Graph4Edge-Nonlinear
strategy to find its optimal offloading strategy. For exam-
ple, 𝑒〈𝑇௔, 𝑇௖〉 in Fig. 9 is an in-block edge of blocks B1 and
B2, multiple new ETGs should be created based on the
different situations of the two blocks, to find the optimal
offloading strategy of sub-branches 𝐵𝑟ଵ and 𝐵𝑟ଶ. Hence it
is necessary to recursively call the Graph4Edge-Nonlinear
strategy for the WDG 𝐵𝑟ଵ ∪ 𝐵𝑟ଶ.

The ETG for an example complex WDG is shown in
Fig. 10. By recursively calling the Graph4Edge-Nonlinear
strategy for the sub-branches, the minimum energy con-
sumption offloading decision of the whole WDG can be
found. For example, given an in-block edge 𝑒〈𝑇௜, 𝑇௝〉 in Fig.
10, the Graph4Edge-Nonlinear strategy calculates the
sub-branch ሼ𝑇௨|𝑇௨ ∈ 𝑊𝐷𝐺 ∧ 𝑇௨ → 𝑇௞ ∧ 𝑇௨ ↮ 𝑇௝ ∧ 𝑇௨ ↮ 𝑇௛ሽ ,
and gets the weight of out-block 𝑒〈𝑇௛, 𝑇௞〉.
4.2.3 Strategy description
Clearly, no matter how complicated the structure of the
WDG is, it can always be transformed to the linear struc-

ture by calling Graph4Edge-Nonlinear strategy recursive-
ly. Here, we present the pseudo-code for the
Graph4Edge-Nonlinear strategy.

Strategy: Graph4Edge‐Nonlinear

Input: A workflow dependency graph (𝑊𝐷𝐺);
 local‐execution tasks in WDG (𝑙𝑜𝑐𝑎𝑙𝑆𝑒𝑡);
 The workflow task’s deadline constraint (𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒);
Output: tasks in WDG (𝑆);
1 Compute ሺ𝑥௜, 𝑦௜, 𝑧௜ሻ for all tasks by Eq. (1‐3);
2 Add 𝑇௦, 𝑇௘ into WDG and set attributes;

3 if 𝑇௦
′
 is needed then

4 Add a virtual task 𝑇௦
′
 succeed 𝑇௦ and set attributes;

5 end if

6 if 𝑊𝐷𝐺 is linear workflow then

7 return Graph4Edge‐Linear (𝑊𝐷𝐺, 𝑙𝑜𝑐𝑎𝑙𝑆𝑒𝑡, 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒);
8 end if

9 Get a main branch 𝑀𝐵 from 𝑊𝐷𝐺 and construct ETG;
10 Prune 𝑒ሺ𝑇௜, 𝑇௝ሻ if 𝑇௜ or 𝑇௝ in 𝑙𝑜𝑐𝑎𝑙𝑆𝑒𝑡;

11 Set all out‐block edges 𝑒൫𝑇௜, 𝑇௝൯ ൌ ∞;

12 Compute weight for other edges by Eq. (6‐7);

13 𝐸𝑇𝐺_𝑆𝑒𝑡 = 𝐸𝑇𝐺௜௡௜௧;

14 for each in‐block edge 𝑒൫𝑇௜, 𝑇௝൯ in 𝐸𝑇𝐺_𝑆𝑒𝑡 do
15 if 𝑖𝑠𝐹𝑖𝑟𝑠𝑡𝐹𝑖𝑛𝑑ሺ𝑇௜ሻ && 𝑛𝑜𝑡𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑁𝑜𝑑𝑒ሺ𝑇௜ሻ then
16 𝐸𝑇𝐺ௌ௘௧ ← 𝐸𝑇𝐺;
17 𝑆ௌ஻ ← 𝐼𝑡𝑒𝑟𝑎𝑡𝑒 Graph4Edge‐Nonlinear;

18 end if

19 if 𝑖𝑠𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑁𝑜𝑑𝑒ሺ𝑇௜ሻ then

20 𝑆ௌ஻ ← 𝐼𝑡𝑒𝑟𝑎𝑡𝑒 Graph4Edge‐Nonlinear (need 𝑇௦
′
);

21 end if

22 Compute out‐block edge in 𝐸𝑇𝐺_𝑆𝑒𝑡 by Eq. (7);
23 end for

24 for 𝑘 ൌ 𝑛 ൅ 1 to 1 do
25 𝑃௠௜௡ ൌ 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎_𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚ሺ𝑇௦, 𝑇௞, 𝐸𝑇𝐺ሻ;
26 𝑆 ൌ 𝑃௠௜௡ሺ𝑇௦, 𝑇௞ሻ traversed tasks;
27 if 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 < 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 then
28 break;

