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Abstract—With the fast development of mobile edge computing (MEC), there is an increasing demand for running complex 
applications on the edge. These complex applications can be represented as workflows where task dependencies are explicitly 
specified. To achieve better Quality of Service (QoS), for instance, faster response time and lower energy consumption, 
computation offloading is widely used in the MEC environment. However, many existing computation offloading strategies only 
focus on independent computation tasks but overlook the task dependencies. Meanwhile, most of these strategies are based on 
search algorithms such as particle swarm optimization (PSO), genetic algorithm (GA) which are often time-consuming and 
hence not suitable for many delay-sensitive complex applications in MEC. Therefore, a highly efficient graph-based strategy 
was proposed in our recent work but it can only deal with simple workflow applications with linear (namely sequential) structure. 
For solving these problems, a novel graph-based strategy is proposed for workflow applications in MEC. Specifically, this 
strategy can deal with complex workflow applications with nonlinear (viz. parallel, selective and iterative) structures. Meanwhile, 
the offloading decision plan with the lowest energy consumption of the end-device under the deadline constraint can be found 
by using the graph-based partition technique. We have comprehensively evaluated our strategy using both a real-world case 
study on a MEC based UAV (Unmanned Aerial Vehicle) delivery system and extensive simulation experiments on the 
FogWorkflowSim platform for MEC based workflow applications. The evaluation results successfully demonstrate the 
effectiveness of our proposed strategy and its overall better performance than other representative strategies. 

Index Terms—Mobile Edge Computing, Workflow Management, Energy Consumption, Computation Offloading, Directed 
Acyclic Graph  
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1 INTRODUCTION

ITH the continuous improvement of the computing 
capacity of various smart end-devices, an increasing 

number of intelligent applications are deployed on mo-
bile end-devices such as smart traffic, smart healthcare, 
smart logistics and so on. Meanwhile, massive computa-
tion requests submitted by the end-devices can be han-
dled by cloud datacentres with unlimited computing re-
sources. However, massive data transmission over public 
networks with limited bandwidth will cause significant 
delays, which is unacceptable for many delay-sensitive 
applications. Nowadays, mobile edge computing (MEC) 
has been widely used to provision computing resources 
from the network edge to the end-device in order to re-
duce response delay [1]. Computation tasks on the end-
devices can be offloaded to the edge servers for execution 
through low-cost and high-bandwidth transmission such 
as the 5G and WIFI networks [2]. Computation offloading 
plays a key role in effectively improving the QoS of MEC-

based applications by reducing the response delay and 
the energy consumption of end-devices [3], [4].  

Given the success of MEC, there is an increasing de-
mand for running complex applications on the edge. For 
example, in the UAV (Unmanned Aerial Vehicle) based 
smart delivery system, there are many complex applica-
tions such as dynamic route planning, obstacle detection 
and face recognition [5]. These applications are important 
parts of the whole delivery process. However, like most 
smart end-devices, UAVs are limited by their computing 
power and battery life so that they are unable to execute 
computation-intensive tasks as mentioned above. Fortu-
nately, the UAV’s energy consumption and task response 
time can be effectively reduced by the computation of-
floading technology in the MEC environment [6]. Mean-
while, as will be shown in the motivating example in the 
next section, most complex applications in the real-world 
can be rep-resented by workflows where task dependen-
cies are explicitly specified [7]. However, currently many 
studies only focus on independent tasks without consid-
ering task dependencies. A few of them considered sim-
ple linear task dependencies where tasks are executed in a 
sequential manner [8], [9], [10]. Generally speaking, all 
real-world applications can be represented by a mix of 
linear (namely sequential) and nonlinear (viz. parallel, 
selective, and iterative) structures [11]. Therefore, com-
putation offloading for complex applications should be 

xxxx-xxxx/0x/$xx.00 © 200x IEEE        Published by the IEEE Computer Society 

———————————————— 
 X. Li, T. Chen and J. Xu are with the School of Computer Science and 

Technology, Anhui University, Hefei, Anhui, China. E-mail: 
xjli@ahu.edu.cn; biyisi_96@qq.com; xujia@stu.ahu.edu.cn. 

 D. Yuan is with the School of Electrical and Information Engineering, 
University of Sydney, Sydney, NSW 2006, Australia. E-mail: 
dong.yuan@sydney.edu.au. 

 X. Liu is with the School of Information Technology, Deakin University, 
Geelong, Australia. E-mail: xiao.liu@deakin.edu.au. 

Manuscript received X. 2020; revised X. 2020; accepted X. 2020. 
Date of publication X. 2020; date of current version X. 2020. 
(Corresponding author: Xiao Liu.) 

W



2 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

able to deal with both linear and nonlinear structures. 
Meanwhile, given the complex nature of the computa-
tion offloading problem, the greedy type of strategies 
have been widely used to obtain a feasible solution in a 
short time [12], but they cannot produce optimal offload-
ing decisions. Therefore, in order to improve the quality 
of the decisions, many studies employed search algo-
rithms such as particle swarm optimization (PSO) and 
genetic algorithm (GA) to search for the optimal offload-
ing decision by iterative process, which could produce 
significant time overhead [13], [14], [15], [16]. In [17], Hu 
et al., proposed a learning-driven algorithm to achieve 
efficient offloading decision plans, which need lots of pri-
or data training to get an effective model. Therefore, at 
present, most computation offload-ing strategies are ei-
ther simple but not good enough, or they are too time-
consuming to be suitable for delay-sensitive complex ap-
plications [18],[19].  

To address the above issues, a novel computation of-
floading strategy using graph partition technology is 
proposed in this paper for workflow applications in MEC. 
To distinguish with our previous preliminary work which 
can only deal with linear work-flow structures [20], we 
name the previous strategy Graph4Edge-Linear, name the 
new strategy proposed in this paper Graph4Edge-
Nonlinear. Our proposed strategy considers the influence 
of the complex task dependencies on the computation of-
floading decisions, and the end device’s energy consump-
tion is optimized effectively under the given deadline con-
straints. Please note that the energy consumptions of edge 
servers are not considered in this paper. This is because 
edge servers are usually connected to the power grid, and 
hence their energy consumptions are not regarded as limit-
ing factors in a MEC environment. 

Specifically, the novel contributions of this paper are 
summarized as follows: 

1) A novel nonlinear workflow model for complex 
MEC-based applications is proposed. The model is 
based on WDG (Workflow Dependency Graph) 
which considers both complex task dependencies 
and the objective of reducing the end-device’s ener-
gy consumption. 

2) We propose a novel graph-based computation of-
floading strategy named Graph4Edge-Nonlinear 
based on the WDG which can find the best compu-
tation offloading decision with the minimum end-
device’ energy consumption under the given 
deadline. Its performance is significantly better 
than popular search-algorithm based strategies. 

3) Both a case study on a real-world UAV delivery 
system [21] and extensive simulation experiments 
on the FogWorkflowSim platform for MEC based 
workflow applications [22] are presented. The ex-
perimental results demonstrate the effectiveness of 
our proposed strategy and its overall better per-
formance than other representative strategies. 

The rest of this paper is structured as follows: Section 2 
introduces a motivating example on a MEC-based UAV 
delivery system. Section 3 presents some preliminaries for 
this study. Section 4 proposes our novel graph-based com-

putation offloading strategy for workflow applications 
with nonlinear structures. Section 5 presents the evaluation 
results. Section 6 reviews the related works for computa-
tions offloading. Finally, Section 7 makes the conclusions 
and points out some future work. 

2 MOTIVATION EXAMPLE AND PROBLEM ANALYSIS 
An example of the MEC-based UAV last-mile delivery 
scenario is presented to describe the problem of computa-
tion offloading in the MEC environment in this section. 

In the MEC-based UAV last-mile delivery system, there 
are various delay-sensitive applications such as dynamic 
flight route planning and autonomous obstacle avoidance 
for UAVs, pose and face recognition for receivers [23], [24]. 
These applications usually consist of object detection, pat-
tern recognition and video stream processing, which are 
computation intensive tasks. In fact, because of the UAV’s 
limited battery life and computing power, these computa-
tion intensive tasks are not suitable for executed locally 
under the fast response and energy efficiency requirements. 
Therefore, computation offloading to the edge server is 
often required. 

Final Parcel Delivery Workflow
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Fig. 1. Computation offloading for an example workflow in a MEC-
based UAV delivery system 

Here, we illustrate the computation offloading problem 
with a partial workflow of the whole UAV delivery process, 
namely the final parcel delivery workflow. The MEC-based 
UAV delivery system is conceptually divided into two lay-
ers. As shown in Fig. 1, the upper layer is the edge server 
layer, which consists of various edge servers. These edge 
servers can provide computing resources close to the UAV. 
The bottom layer is the final parcel delivery workflow 
which consists of a set of computation tasks with depend-
encies. Generally speaking, dependencies can be generated 
in two situations. The first situation is where a task has one 
or multiple predecessors and/or successor tasks, namely 
they have temporal dependencies. The second situation is 
where data transfer is required between the two neigh-
bouring tasks, namely they have data dependencies. In this 
paper, we simply refer them as task dependencies, and 
they can be explicitly specified using DAG (Directed Acy-
clic Graph) as will be introduced in the next section. Specif-
ically, as shown in Fig. 1, there are many computation-



AUTHOR ET AL.:  TITLE 3 

 

intensive tasks in the UAV last-mile delivery scenario, for 
example, target detection, image segmentation, pose and 
face recognition. Specifically, in the real world, the video 
frames may contain multiple persons and hence it is neces-
sary to segment the images and run multiple poses and 
face recognition tasks in parallel to ensure timely detection 
of the actual receiver from the crowd. Once the UAV de-
tects the actual receiver, it will approach the receiver and 
begin to land and unload the parcel. Obviously, these real-
time tasks are delay-sensitive, and fast response time is 
essential. 

According to different characteristics (such as task 
workload, data size and deadline constraints) of the com-
putation tasks, some of them are offloaded to edge servers 
to achieve better QoS such as faster response time and low-
er energy consumption [25]. However, computation of-
floading is a difficult decision-making problem. 

While there are some existing strategies which are based 
on heuristic algorithms or search algorithms, they all have 
some limitations. For example, heuristic algorithms have 
the premature convergence issue so that they may not be 
able to find the best computation offloading decision. 
While search algorithms such as particle swarm optimiza-
tion (PSO) and genetic algorithm (GA) can find the best 
decisions in theory, they are usually very time-consuming 
and hence not suitable for delay-sensitive applications. 
Meanwhile, to the best of our knowledge, none of the exist-
ing strategies can effectively deal with complex task de-
pendencies which can be represented by nonlinear work-
flow structures such as parallel, selective and iterative 
structures. 

For solving the above issues, a novel graph-based strat-
egy is proposed to solve the computation offloading prob-
lem in the MEC environment. Our proposed strategy can 
deal with nonlinear workflow structures and find the best 
computation offloading decision with the minimum energy 
consumption under the deadline constraint. 

3 PRELIMINARIES 
Generally speaking, for the purpose of computation of-
floading, there are two kinds of computation tasks in the 
workflow, which are general tasks and local execution 
tasks. General tasks are those tasks which are executed 
either at end-device or edge server via computation of-
floading. Local execution tasks are those tasks that can 
only be executed on end-device due to the required input 
data is only available at the end-device and cannot be 
moved due to security restrictions, or some tasks which 
require user input at the end-device [20]. In this situation, 
edge servers cannot handle these tasks. In other words, 
these tasks must be processed on the end-device. 
This paper uses the workflow dependency graph (WDG) 
to represent the workflow model and its task dependen-
cies. WDG is a directed acyclic graph (DAG) that is com-
posed of workflow tasks with dependencies. Each task 𝑇௜ 
of WDG contains three basic attributes 𝑥௜, 𝑦௜, 𝑧௜ , which 
represent the energy consumption in different situations 
of the end-device. 

In Fig. 2, the symbol → denotes that there is a depend-
ency relationship between two task nodes. For example, 
the 𝑇௜ → 𝑇௝, indicates that 𝑇௜ is the predecessor of 𝑇௝ in the 
WDG. There are 𝑇ଵ → 𝑇ଶ, 𝑇ଶ → 𝑇ଷ, 𝑇ଶ → 𝑇ହ, 𝑇ଷ → 𝑇ସ, 𝑇ହ → 𝑇଺, 
etc. 𝑇ଵ points to 𝑇ଶ, which means there is a direct depend-
ency between 𝑇ଵ and 𝑇ଶ. We use the task 𝑇ଵ’s output data 
as task 𝑇ଶ’s input data. In addition, → is defined as having 
transitivity, where 𝑇௜ → 𝑇௞ → 𝑇௝ ⇔ 𝑇௜ → 𝑇௞⋀𝑇௞ → 𝑇௝ ⇔
𝑇௜ → 𝑇௝. 

The symbol ↮ indicates that there is no dependency 
between the two tasks, where 𝑇௜ ↮ 𝑇௝ means the 𝑇௜ and 𝑇௝ 
are disparate branches in WDG. For instance, we have 
𝑇ଷ ↮ 𝑇ହ, 𝑇ସ ↮ 𝑇଺, etc. in Fig. 2. 