29 end if

30 end for

31 if 𝑘 ൌ 0 then
32 𝑆 ൌ 𝑛𝑢𝑙𝑙;
33 end if

34 return 𝑆;
First, WDG is initialized (Lines 1-5). If the WDG is a

linear structure, the Graph4Edge-Linear strategy is direct-
ly called (Line 7). Otherwise, an arbitrary branch from 𝑇௦
to 𝑇௘ is chosen as the main branch, and this main branch
is used to construct the initial ETG (Lines 9-10), and com-
pute the weight of the ordinary, in-block and over-block
edge by Eq. (6-7) (Line 12). Next, all the in-block edges are
traversed in sequence. When the in-block edge of a block
is found for the first time, and its head node is not the
previous task for this block, a new ETG is created and
added to the 𝐸𝑇𝐺_𝑆𝑒𝑡 (Lines 15-18). Then, the shortest
path of the sub-branch can be found in the new ETG.
When an in-block edge of which the head node is the
previous task of this block is found, the current ETG is

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

processed (Lines 19-21) to obtain the sub-branch’s optimal
offloaded strategy. Meanwhile, the weight of the out-
block edges is updated in 𝐸𝑇𝐺_𝑆𝑒𝑡(Line 22). Finally, the
Dijkstra algorithm can find the shortest path from 𝑇௦ to 𝑇௞
(Line 25). In the worst situation (Line 31), if all solutions
do not meet the deadline constraints, all tasks in the
workflow are executed locally.

For the pseudo-code in Graph4Edge-Nonlinear, recur-
sive calls (Lines 14-23) exist in the Graph4Edge-Nonlinear
strategy, and the complexity of the algorithm highly de-
pends on the structure of WDG. The worst time complexi-
ty of initial ETG (Lines 1-5) is 𝑂ሺ𝑛ଶሻ. For each branch, a
new ETG will be created for WDG (Line 16). The created
ETG’s maximum number of tasks is smaller than the
number of tasks in the main branch, which is n. For all
ETGs, the construction of directed edges needs to be
completed, and the worst time complexity of this opera-
tion is 𝑂ሺ𝑛ଷሻ. Use the Dijkstra algorithm to perform the
shortest path search for all ETGs when the deadline con-
straint is met (Line 25), its time complexity is 𝑂ሺ𝑛 ∗ 𝑛ଶ ∗ 𝑛ሻ.
In summary, the worst time complexity is 𝑂ሺ𝑛ସሻ. Similar-
ly, for each ETG, multiple two-dimensional arrays store
the necessary information, so that the space complexity of
the Graph4Edge-Nonlinear strategy is about 𝑂ሺ𝑛ଷሻ, and
does not exceed 𝑂ሺ𝑛ସሻ.

5 EVALUATION
The Graph4Edge-Nonlinear strategy is able to find the
optimal computation offloading decision with the lowest
energy consumption under the given deadline constraint
for a complex workflow application. In this section, we
describe the simulation environment and parameter set-
tings firstly. Then, we revisit our motivating example as a
real-world case study to illustrate our strategy’s effective-
ness. Furthermore, with simulation experiments based on
a real-world UAV delivery system UAV-EXPRESS, we
evaluate the performance of Graph4Edge-Nonlinear and
compare with other strategies in the end-device’s energy
consumption, the strategy running time and task re-
sponse time. UAV-EXPRESS is developed based on EX-
PRESS1 which is an energy-efficient and secure frame-
work for MEC environment and blockchain technology-
based smart systems [21].
5.1 Case study
Similar to the motivating example shown in Fig.1, Fig. 11
shows the detailed workflow for the final parcel delivery
process in the UAV delivery system. Before the UAV
reaches the destination for parcel delivery, the edge serv-
er downloads the facial images of the parcel receiver from
the cloud server of the logistics system. When the UAV
arrives at the destination, the video stream captured by
the camera of the UAV is analyzed frame by frame to lo-
cate the position and confirm the identity of the parcel
receiver.

The final parcel delivery process can be described in
three stages. In the first stage (including Tasks 1-3), the
original video frames are filtered on the UAV. We use the

1. EXPRESS Framework Project at GitHub: https://github.com/ISEC-
AHU/UAV-EXPRESS.git

target detection function to search for video frames con-
taining people, and frames without people are filtered
directly. A small proportion of the images containing
people in the whole video frame is further extracted by
using the image segmentation algorithm according to the
detected location coordinate of the people. In the second
stage (including Task 4 and Task 5), extracted video
frames are further processed. In a real-world scenario,
there could be a lot of pedestrians near the destination,
and hence there will be many images containing multiple
people. We use pose recognition (i.e., the parcel recipient
will receive an instruction on her/his mobile App to
make a specific pose such as waving the right hand from
right to left) to further identify the receiver from the
crowd. Finally, in the third stage (including Task 6 and
Task 7), identification of the parcel receiver is conducted
using face recognition. Face recognition confirms whether
the person waving hand matches the face images down-
loaded in advance from the cloud server. If matches, the
UAV will approach the receiver for landing and then
hand over the goods. Otherwise, more image frames are
processed until the correct parcel receiver is found, or the
delivery process terminates without successfully locating
the parcel receiver.