T1 T2

T3 T4

T7

T5 T6

T8

 
Fig. 2. An example workflow dependency graph 

Here, 𝑥௜  means the energy consumption of the data 
transmission when decide offloading 𝑇௜  to edge server. 
The data transmission between 𝑇௜  and 𝑇௝  (MB) indicated 
as 𝐶𝑜𝑚𝑚ሺ𝑇௜, 𝑇௝ሻ . 𝑇௜ ’s direct predecessor node is 𝑇௝ . 
𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ  is data transfer speed of the computation 
tasks (Mbps). 𝑃௧௥௔௡௦ denotes the end-device’s transmission 
power (W). 

 i j

i trans

Comm T T
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Bandwidth
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*                      (1) 

Where y୧  is end-device’s idle energy consumption 
when decide offloading T୧  to edge server. The task T୧ ’s 
workload (Megacycles) is denoted as l୧. The edge server’s 
CPU frequency (GHz) is fୣୢ୥ୣ. The end-device’s idle pow-
er (W) is P୧ୢ୪ୣ. 

 i

i idle

edge

l
y P

f
*                                (2) 

The end-device’s load energy consumption is denoted 
as z୧  when T୧  is executed on the end-device. The end-
device’s CPU frequency (GHz) and execution power (W) 
is denoted as fୣ୬ୢ and Pୣ ୬ୢ respectively. 
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In our previous work [20], the proposed method can 
convert the computation offloading problem of the linear 
WDG into the shortest path problem. There are two types 
of virtual nodes in the WDG, which are the start node and 
end node in problem of the shortest path. The weight of 
the edge between two nodes is expressed as 𝑤 ൏ 𝑇௜, 𝑇௝ ൐, 
which is the end-device’s energy consumption. At this 
time, the computation task 𝑇௜ and 𝑇௝ are decided offload-
ing to edge server and the tasks between 𝑇௜  and 𝑇௝  are 
executed locally. All possible offloading decisions in 
WDG can be mapped to edges between different task 
nodes. The weight of each edge represents the energy 
consumption of end-devices. As mentioned before, the 
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energy consumptions of edge servers are not considered 
as edge servers are usually connected to the power grid. 

According to the WDG, an Energy consumption Tran-
sitive Graph (ETG) is constructed. Specifically, we design 
a one-to-one mapping for all paths in the graph to all pos-
sible offloading decisions of the workflow, and the classic 
Dijkstra algorithm is used to find the shortest path in ETG. 
Since the complexity of graph-based algorithm is low, this 
strategy can efficiently obtain excellent results. 

4 GRAPH-BASED MINIMUM ENERGY 

CONSUMPTION COMPUTATION OFFLOADING 

STRATEGY 
We present the strategy of Graph4Edge-Nonlinear in this 
section. This strategy will find the best offloading deci-
sion with minimum energy consumption of the end-
device under the given deadline. First in Section 4.1, we 
introduce our model definition and how to convert work-
flow structure to WDG. Then in Section 4.2, we discuss 
how to find the best offloading decision plan for complex 
WDG with Graph4Edge-Nonlinear. Finally, in Section 4.3, 
we use pseudo-code to describe the detailed process for 
our strategy and the discussion of its algorithm complexi-
ty is also presented.  
4.1 Problem Formulation 
We introduce the model definition in this section. Then 
the conversion from nonlinear workflow structure to 
WDG is described. 
4.1.1 Model Definition 
For the computation offloading purpose, the attributes of 
task 𝑇௜ are defined as 〈𝑥௜, 𝑦௜, 𝑧௜, 𝑓𝑙𝑎𝑔௜, 𝐸௜〉. 𝑓𝑙𝑎𝑔௜ denotes the 
constraint whether 𝑇௜ is local execution task or not. Specif-
ically, 𝑓𝑙𝑎𝑔௜ ൌ 1  means that 𝑇௜  is a local execution task. 
Otherwise, the task 𝑇௜  is sending to the edge server for 
execution. 𝐸௜ denotes the 𝑇௜’s execution energy consump-
tion in end-device. The calculation method of 𝐸௜  as fol-
lows: 


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x y if T is offloaded and T is not
x z if T is offloaded and T is not

E
y if T and T are offloaded
z if T and T are not offloaded

     (4) 

According to the offloading decision of 𝑇௜ and 𝑇௜ିଵ, the 
calculation method of 𝐸௜ has two situations. When either 
of them offloaded, the data transmission appears between 
the two tasks. In this situation, the end device’s energy 
consumption depends on 𝑇௜ ’s task offloading decision 
plan. When both of them are offloaded or not offloaded, 
there is no data transmission between the two tasks. The 
end device’s energy consumption depends on offloading 
decision plans of two tasks. According to the above defi-
nition, the optimization goal is defined as 𝑀𝑖𝑛𝐸𝐶, which 
is calculated as follows: 



 
{ | }

min ( )
i j

i
T T WDG

MinEC E                  (5) 

The final optimization goal is to find the best computa-
tion offloading plan with the minimum energy consump-
tion of the end-device under the deadline constraints. 

As shown in Fig. 3, the WDG has a sub-branch within 
one block. If the task offloading decision with minimum 
energy consumption in WDG can be found, only one 
branch is chosen to construct the ETG which is called 
“main branch” (indicated as MB). The rest of branches are 
called “sub-branches” (indicated as SB). such as the 
𝑀𝐵 ൌ ሼ𝑇ଵ, 𝑇ଶ, 𝑇ଷ, 𝑇ସ, 𝑇଻, 𝑇 ሽ  and 𝑆𝐵 ൌ ሼ𝑇ହ, 𝑇଺ሽ  in Fig. 3. The 
energy consumption of the SB in the block is mapped to 
the weight of the MB. The weight of the SB in Fig. 3 is 
defined as 𝐸ହ ൅ 𝐸଺. To better present our problems and 
methods, here are some detailed definitions.  

T1 T2 T3 T4 T7 T8

T5 T6

Ts Te

Sub Branch

min(E5+E6)

Main Branch Block

 
Fig. 3. An example of building ETG for single-block WDG 

Block: In WDG, A block (denoted as B) is defined as a 
set of sub-branches which are forked from one task node 
and merged at another task node. A WDG with simple 
block 𝐵 ൌ ሼ𝑇ଷ, 𝑇ସ, 𝑇ହ, 𝑇଺ሽ is shown in Fig. 3.  

In-block edge: In-block edge 𝑒〈𝑇௜, 𝑇௝〉 represents the edge 
begins with 𝑇௜ preceding the block, and points to 𝑇௝ in the 
block, for example,  𝑒〈𝑇ଵ, 𝑇ଷ〉, 𝑒〈𝑇ଵ, 𝑇ସ〉 in Fig. 3. Formally, 
𝑒〈𝑇௜, 𝑇௝〉 is an in-block edge, where ∃𝑇௞ ∈ 𝑊𝐷𝐺 ∧ 𝑇௜ → 𝑇௞ ∧
𝑇௝ ↮ 𝑇௞. 