Update order
information

 Store all order
information

① Video frame filtering

② Target Detection

③ Image Segmentation

Edge Server

Video
Data

④ Pre-processing : Normalize the split
picture

⑤ Pose
Recognition

⑦ Confirm the goods
receiver and dispatch

⑥ Face
Recognition

 Images
Contain
People

Process video
frames process

Download the face
images of the

goods receiver from
the cloud server

 Images
Containing People

Video Data

Process video
frames process

End device

Fig. 11. A case study on the MEC-Based UAV delivery system

For the experiment, we select a one-minute video clip,
with 1920*1080 pixel and 60 FPS recorded by the DJ Ma-
vic Air UAV2. With our computation offloading strategy,
the generated computation offloading decision is that
Task 1-3 and Task 4 are to be executed locally, while Task
5 and Task 6 are to be offloaded to the edge server. Specif-
ically, Task 1-3 and Task 4 are the video pre-processing
tasks that can be executed on the UAV since the charac-
teristic of data size but the required computing power is
low. After the UAV completes the video pre-processing
tasks, the remaining data size is reduced to 10% of the

2. https://www.dji.com/cn/mavic-air

AUTHOR ET AL.: TITLE 9

original video frames. The deep neural network-based
computation tasks (Task 5 and Task 6) are executed at the
edge server because the size of data transfer for Task 5-6
is very small but they both require high computing power.
5.2 Simulation Environment and Parameter

Settings
In our experiments, we compare Graph4Edge-Nonlinear
with three types of computation offloading strategies. The
first type is based on search algorithms including PSO
and GA which are most widely used for computation
offloading. The second type is a Greedy strategy which
makes the offloading decision for each task through com-
parison the energy consumption required for offloading
with local execution. If the energy consumption of task
offloading is less than execution locally, then the task will
be offloaded to the edge server for execution. Otherwise,
the task will be executed locally. The third type is the All-
in-End strategy, which means that all of the tasks are exe-
cuted in the end device. All computation offloading strat-
egies are applied with the Min-Min task scheduling algo-
rithm [29] at the edge server.

All simulation experiments are implemented on the
FogWorkflowSim platform, which is a simulation plat-
form for Fog/MEC-based workflow applications [22]. It
supports different kinds of workflow structures and dif-
ferent evaluation index metrics such as time, energy and
cost. The experiments are run on a laptop with the follow-
ing configuration: Intel® Core™ I7-9750H CPU 2.60GHz,
16G RAM, NVIDIA GeForce GTX 1660Ti.

TABLE 1
MEC ENVIRONMENT PARAMETER SETTING

Parameters End Server Edge Server

MIPS 1000 1300

Load Power (mW) 700 N/A

Idle Power (mW) 30 N/A

Data Transmission Power (mW) 100 N/A

Table 1 describes parameter settings of the MEC envi-
ronment. The simulated MEC environment consists of
three edge servers and one UAV as the end-device. Edge
servers are deployed close to the UAV, the data transmis-
sion rate between UAV and edge server is 100 Mbps [30]
and the bandwidth is relatively stable. The processing
speed of the computing resources is randomly chosen
between 100 and 1500 Megacycles. According to the EX-
PRESS framework and actual data collection in UAV last-
mile delivery scenarios, the input and output data size for
each task is generated between 0.625 and 30 MB random-
ly [21], [31], [32]. In this paper, we only consider the ener-
gy consumption of the UAV.

Table 2 describes the parameter settings of PSO and
GA strategy respectively [33], [34]. For each workflow
application, we simulate 100 times to obtain the average
result. In order to comprehensively evaluate the overall
performance, we randomly generate many complex WDG
of different sizes from 10 to 100 tasks with both linear and
nonlinear workflow structures. The percentage of the lo-
cal execution task (namely those cannot be offloaded to
the edge) is set as 20%.

TABLE 2
PSO, GA STRATEFGY PARAMETER SETTING

PSO GA

Parameters Setting Parameters Setting

Particles 30 Population Size 50

Iterations 100 Iterations 100

Factor C1, C2 2 Cross Rate 0.8

Inertia Weight 1 Mutation Rate 0.1

Repeated 10 Repeated 10

5.3 Performance Evaluation
Now we present the detailed simulation results. Deadline
constraint is the most important QoS constraints in any
real-world business systems. According to actual business
requirements, there is usually a strict time constraint.
Based on the results of our actual program [21], our work-
flow application’s deadline constraint is set between 70%
and 140% of the total task local execution time. Note that
the deadline constraint considered in this paper is the soft
deadline, which means that missing the deadline will not
cause task failures but only decrease the service quality.