Out-block edge: Out-block edge 𝑒〈𝑇௜, 𝑇௝〉  represents the 
edge begins with 𝑇௜ in the block, and points to 𝑇௝ succeed-
ing the block, for example, 𝑒〈𝑇ଷ, 𝑇 〉 , 𝑒〈𝑇ସ, 𝑇 〉  in Fig. 3. 
Formally, 𝑒〈𝑇௜, 𝑇௝〉  is an out-block edge, where ∃𝑇௞ ∈
𝑊𝐷𝐺 ∧ 𝑇௜ ↮ 𝑇௞ ∧ 𝑇௝ → 𝑇௞. 

Over-block edge: Over-block edge 𝑒〈𝑇௜, 𝑇௝〉 represents the 
edge crosses over the block. 𝑇௜ is the task node which pre-
cedes the block and 𝑇௝ is the task node which succeeds the 
block. For example, 𝑒〈𝑇ଵ, 𝑇 〉, 𝑒〈𝑇ଶ, 𝑇 〉 in Fig. 3. Formally, 
𝑒〈𝑇௜, 𝑇௝〉 is an over-block edge, where ∃𝑇௞, 𝑇௛ ∈ 𝑊𝐷𝐺 ∧ 𝑇௜ →
𝑇௞ → 𝑇௝ ∧ 𝑇௜ → 𝑇௛ → 𝑇௝ ∧ 𝑇௛ ↮ 𝑇௞. 

Ordinary edge: An ordinary edge 𝑒〈𝑇௜, 𝑇௝〉  means that 
tasks between 𝑇௜  and 𝑇௝  when they are totally ordered, 
such as 𝑒〈𝑇ଵ, 𝑇ଶ〉 , 𝑒〈𝑇ଷ, 𝑇ସ〉 , 𝑒〈𝑇଻, 𝑇 〉  in Fig. 3. Formally, 
𝑒〈𝑇௜, 𝑇௝〉  is an ordinary edge, where ൓∃𝑇௞ ∈ 𝑊𝐷𝐺 ∧

ቀ൫𝑇௜ → 𝑇௞ ∧ 𝑇௞ ↮ 𝑇௝൯ ∨ ൫𝑇௜ ↮ 𝑇௞ ∧ 𝑇௞ → 𝑇௝൯ ∨ ൫𝑇௛ ∈ 𝑊𝐷𝐺 ∧

𝑇௛ ↮ 𝑇௞ ∧ 𝑇௜ → 𝑇௛ → 𝑇௝ ∧ 𝑇௜ → 𝑇௞ → 𝑇௝൯ቁ. 

In this paper, we can define the weight of the ordinary 
edge as Eq. (6). 


   

    1

iሼ | T ሽ

ሺ , ሻ
k j

i j j i j k
Tk Tk WDG T T

w T T y x x z        (6) 

4.1.2 Convert Nonlinear Workflow to Complex WDG 
The topology of workflow is represented by WDG. In the 
real-world, the structure of workflow contains four basic 
topology types, viz. sequential, parallel, selective and it-
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erative structures [11]. Specifically, in this paper, we 
name the workflow only composed with the sequential 
structure as the linear workflow. If it contains the other 
three structures, we name the workflow as the nonlinear 
structure. Although the real-world workflow structures 
can be very complex with the mix of the four basic work-
flow structures, all of them can be converted to WDGs by 
a simple method are proposed in [26]. In [20], a strategy 
that can find minimum energy consumption of a simple 
linear structure workflow is proposed. However, the task 
dependencies in the remaining three workflow structures 
are much more complicated. Through the conversion pro-
cess, any structures can be converted into multiple se-
quential structures. Fig. 4 shows how the three nonlinear 
basic workflow structures are converted to WDG.  
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c) iterative structure 

Fig. 4. Convert nonlinear workflow structures to WDG 

As shown in Fig. 4 (a), three sequential structures are 
obtained by constructing three subtask instances for a 
parallel structure [27]. The virtual start node and end 
node are added to connect these sequential structures to 
form a complete WDG. Fig. 4 (b) and (c) show the conver-

sion examples for the selective and iterative structures, 
respectively [7]. 

Any workflow is a combination of the four basic struc-
tures, and they can be converted into corresponding 
WDG models. In real-world workflow applications, 
WDGs with nonlinear structures are very common [28]. 
Due to the existence of nonlinear structures, the existing 
computation offloading strategy for linear structures can-
not be used directly. For solving the problem of computa-
tion offloading for complex workflow applications with 
nonlinear structures, we propose the Graph4Edge-
Nonlinear strategy. This strategy is able to optimize the 
end-device’s energy consumption under the given dead-
line constraints. 
4.2 Graph4Edge-Nonlinear for Complex WDG 
4.2.1 Single-block WDG 
In this section, the single-block WDG is analyzed as an 
example to describe the problem and the detailed steps 
for Graph4Edge-Nonlinear based on the above model 
definition. 

The purpose of the Graph4Edge-Nonlinear strategy is 
to map the energy consumption of the possible offloading 
decision to the weight of the edge. Therefore, the shortest 
path of the linear workflow structure can be easily found 
by the optimal offloading strategy. 𝑒〈𝑇௜, 𝑇௝〉  means that 
tasks 𝑇௜ and 𝑇௝ are offloaded to the edge server, and tasks 
between 𝑇௜  and 𝑇௝  are executed locally. As a result, it is 
necessary to calculate the energy consumption of locally 
executed tasks which include transmission and idle ener-
gy consumption. In the single-block WDG, Eq. (6) is suit-
able for in-block edges and ordinary edges. But when 
𝑒〈𝑇௜, 𝑇௝〉  is either out-block or over-block, Eq. (6) is no 
longer suitable for its weight calculation due to the tasks 
succeeding the block may have more than one task as 
their predecessor node. For example, the edge of 〈𝑇ଷ, 𝑇 〉 
in Fig. 3 can be calculated by 𝑤〈𝑇ଷ, 𝑇 〉 ൌ 𝑥ସ ൅ 𝑥଼ ൅ 𝑦଼ ൅
𝑧ସ ൅ 𝑧଻ according to Eq. (6). However, the offloaded situa-
tion of the sub-branch tasks 𝑇ହ and 𝑇଺ is not considered. 
Therefore, the obtained shortest path cannot represent the 
overall decision of WDG. 

For the above reasons, the weight of 𝑒〈𝑇௜, 𝑇௝〉 is defined 
as follows: 



    
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  
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In Eq. (7), ൫∑ 𝐸்೗ሼ்೗|்೗∈SBሽ ൯
ௌ೘೔೙

 means the minimum en-

ergy consumption of the tasks that are in the sub-
branches of the block. 𝑥௜ାଵ

∗  represents the transmission 
energy consumption of the task that directly depends on 
𝑇௜. The out- or over-block edge’s shortest path length is 
equal to the task’s minimum energy consumption by Eq. 
7, i.e. 𝑃௠௜௡〈𝑇௜, 𝑇௝〉 ൌ ∑ 𝐸௞൛்ೖ|்ೖ∈WDG∧்೔→்ೖ→்ೕൟ . Hence, in or-
der to calculate the out- or over-block edge’s weights, the 
offloaded strategy of sub-branch in single-block WDG is 
essential. For instance, the weight of edge  𝑒〈𝑇ଷ, 𝑇 〉 in Fig. 
3 is calculated as 𝑤〈𝑇ଷ, 𝑇 〉 ൌ 𝑥ସ ൅ 𝑥଼ ൅ 𝑦଼ ൅ 𝑧ସ ൅ 𝑧଻ ൅
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ሺ𝐸ହ ൅ 𝐸଺ሻௌ೘೔೙
 where 𝑆௠௜௡ is the best computation offload-

ing decision of the SB. 
For any sub-branch, the offloading decision of the pre-

vious node of the block decides the transmission energy 
consumption of the first task node in SB. If 𝑒〈𝑇௜, 𝑇௝〉 is an 
over-block edge, we need to consider two different situa-
tions. If 𝑇௜ is the previous node of the block and it will be 
offloaded, then when the first task of the SB is offloaded, 
the transmission energy consumption is not calculated as 
they are both executed on the edge. Otherwise, the 
transmission energy consumption must be calculated 
when the first task of the SB is offloaded. In order to solve 
this problem, when 𝑇௜  is not the previous node of the 
block, a special non-offloaded virtual node 𝑇௦

′ is added 
between the start node 𝑇௦ and the first task node 𝑇ଵ, and 
set 𝑥௦

′ ൌ 𝑦௦
′ ൌ 𝑧௦

′ ൌ 0. In this way, we account the energy 
consumption for transmission of the first node of the SB. 
If the rest of the tasks in the block compose a linear WDG, 
the Graph4Edge-Linear strategy can find its minimum 
energy consumption decision. Otherwise, if the remaining 
tasks within the block still compose a complex WDG with 
nonlinear structures, the Graph4Edge-Nonlinear strategy 
must be recursively called to search the best offloading 
decision plan for sub-branches. 
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Fig. 5. The initial ETG of single-block WDG 
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Fig. 6. Examples of in-block edges in two different situations 
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(b) In-block edges from the previous node  

Fig. 7. Construct the ETG for branch structure 

For an out-block edge 𝑒〈𝑇௜, 𝑇௝〉 , the previous task of 
sub-branch is unknown. For example, for calculating the 
out-block edge weight 𝑒〈𝑇ଷ, 𝑇 〉 in Fig. 3, the optimal of-
floading decision 𝑆௠௜௡  is necessary for the sub-branch 
ሼ𝑇ହ, 𝑇଺ሽ. However, 𝑆௠௜௡ depends on the offloaded status of 
𝑇ଵ  and 𝑇ଶ . Therefore, multiple ETGs for WDG must be 
constructed to measure the out-block edge’s weight. Spe-

cifically, the minimum energy consumption strategy is 
the minimum length path among all ETGs. The specific 
steps for Graph4Edge-Nonlinear strategy are shown be-
low: 

Step 1: Construct the initial ETG of WDG. An arbitrary 
branch in WDG is chosen as the main branch. At the same 
time, the energy edges are added to construct ETG. And 
for the set of ሼ𝑇௜|𝑇௜ ∈ 𝑙𝑜𝑐𝑎𝑙𝑆𝑒𝑡ሽ , the edges are pruned 
when 𝑇௜ serves as the head or tail. 

Step 2: Set the weight of edges in the ETG. The weights 
of the ordinary and in-block edges are set by Eq. (6). For 
the over-block edges, the Graph4Edge-Nonlinear strategy 
is recursively called to find its 𝑆௠௜௡, then set the weights 
by Eq. (7). Finally, the weight of all out-block edges is set 
to infinity. The initial ETG is shown in Fig. 5. 

Step 3: Construct two different branch ETG models 
based on in-block edge situations. The specific description 
is as follows: 

1) If the in-block edge is not from the previous node of the 
block, and firstly discovered. A new ETG is created, 
and then the Graph4Edge-Nonlinear strategy pro-
cesses the sub-branch in the block to find the opti-
mal energy consumption offloading decision. For 
example, when we find 𝑒〈𝑇௨, 𝑇௔〉 in Fig. 6, mark the 
current situation and create a new ETG to record 
according to the current ETG. First of all, the infor-
mation of the current ETG is copied to the new ETG. 
Then, we prune all the in-block edges which head 
from the previous task of this block, which ensures 
the correct calculation of the sub-branch’s minimum 
energy consumption strategy. At this time, the ETG 
generated by the linear branch WDG is shown in 
Fig. 8 (a). Finally, the weights of all out-block edges 
for this block in ETGs are updated. 

2) If the in-block edge is from the adjacent predecessor task 
of block, and this situation was first discovered. We can 
make adjustments in the current ETG. Specifically, 
when the in-block edges from the previous task 
node of this block were discovered for the first time, 
such as 𝑒〈𝑇௩, 𝑇௕〉  in Fig. 6, situation (1) has been 
completely traversed, so it can be processed directly 
on the current ETG. Prune all in-block edges that 
are not from the previous task node, and it ensures 
that all sub-branches can be directly calculated us-
ing the Graph4Edge-Nonlinear strategy. At this 
time, the ETG created by the linear branch WDG is 
shown in Fig. 8 (b). Finally, all out-block edge 
weights are updated for this block in ETGs. 

Step 4: Use the Dijkstra algorithm to search the mini-
mum length path in ETGs, and perform verification to 
ensure that deadline constraints are met. The nodes on 
the shortest path are the minimum energy consumption 
offloading strategy have found. 
4.2.2 Multiple-blocks WDG 
In real workflow-based applications, WDG’s structures 
can be complex with multiple blocks in the WDG. There-
fore, Graph4Edge-Nonlinear strategy should be able to 
deal with multiple-blocks in the WDG. 
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Fig. 8. WDG with multiple serial blocks 
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Fig. 9. WDG with nested branches 
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Fig. 10. The ETG of WDG 

A WDG may consist of many blocks. At first, any 
branch can be selected as the main branch. This main 
branch is used to construct the initial ETG. Then, multiple 
ETGs are built for different blocks. In the calculation pro-
cess of out-block and over-block edge weights, two new 
situations need to search minimum energy consumption 
offloading decision for the sub-branch. 