Fig. 12. Energy consumption and task’s offloading per-
cent with different deadline constraints

Fig. 12 shows the energy consumption results under
different deadline constraints. Initially, all tasks are exe-
cuted locally on the UAV. When the value of deadline
constraint increases, the percentage of offloaded tasks
also increases. In the meantime, the end-device’s energy
consumption is gradually decreasing. It can be seen that
the end-device’s energy consumption becomes stable
when the deadline constraint reaches 130%. The results
show that when the deadline constraint becomes more
flexible, the room for the computation offloading strategy
becomes larger and hence our Graph4Edge-Nonlinear
strategy becomes more effective in reducing the end-
device’s energy consumption. However, when deadline
constraint reaches a certain value, the effectiveness of
reducing energy consumption levels off since the per-
centage of offloaded tasks also reaches its maximum 80%
(as we have set 20% of local execution tasks). In order to
compare the best performance of different computation
offloading strategies, we focus on the deadline is 130% in
the following experiments.

To comprehensively evaluate its performance, we
compare Graph4Edge-Nonlinear with others in energy
consumption, strategy running time and task response
time.

0%

20%

40%

60%

80%

0%

20%

40%

60%

80%

100%

120%

70% 80% 90% 100% 110% 120% 130% 140%

O
ff

lo
ad

in
g

ta
sk

s

E
n

er
gy

 c
on

su
m

p
ti

on

Deadline constraint

Energy Consumption Offloading Tasks

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Fig. 13. Comparison of Graph4Edge-Nonlinear and other four meth-
ods for energy consumption

Fig. 14. Comparison of Graph4Edge-Nonlinear and other four meth-
ods for strategy running time

Fig. 13 shows that the end-device’s energy consump-
tion of the over different sizes of nonlinear workflows.
The experimental result demonstrates that energy con-
sumption with Graph4Edge-Nonlinear is always lower
than the other four strategies. For example, when the task
number is 50, the energy consumption with Graph4Edge-
Nonlinear is 7.81% and 9.51% lower than PSO and GA
respectively. The Greedy strategy and All-in-End strategy
always have higher energy consumption than
Graph4Edge-Nonlinear which is about 94% and 310%
respectively. This is because they place too many tasks on
the end device for execution.

Fig. 14 illustrates the results of strategy running time
over different sizes of nonlinear workflows. Please be
noted that the basic time units for Graph4Edge-Nonlinear,
Greedy and the All-in-End strategies are milliseconds
(ms), while the basic time units for PSO and GA are
100ms and 500ms respectively. Clearly, Graph4Edge-
Nonlinear is much faster than search-based strategies
PSO and GA. Specifically, it is running about 110 times
and 540 times faster than PSO and GA respectively. In the
FogWorkflowSim platform [22], All-in-End strategy run-
ning needs to count the number of tasks that make up the
workflow, which usually takes a few milliseconds. Alt-
hough the Greedy and All-in-End strategies have the
smallest execution time, it always has the worst perfor-
mance in reducing energy consumption. In particular,
even if the number of tasks is as high as 100, the
Graph4Edge strategy only needs an additional 30ms to

get the optimal offloading decision. When it is necessary
to perform offloading of delay-sensitive tasks, our strate-
gy can guarantee real-time performance.

Fig. 15. Comparison of nonlinear workflows and linear workflows for
strategy running time

Fig. 16. Comparison of Graph4Edge-Nonlinear and other four meth-
ods for task response time

It is also important to investigate the impact of work-
flow structures on the strategy running time. Fig. 15 com-
pares the strategy running time of Graph4Edge-
Nonlinear and Graph4Edge-Linear on nonlinear work-
flows and linear workflows respectively with 10 to 50
tasks. The result shows that with the same workflow sizes,
the strategy running time of Graph4Edge-Nonlinear is
about 20% higher than Graph4Edge-Linear, which is not a
significant increase considering the much more complex
structures of the nonlinear workflows. Meanwhile, even
with 50 tasks, the strategy running time of Graph4Edge-
Nonlinear is only increased by 2ms.

Fig. 16 illustrates the results of task response time over
different sizes of tasks in nonlinear workflows. The work-
flow tasks are executed according to the offloading deci-
sion plan. The task response time is set as the sum of task
execution time and data transmission time. Obviously,
our proposed Graph4Edge-Nonlinear strategy requires
minimal task response time. In summary, given the ex-
perimental results above, we can conclude that our pro-
posed strategy has the best overall performance as it can
find the optimal computation offloading decision plan
with the lowest energy consumption under the given
deadline. Most importantly, for delay-sensitive applica-
tions, our proposed strategy can meet their real-time re-
quirements given its fast running time.

0

50

100

150

200

250

300

350

400

10 20 30 40 50 60 70 80 90 100

E
n

er
gy

 c
on

su
m

p
ti

on
 (

J)

Number of tasks

Graph4Edge Greedy All-in-End PSO GA

0

10

20

30

40

50

10 20 30 40 50 60 70 80 90 100

S
tr

at
eg

y
ru

n
n

in
g

ti
m

e
(m

s)

Number of tasks

Graph4Edge Greedy All-in-End PSO(x100)ms GA(x500)ms

0

5

10

15

20

10 20 30 40 50

S
tr

at
eg

y
ru

n
n

in
g

ti
m

e
(m

s)

Number of tasks

Nonlinear Workflow Linear Workflow

0

100

200

300

400

500

600

10 20 30 40 50 60 70 80 90 100

T
as

k
re

sp
on

se
 t

im
e

(m
s)

Number of tasks

Graph4Edge Greedy All-in-End PSO GA

AUTHOR ET AL.: TITLE 11

6 RELATED WORK
In a MEC environment, the main objective of the compu-
tation offloading strategy is to find the best offloading
decision according to the characteristics of tasks, compu-
ting resources and network conditions [35]. In addition,
these methods can improve the utilization rate of compu-
ting resources in MEC [36] and minimize the end-device’s
energy consumption with the QoS constraints of users
and reduce the cost of the service providers [37]. Compu-
tation offloading is used for solving the problems caused
by insufficient computing power and insufficient battery
capacity of the end-device. With the gradual promotion of
MEC platform, computation offloading has become an
important research topic [25]. There are many prelimi-
nary research works focusing on the problem of computa-
tion offloading in the MEC environment.

Currently, a range of research works focuses on the
problem of computation offloading to reduce end-
device’s energy consumption and task response time. In
the aspect of the energy consumption optimization,
Zhang et al. [38] focused on the multi-access characteris-
tics of the 5G and an minimize the energy consumption
offloading strategy in 5G MEC networks is proposed.
Chen et al. [39] consider the factor of task allocation and
CPU-cycle frequency. Then, an energy efficiency strategy
named TOFFEE is proposed to decrease end-device’s en-
ergy consumption. For the target of time optimization,
Xing et al. [40] propose a MEC system that can reduce the
task’s computation latency significantly. Currently, many
research works are based on popular optimization algo-
rithms such as PSO and GA [33], [34]. However, most
studies only focused on the independent tasks, and ig-
nored the computational overhead needed to make deci-
sions. Most of the tasks in real-world applications are
highly correlated. Each task depends on the execution
result of the previous task and provides the necessary
data flow for the successor task [31], [41].

Graph as a kind of classical data structure. Many re-
search works about graph-based algorithms in Cloud and
Edge Computing. In the cloud computing environment,
many studies adopted graph-based algorithms to solve
task management problems for different workflow struc-
tures. Yuan et al. [42] aimed at the problem of data set
storage in data-intensive scientific workflow execution
and proposed the CTT-SP algorithm to trade-off compu-
tation and storage cost in the cloud environment. Zhang
et al. [43] proposed a highly efficient algorithm named
PCE, which can calculate the minimum cost strategy in
multiple clouds efficiently. In recent years, there are also
many studies in the MEC environment. Elgamal et al. [44]
focused on the time and memory of the pricing model in
serverless computing and proposed an algorithm to op-
timize the price of AWS workflow applications while
meeting deadline constraints. Khare et al. [45] focused on
the data placement problem of operators in streaming
applications and proposed an algorithm to convert
streaming DAG into a set of approximate linear chains
and perform data placement and time prediction. Most
research focuses on resource management issues in cloud
or edge conditions. However, these works have not paid

attention to the problems of end-device’s limited compu-
ting power and battery capacity in the MEC environment.
In [25], the authors proposed a graph-based strategy that
can provide a solution for the generation of the optimal
energy consumption offloading strategy for linear work-
flow, but this strategy cannot handle the nonlinear work-
flow of complex applications.

Therefore, this paper deals with various problems of
computation offloading in the MEC environment using
graph-based technology. We focus on workflow applica-
tions with complex structures and propose the
Graph4Edge-Nonlinear strategy as an effective solution.

7 CONCLUSION AND FUTURE WORK
Computation offloading is a key technology to optimize
the QoS of MEC based applications. However, most exist-
ing strategies did not pay attention to the dependency
between computing tasks or only focus on simple de-
pendency such as sequential relationship. Meanwhile,
many current strategies are based on search algorithms
which could have significant computation overhead. This
is unacceptable for delay-sensitive applications. For solv-
ing these problems, a novel graph-based computation
offloading strategy with the goal to minimize the end-
device’s energy consumption under the given deadline
constraint is proposed in this paper. Motivated by a MEC-
based UAV delivery system, we first built the nonlinear
workflow model for complex applications. Then, using
the graph-based partition technique, we proposed the
Graph4Edge-Nonlinear strategy to search for the best
computation offloading decision with the lowest energy
consumption under the deadline constraint. Finally, both
a real-world case study and comprehensive simulation
experiments implemented on the FogWorkflowSim plat-
form with different workflow sizes and structures are
conducted to evaluate the effectiveness of our proposed
strategy. The experimental results have shown that
Graph4Edge-Nonlinear can achieve overall better per-
formance than other representative computation offload-
ing strategies.