1) WDG with multiple serial blocks. In this situation, 
there is an edge that is both an out-block edge for one 
block and an in-block edge for another block, e.g. 𝑒〈𝑇௖, 𝑇௩〉 
in Fig. 8. In our strategy, depending on the head node of 
the in-block edge for B1, the offloaded strategy with the 
sub-branch is different. As a result, both the head node 
and the in-block edge weight for 𝐵𝑟ଶ will change. In order 
to calculate the out-block edge weight for B2, e.g. 𝑒〈𝑇௪, 𝑇௞〉, 
the offloading strategy of 𝐵𝑟ଶ  for B2 must make sure, 
which depends on the offloading strategy of SB1 for B1. 
So it is necessary to find its minimum energy consump-
tion offloading strategy from 𝐵𝑟ଵ of B1. 

2) WDG with nested branches. In this situation, it is nec-
essary to recursively call the Graph4Edge-Nonlinear 
strategy to find its optimal offloading strategy. For exam-
ple, 𝑒〈𝑇௔, 𝑇௖〉 in Fig. 9 is an in-block edge of blocks B1 and 
B2, multiple new ETGs should be created based on the 
different situations of the two blocks, to find the optimal 
offloading strategy of sub-branches 𝐵𝑟ଵ and 𝐵𝑟ଶ. Hence it 
is necessary to recursively call the Graph4Edge-Nonlinear 
strategy for the WDG 𝐵𝑟ଵ ∪ 𝐵𝑟ଶ. 

The ETG for an example complex WDG is shown in 
Fig. 10. By recursively calling the Graph4Edge-Nonlinear 
strategy for the sub-branches, the minimum energy con-
sumption offloading decision of the whole WDG can be 
found. For example, given an in-block edge 𝑒〈𝑇௜, 𝑇௝〉 in Fig. 
10, the Graph4Edge-Nonlinear strategy calculates the 
sub-branch ሼ𝑇௨|𝑇௨ ∈ 𝑊𝐷𝐺 ∧ 𝑇௨ → 𝑇௞ ∧ 𝑇௨ ↮ 𝑇௝ ∧ 𝑇௨ ↮ 𝑇௛ሽ , 
and gets the weight of out-block 𝑒〈𝑇௛, 𝑇௞〉. 
4.2.3 Strategy description 
Clearly, no matter how complicated the structure of the 
WDG is, it can always be transformed to the linear struc-

ture by calling Graph4Edge-Nonlinear strategy recursive-
ly. Here, we present the pseudo-code for the 
Graph4Edge-Nonlinear strategy. 
 
Strategy: Graph4Edge‐Nonlinear 

Input: A workflow dependency graph (𝑊𝐷𝐺); 
            local‐execution tasks in WDG (𝑙𝑜𝑐𝑎𝑙𝑆𝑒𝑡); 
            The workflow task’s deadline constraint (𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒); 
Output: tasks in WDG (𝑆); 
1    Compute ሺ𝑥௜, 𝑦௜, 𝑧௜ሻ for all tasks by Eq. (1‐3); 
2    Add 𝑇௦, 𝑇௘ into WDG and set attributes; 

3    if 𝑇௦
′
 is needed then 

4       Add a virtual task 𝑇௦
′
 succeed 𝑇௦ and set attributes; 

5    end if 

6    if 𝑊𝐷𝐺 is linear workflow then 

7       return Graph4Edge‐Linear (𝑊𝐷𝐺, 𝑙𝑜𝑐𝑎𝑙𝑆𝑒𝑡, 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒); 
8    end if 

9    Get a main branch 𝑀𝐵 from 𝑊𝐷𝐺 and construct ETG; 
10  Prune 𝑒ሺ𝑇௜, 𝑇௝ሻ if 𝑇௜ or 𝑇௝ in 𝑙𝑜𝑐𝑎𝑙𝑆𝑒𝑡; 

11  Set all out‐block edges 𝑒൫𝑇௜, 𝑇௝൯ ൌ ∞; 

12  Compute weight for other edges by Eq. (6‐7); 

13  𝐸𝑇𝐺_𝑆𝑒𝑡 = 𝐸𝑇𝐺௜௡௜௧; 

14  for each in‐block edge 𝑒൫𝑇௜, 𝑇௝൯ in 𝐸𝑇𝐺_𝑆𝑒𝑡 do 
15     if 𝑖𝑠𝐹𝑖𝑟𝑠𝑡𝐹𝑖𝑛𝑑ሺ𝑇௜ሻ && 𝑛𝑜𝑡𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑁𝑜𝑑𝑒ሺ𝑇௜ሻ then 
16        𝐸𝑇𝐺ௌ௘௧ ← 𝐸𝑇𝐺; 
17        𝑆ௌ஻ ← 𝐼𝑡𝑒𝑟𝑎𝑡𝑒 Graph4Edge‐Nonlinear; 

18     end if 

19     if 𝑖𝑠𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑁𝑜𝑑𝑒ሺ𝑇௜ሻ then 

20        𝑆ௌ஻ ← 𝐼𝑡𝑒𝑟𝑎𝑡𝑒 Graph4Edge‐Nonlinear (need 𝑇௦
′
); 

21     end if 

22     Compute out‐block edge in 𝐸𝑇𝐺_𝑆𝑒𝑡 by Eq. (7); 
23  end for 

24  for 𝑘 ൌ 𝑛 ൅ 1 to 1 do 
25     𝑃௠௜௡ ൌ 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎_𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚ሺ𝑇௦, 𝑇௞, 𝐸𝑇𝐺ሻ; 
26     𝑆 ൌ 𝑃௠௜௡ሺ𝑇௦, 𝑇௞ሻ traversed tasks; 
27     if 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 < 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 then  
28        break;  

29     end if 

30  end for 

31  if 𝑘 ൌ 0 then 
32     𝑆 ൌ 𝑛𝑢𝑙𝑙; 
33  end if 

34  return 𝑆; 
First, WDG is initialized (Lines 1-5). If the WDG is a 

linear structure, the Graph4Edge-Linear strategy is direct-
ly called (Line 7). Otherwise, an arbitrary branch from 𝑇௦ 
to 𝑇௘ is chosen as the main branch, and this main branch 
is used to construct the initial ETG (Lines 9-10), and com-
pute the weight of the ordinary, in-block and over-block 
edge by Eq. (6-7) (Line 12). Next, all the in-block edges are 
traversed in sequence. When the in-block edge of a block 
is found for the first time, and its head node is not the 
previous task for this block, a new ETG is created and 
added to the 𝐸𝑇𝐺_𝑆𝑒𝑡 (Lines 15-18). Then, the shortest 
path of the sub-branch can be found in the new ETG. 
When an in-block edge of which the head node is the 
previous task of this block is found, the current ETG is 
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processed (Lines 19-21) to obtain the sub-branch’s optimal 
offloaded strategy. Meanwhile, the weight of the out-
block edges is updated in 𝐸𝑇𝐺_𝑆𝑒𝑡(Line 22). Finally, the 
Dijkstra algorithm can find the shortest path from 𝑇௦ to 𝑇௞ 
(Line 25). In the worst situation (Line 31), if all solutions 
do not meet the deadline constraints, all tasks in the 
workflow are executed locally. 

For the pseudo-code in Graph4Edge-Nonlinear, recur-
sive calls (Lines 14-23) exist in the Graph4Edge-Nonlinear 
strategy, and the complexity of the algorithm highly de-
pends on the structure of WDG. The worst time complexi-
ty of initial ETG (Lines 1-5) is 𝑂ሺ𝑛ଶሻ. For each branch, a 
new ETG will be created for WDG (Line 16). The created 
ETG’s maximum number of tasks is smaller than the 
number of tasks in the main branch, which is n. For all 
ETGs, the construction of directed edges needs to be 
completed, and the worst time complexity of this opera-
tion is 𝑂ሺ𝑛ଷሻ. Use the Dijkstra algorithm to perform the 
shortest path search for all ETGs when the deadline con-
straint is met (Line 25), its time complexity is 𝑂ሺ𝑛 ∗ 𝑛ଶ ∗ 𝑛ሻ. 
In summary, the worst time complexity is 𝑂ሺ𝑛ସሻ. Similar-
ly, for each ETG, multiple two-dimensional arrays store 
the necessary information, so that the space complexity of 
the Graph4Edge-Nonlinear strategy is about 𝑂ሺ𝑛ଷሻ, and 
does not exceed 𝑂ሺ𝑛ସሻ. 

5 EVALUATION 
The Graph4Edge-Nonlinear strategy is able to find the 
optimal computation offloading decision with the lowest 
energy consumption under the given deadline constraint 
for a complex workflow application. In this section, we 
describe the simulation environment and parameter set-
tings firstly. Then, we revisit our motivating example as a 
real-world case study to illustrate our strategy’s effective-
ness. Furthermore, with simulation experiments based on 
a real-world UAV delivery system UAV-EXPRESS, we 
evaluate the performance of Graph4Edge-Nonlinear and 
compare with other strategies in the end-device’s energy 
consumption, the strategy running time and task re-
sponse time. UAV-EXPRESS is developed based on EX-
PRESS1 which is an energy-efficient and secure frame-
work for MEC environment and blockchain technology-
based smart systems [21]. 
5.1 Case study 
Similar to the motivating example shown in Fig.1, Fig. 11 
shows the detailed workflow for the final parcel delivery 
process in the UAV delivery system. Before the UAV 
reaches the destination for parcel delivery, the edge serv-
er downloads the facial images of the parcel receiver from 
the cloud server of the logistics system. When the UAV 
arrives at the destination, the video stream captured by 
the camera of the UAV is analyzed frame by frame to lo-
cate the position and confirm the identity of the parcel 
receiver. 

The final parcel delivery process can be described in 
three stages. In the first stage (including Tasks 1-3), the 
original video frames are filtered on the UAV. We use the 
 

1. EXPRESS Framework Project at GitHub: https://github.com/ISEC-
AHU/UAV-EXPRESS.git 

target detection function to search for video frames con-
taining people, and frames without people are filtered 
directly. A small proportion of the images containing 
people in the whole video frame is further extracted by 
using the image segmentation algorithm according to the 
detected location coordinate of the people. In the second 
stage (including Task 4 and Task 5), extracted video 
frames are further processed. In a real-world scenario, 
there could be a lot of pedestrians near the destination, 
and hence there will be many images containing multiple 
people. We use pose recognition (i.e., the parcel recipient 
will receive an instruction on her/his mobile App to 
make a specific pose such as waving the right hand from 
right to left) to further identify the receiver from the 
crowd. Finally, in the third stage (including Task 6 and 
Task 7), identification of the parcel receiver is conducted 
using face recognition. Face recognition confirms whether 
the person waving hand matches the face images down-
loaded in advance from the cloud server. If matches, the 
UAV will approach the receiver for landing and then 
hand over the goods. Otherwise, more image frames are 
processed until the correct parcel receiver is found, or the 
delivery process terminates without successfully locating 
the parcel receiver. 
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Edge Server

Video 
Data
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picture
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Fig. 11. A case study on the MEC-Based UAV delivery system 

For the experiment, we select a one-minute video clip, 
with 1920*1080 pixel and 60 FPS recorded by the DJ Ma-
vic Air UAV2. With our computation offloading strategy, 
the generated computation offloading decision is that 
Task 1-3 and Task 4 are to be executed locally, while Task 
5 and Task 6 are to be offloaded to the edge server. Specif-
ically, Task 1-3 and Task 4 are the video pre-processing 
tasks that can be executed on the UAV since the charac-
teristic of data size but the required computing power is 
low. After the UAV completes the video pre-processing 
tasks, the remaining data size is reduced to 10% of the 
 

2. https://www.dji.com/cn/mavic-air 
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original video frames. The deep neural network-based 
computation tasks (Task 5 and Task 6) are executed at the 
edge server because the size of data transfer for Task 5-6 
is very small but they both require high computing power. 
5.2 Simulation Environment and Parameter 

Settings 
In our experiments, we compare Graph4Edge-Nonlinear 
with three types of computation offloading strategies. The 
first type is based on search algorithms including PSO 
and GA which are most widely used for computation 
offloading. The second type is a Greedy strategy which 
makes the offloading decision for each task through com-
parison the energy consumption required for offloading 
with local execution. If the energy consumption of task 
offloading is less than execution locally, then the task will 
be offloaded to the edge server for execution. Otherwise, 
the task will be executed locally. The third type is the All-
in-End strategy, which means that all of the tasks are exe-
cuted in the end device. All computation offloading strat-
egies are applied with the Min-Min task scheduling algo-
rithm [29] at the edge server. 

All simulation experiments are implemented on the 
FogWorkflowSim platform, which is a simulation plat-
form for Fog/MEC-based workflow applications [22]. It 
supports different kinds of workflow structures and dif-
ferent evaluation index metrics such as time, energy and 
cost. The experiments are run on a laptop with the follow-
ing configuration: Intel® Core™ I7-9750H CPU 2.60GHz, 
16G RAM, NVIDIA GeForce GTX 1660Ti.  