This paper mainly focused on computation offloading
for workflow applications and the target of reducing end-
device’s energy consumption in the MEC environment. In
the future, we will investigate the problem of computa-
tion offloading together with workflow scheduling at the
edge servers to produce a holistic solution that can im-
prove the QoS for the whole MEC-based system. Besides,
the impact of the dynamics of the network and the mobil-
ity of the end device will be further investigated in our
future work.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (No.61972001, No.62076002), the
National Natural Science Foundation of Anhui Province
(No. 2008085MF194) and in part by the Humanities and
Social Sciences of MOE Project No. 16YJCZH048.

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

REFERENCES

[1] R. Roman, J. Lopez and M. Mambo, “Mobile Edge Compu-
ting, Fog et al.: A Survey and Analysis of Security Threats
and Challenges,” Future Generation Computer Systems, vol.
78, pp. 680-698, 2018.

[2] S. Kekki, W. Featherstone, Y. Fang, P. Kuure, A. Li, A. Ranjan,
et al. “MEC in 5G networks,” ETSI White Paper, vol. 28, pp.
1-28, 2018.

[3] X. Lyu, H. Tian, L. Jiang, A. Vinel, S. Maharjan, S. Gjessing, Y.
Zhang, et al. “Selective offloading in mobile edge computing
for the green internet of things,” IEEE Network, vol. 32, no. 1,
pp. 54-60, 2018.

[4] Jiang Y. A survey of task allocation and load balancing in dis-
tributed systems[J]. IEEE Transactions on Parallel and Dis-
tributed Systems, 2015, 27(2): 585-599.

[5] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W.
Heinzelman, “Cloud-vision: Real-time face recognition using
a mobile-cloudlet-cloud acceleration architecture,” In Proc.
IEEE Symp. Comput. Commun., Jul. 2012, pp. 59–66.

[6] Z. Kuang, L. Li, J. Gao, L. Zhao and A. Liu, “Partial offload-
ing scheduling and power allocation for mobile edge compu-
ting systems,” IEEE Internet of Things Journal, vol. 6, no. 4,
pp. 6774-6785, 2019.

[7] W. Aalst, A. Hofstede, B. Kiepuszewski and A. Barros.
“Workflow patterns,” Distributed and Parallel Databases, vol.
14, no. 1, pp. 5-51, 2003.

[8] F. Zhou, Y. Wu, H. Sun and Z. Chu, “UAV-enabled mobile
edge computing: Offloading optimization and trajectory de-
sign,” In 2018 IEEE International Conference on Communica-
tions (ICC). IEEE Press, 2018, pp. 1-6.

[9] A. Alioua, H. Djeghri, M. Cherif, S. Senouci and Hi. Sedjel-
maci, “UAVs for Traffic Monitoring: A Sequential Game-
based Computation Offloading/Sharing Approach,” Com-
puter Networks, vol. 177, pp. 1-16, 2020.

[10] X. Chen, “Decentralized computation offloading game for
mobile cloud computing,” IEEE Trans. Parallel Distrib. Syst.,
vol. 26, no. 4, pp. 974–983, Apr. 2015.

[11] W. Aalst, K. M. Hee and K. V. Hee, Workflow Management:
Models, Methods, and Systems, 1st ed. MIT: Cambridge, 2004,
pp. 75-99.

[12] Meng J, Tan H, Li X Y, et al. Online deadline-aware task dis-
patching and scheduling in edge computing[J]. IEEE Transac-
tions on Parallel and Distributed Systems, 2019, 31(6): 1270-
1286.

[13] F Guo, et al., "An efficient computation offloading manage-
ment scheme in the densely deployed small cell networks
with mobile edge computing," IEEE/ACM Transactions on
Networking, vol. 6, no. 26, pp. 519-531, 2018.

[14] X Xu, et al., "An energy-aware computation offloading meth-
od for smart edge computing in wireless metropolitan area
networks," Journal of Network and Computer Applications,
vol. 133, pp. 75-85, 2019.

[15] S Deng, et al., "Computation offloading for service workflow
in mobile cloud computing," IEEE transactions on parallel
and distributed systems, vol. 12, no. 26, pp. 3317-3329, 2014.

[16] L Yu, et al., "A Utility-Based Optimization Framework for
Edge Service Entity Caching.," IEEE Transactions on Parallel
and Distributed Systems, vol. 11, no. 30, pp. 2384-2395, 2019.

[17] Hu M, Zhuang L, Wu D, et al. Learning driven computation
offloading for asymmetrically informed edge computing[J].

IEEE Transactions on Parallel and Distributed Systems, 2019,
30(8): 1802-1815.

[18] S. Gould, J. Arfvidsson, A. Kaehler, B. Sapp, M. Messner, G.
Bradski, et al. “Peripheral-Foveal Vision for Real-time Object
Recognition and Tracking in Video,” In 20th International
Joint Conference on Artificial Intelligence. IJCAI Press, 2007,
pp. 2115-2121.

[19] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon and W.
Heinzelman, “Cloud-vision: Real-time face recognition using
a mobile-cloudlet-cloud acceleration architecture,” In 2012
IEEE Symposium on Computers and Communications (ISCC).
IEEE Press, 2012, pp. 59-66.

[20] L. Fan, X. Liu, X. Li D. Yuan and J. Xu, “Graph4Edge: a
graph-based computation offloading strategy for mobile-edge
workflow applications,” In 2020 IEEE International Confer-
ence on Pervasive Computing and Communications Work-
shops (PerCom Workshops), IEEE Press, 2020, pp. 1-4.

[21] J. Xu, X. Liu, X. Li, L. Zhang, Y. Yang, “EXPRESS: An Energy-
Efficient and Secure Framework for Mobile Edge Computing
and Blockchain based Smart Systems,” In Proc. IEEE/ACM
Int. Conf. on Automated Software Engineering (ASE), IEEE
Press, 2020, pp. 1-4.

[22] X. Liu, L. Fan, J. Xu, X. Li, L. Gong, J. Grundy and Y. Yang,
“FogWorkflowSim: An Automated Simulation Toolkit for
Workflow Performance Evaluation in Fog Computing,” In
2019 34th IEEE/ACM International Conference on Automat-
ed Software Engineering (ASE). IEEE Press, 2019, pp. 1-4.

[23] G. Gargen and C. Balakrishna, “Unmanned Aerial Vehicles
(UAVs) as on-demand QoS enabler for Multimedia Applica-
tions in Smart Cities,” In 2018 International Conference on
Innovation and Intelligence for Informatics, Computing, and
Technologies (3ICT). IEEE Press, 2018, pp. 1-7.

[24] N. Motlagh, M. Bagaa and T. Taleb, “UAV-based IoT plat-
form: A crowd surveillance use case,” IEEE Communications
Magazine, vol. 55, no. 2, pp. 128-134, 2017.

[25] P. Mach and Z. Becvar, “Mobile edge computing: A survey
on architecture and computation offloading,” IEEE Commu-
nications Surveys & Tutorials, vol. 19, no. 3, pp. 1628-1656,
2017.

[26] R. Sakellariou, H. Zhao, “A low-cost rescheduling policy for
efficient mapping of workflows on grid systems,” Scientific
Programming, vol. 12, no. 4, pp. 253-262, 2004.

[27] Z. Wu, X. Liu, Z. Ni, D. Yuan and Y. Yang, “A market-
oriented hierarchical scheduling strategy in cloud workflow
systems,” The Journal of Supercomputing, vol. 63, no. 1, pp.
256-293, 2013.

[28] J. Liu, E. Pacitti, P. Valduriez and M. Mattoso, “A survey of
data-intensive scientific workflow management,” Journal of
Grid Computing, vol. 13, no. 4, pp. 457-493, 2015.

[29] K. Etminani and M. Naghibzadeh. “A min-min max-min se-
lective algorithm for grid task scheduling,” In 3rd IEEE/IFIP
international conference in central Asia on internet, IEEE
Press, 2007, pp. 1-7.

[30] R. Deng, R. Lu, C. Lai, et al., “Optimal workload allocation in
fog-cloud computing toward balanced delay and power con-
sumption,” IEEE Internet of Tings Journal, vol. 3, no. 6, pp.
1171-1181, 2016.

[31] J. Xu, X. Li, X. Liu, C. Zhang, L. Fan, L. Gong, et al. “Mobility-
aware workflow offloading and scheduling strategy for mo-
bile edge computing,” In International Conference on Algo-

AUTHOR ET AL.: TITLE 13

rithms and Architectures for Parallel Processing, Springer
Press, 2019, pp. 184-199.

[32] T. Zhu, T. Shi, J. Li, Z. Cai, and X. Zhou, “Task scheduling in
deadline-aware mobile edge computing systems,” IEEE In-
ternet of Things Journal, vol. 6, no. 3, pp. 4854-4866, 2018.

[33] A. Kaswan, V. Singh and P. Jana, “A multi-objective and PSO
based energy efficient path design for mobile sink in wireless
sensor networks,” Pervasive and Mobile Computing, vol. 46,
pp. 122-136, 2018.

[34] H. Hallawi, J. Mehnen and H. He, “Multi-capacity combina-
torial ordering GA in application to cloud resources alloca-
tion and efficient virtual machines consolidation,” Future
Generation Computer Systems, vol. 69, pp. 1-10, 2017.

[35] J. Hu, M. Jiang, Q. Zhang, Q. Li and J. Qin, “Joint optimiza-
tion of UAV position, time slot allocation, and computation
task partition in multiuser aerial mobile-edge computing sys-
tems,” IEEE Transactions on Vehicular Technology, vol. 68,
no. 7, pp. 7231-7235, 2019.

[36] M. Alam, M. Hassan, M. Uddin, A. Almogren and G. Fortino,
“Autonomic computation offloading in mobile edge for IoT
applications,” Future Generation Computer Systems, vol. 90,
pp. 149-157, 2019.

[37] S. Wang, Y. Zhao, L. Huang, J. Xu and C. Hsu, “QoS predic-
tion for service recommendations in mobile edge computing,”
Journal of Parallel and Distributed Computing, vol. 127, pp.
134-144, 2019.

[38] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, et al, “En-
ergy-efficient offloading for mobile edge computing in 5G
heterogeneous networks,” IEEE Access, vol. 4, pp. 5896-5907,
2016.

[39] Y. Chen, N. Zhang, Y. Zhang, X. Chen, W. Wu and X. Shen,
“TOFFEE: task offloading and frequency scaling for energy
efficiency of mobile devices in mobile edge computing,” IEEE
Transactions on Cloud Computing, 2019, in Press.

[40] H. Xing, L. Liu, J. Xu and A. Nallanathan, “Joint task assign-
ment and resource allocation for D2D-enabled mobile-edge
computing,” IEEE Transactions On Communications, vol. 67,
no. 6, pp. 4193-4207, 2019.

[41] S. Deng, L. Huang, J. Taheri and A. Zomaya, “Computation
offloading for service workflow in mobile cloud computing,”
IEEE Transactions on Parallel and Distributed Systems, vol.
26, no. 12, pp. 3317-3329, 2014.

[42] D. Yuan, L. Cui, W. Li, X. Liu and Y. Yang, “An algorithm for
finding the minimum cost of storing and regenerating da-
tasets in multiple clouds,” IEEE Transactions on Cloud Com-
puting, vol. 6, no. 2, pp. 519-531, 2015.

[43] J. Zhang, D. Yuan, L. Cui and B. Zhou, “A highly efficient al-
gorithm towards optimal data storage and regeneration cost
in multiple clouds,” Future Generation Computer Systems,
vol. 99, pp. 459-472, 2019.

[44] T. Elgamal, “Costless: optimizing cost of serverless compu-
ting through function fusion and placement,” In Third
IEEE/ACM Symposium on Edge Computing (SEC), IEEE
Press, 2018, pp. 1-13.

[45] S. Khare, H. Sun, J. Gascon-Samson, K. Zhang, A. Gokhale, Y.
Barve, et al., “Linearize, predict and place: minimizing the
makespan for edge-based stream processing of directed acy-
clic graphs,” In 4th ACM/IEEE Symposium on Edge Compu-
ting, ACM Press, 2019, pp. 1-14.

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Xuejun Li (Member, IEEE) received the Ph.D.
degree in computer application technology from
the School of Computer Science and Technology,
Anhui University, Hefei, Anhui, China, in 2008. He
is currently a Full Professor with the School of
Computer Science and Technology, Anhui Univer-
sity, Hefei, Anhui, China. His major research inter-
ests include mobile edge computing, workflow
systems, cloud computing, and intelligent software.

Tianxiang Chen received the bachelor's degree in
Internet of Things technology from the School of
Computer Science and Technology, Fuyang Nor-
mal University, Fuyang, Anhui, China, in 2018. He
is currently pursuing the master's degree with the
School of Computer Science and Technology,
Anhui University, Hefei, Anhui, China. His current
research interests include mobile edge computing,
workflow system, cloud computing, resource man-

agement.

Dong Yuan (Member, IEEE) received the BEng
and MEng degrees from Shandong University,
Jinan, China, in 2005 and 2008, respectively, and
the PhD degree from Swinburne University of
Technology, Melbourne, Australia, in 2012, all in
computer science. He is a senior lecturer with the
School of Electrical and Information Engineering,
the University of Sydney, Sydney, Australia. His

research interests include cloud computing, parallel and distributed
systems, scheduling and resource management, deep learning, data
management and Internet of Things.

Jia Xu (Student Member, IEEE) received the
bachelor's and master's degree in computer sci-
ence and technology from the School of Computer
Science and Technology, Anhui University, Hefei,
Anhui, China, in 2010-2017, respectively. He is
currently pursuing the Ph.D. degree with the
School of Computer Science and Technology,
Anhui University, Hefei, Anhui, China. He was a
Software Engineer focusing on industrial projects

and solutions in iFLYTEK Co., Ltm from 2017-2018. His current re-
search interests include mobile edge computing, workflow system,
cloud computing, resource management.

Xiao Liu (Senior Member, IEEE) received the
bachelor's and master's degrees in information
management and information system from the
School of Management, Hefei University of Tech-
nology, Hefei, China, in 2004 and 2007, respec-
tively, and the Ph.D. degree in computer science
and software engineering from the Faculty of In-
formation and Communication Technologies,
Swinburne University of Technology, Melbourne,

Australia, in 2011. He was teaching at the Software Engineering
Institute, East China Normal University, Shanghai, China. He is cur-
rently a Senior Lecturer with the School of Information Technology,
Deakin University, Melbourne. His current research interests include
software engineering, distributed computing, and data mining, with
special interests in workflow systems, cloud/fog computing, and
social networks.