TABLE 1 
MEC ENVIRONMENT PARAMETER SETTING 

Parameters End Server Edge Server 

MIPS 1000 1300 

Load Power (mW) 700 N/A 

Idle Power (mW) 30 N/A 

Data Transmission Power (mW) 100 N/A 

Table 1 describes parameter settings of the MEC envi-
ronment. The simulated MEC environment consists of 
three edge servers and one UAV as the end-device. Edge 
servers are deployed close to the UAV, the data transmis-
sion rate between UAV and edge server is 100 Mbps [30] 
and the bandwidth is relatively stable. The processing 
speed of the computing resources is randomly chosen 
between 100 and 1500 Megacycles. According to the EX-
PRESS framework and actual data collection in UAV last-
mile delivery scenarios, the input and output data size for 
each task is generated between 0.625 and 30 MB random-
ly [21], [31], [32]. In this paper, we only consider the ener-
gy consumption of the UAV.  

Table 2 describes the parameter settings of PSO and 
GA strategy respectively [33], [34]. For each workflow 
application, we simulate 100 times to obtain the average 
result. In order to comprehensively evaluate the overall 
performance, we randomly generate many complex WDG 
of different sizes from 10 to 100 tasks with both linear and 
nonlinear workflow structures. The percentage of the lo-
cal execution task (namely those cannot be offloaded to 
the edge) is set as 20%. 

TABLE 2 
PSO, GA STRATEFGY PARAMETER SETTING 

PSO GA 

Parameters Setting Parameters Setting 

Particles 30 Population Size 50 

Iterations 100 Iterations 100 

Factor C1, C2 2 Cross Rate 0.8 

Inertia Weight 1 Mutation Rate 0.1 

Repeated 10 Repeated 10 

5.3 Performance Evaluation 
Now we present the detailed simulation results. Deadline 
constraint is the most important QoS constraints in any 
real-world business systems. According to actual business 
requirements, there is usually a strict time constraint. 
Based on the results of our actual program [21], our work-
flow application’s deadline constraint is set between 70% 
and 140% of the total task local execution time. Note that 
the deadline constraint considered in this paper is the soft 
deadline, which means that missing the deadline will not 
cause task failures but only decrease the service quality. 

 
Fig. 12. Energy consumption and task’s offloading per-
cent with different deadline constraints 

Fig. 12 shows the energy consumption results under 
different deadline constraints. Initially, all tasks are exe-
cuted locally on the UAV. When the value of deadline 
constraint increases, the percentage of offloaded tasks 
also increases. In the meantime, the end-device’s energy 
consumption is gradually decreasing. It can be seen that 
the end-device’s energy consumption becomes stable 
when the deadline constraint reaches 130%. The results 
show that when the deadline constraint becomes more 
flexible, the room for the computation offloading strategy 
becomes larger and hence our Graph4Edge-Nonlinear 
strategy becomes more effective in reducing the end-
device’s energy consumption. However, when deadline 
constraint reaches a certain value, the effectiveness of 
reducing energy consumption levels off since the per-
centage of offloaded tasks also reaches its maximum 80% 
(as we have set 20% of local execution tasks). In order to 
compare the best performance of different computation 
offloading strategies, we focus on the deadline is 130% in 
the following experiments. 

To comprehensively evaluate its performance, we 
compare Graph4Edge-Nonlinear with others in energy 
consumption, strategy running time and task response 
time. 
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Fig. 13. Comparison of Graph4Edge-Nonlinear and other four meth-
ods for energy consumption 

 
Fig. 14. Comparison of Graph4Edge-Nonlinear and other four meth-
ods for strategy running time 

Fig. 13 shows that the end-device’s energy consump-
tion of the over different sizes of nonlinear workflows. 
The experimental result demonstrates that energy con-
sumption with Graph4Edge-Nonlinear is always lower 
than the other four strategies. For example, when the task 
number is 50, the energy consumption with Graph4Edge-
Nonlinear is 7.81% and 9.51% lower than PSO and GA 
respectively. The Greedy strategy and All-in-End strategy 
always have higher energy consumption than 
Graph4Edge-Nonlinear which is about 94% and 310% 
respectively. This is because they place too many tasks on 
the end device for execution. 

Fig. 14 illustrates the results of strategy running time 
over different sizes of nonlinear workflows. Please be 
noted that the basic time units for Graph4Edge-Nonlinear, 
Greedy and the All-in-End strategies are milliseconds 
(ms), while the basic time units for PSO and GA are 
100ms and 500ms respectively. Clearly, Graph4Edge-
Nonlinear is much faster than search-based strategies 
PSO and GA. Specifically, it is running about 110 times 
and 540 times faster than PSO and GA respectively. In the 
FogWorkflowSim platform [22], All-in-End strategy run-
ning needs to count the number of tasks that make up the 
workflow, which usually takes a few milliseconds. Alt-
hough the Greedy and All-in-End strategies have the 
smallest execution time, it always has the worst perfor-
mance in reducing energy consumption. In particular, 
even if the number of tasks is as high as 100, the 
Graph4Edge strategy only needs an additional 30ms to 

get the optimal offloading decision. When it is necessary 
to perform offloading of delay-sensitive tasks, our strate-
gy can guarantee real-time performance. 

 
Fig. 15. Comparison of nonlinear workflows and linear workflows for 
strategy running time 

  
Fig. 16. Comparison of Graph4Edge-Nonlinear and other four meth-
ods for task response time  

It is also important to investigate the impact of work-
flow structures on the strategy running time. Fig. 15 com-
pares the strategy running time of Graph4Edge-
Nonlinear and Graph4Edge-Linear on nonlinear work-
flows and linear workflows respectively with 10 to 50 
tasks. The result shows that with the same workflow sizes, 
the strategy running time of Graph4Edge-Nonlinear is 
about 20% higher than Graph4Edge-Linear, which is not a 
significant increase considering the much more complex 
structures of the nonlinear workflows. Meanwhile, even 
with 50 tasks, the strategy running time of Graph4Edge-
Nonlinear is only increased by 2ms. 

Fig. 16 illustrates the results of task response time over 
different sizes of tasks in nonlinear workflows. The work-
flow tasks are executed according to the offloading deci-
sion plan. The task response time is set as the sum of task 
execution time and data transmission time. Obviously, 
our proposed Graph4Edge-Nonlinear strategy requires 
minimal task response time. In summary, given the ex-
perimental results above, we can conclude that our pro-
posed strategy has the best overall performance as it can 
find the optimal computation offloading decision plan 
with the lowest energy consumption under the given 
deadline. Most importantly, for delay-sensitive applica-
tions, our proposed strategy can meet their real-time re-
quirements given its fast running time. 
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6 RELATED WORK 
In a MEC environment, the main objective of the compu-
tation offloading strategy is to find the best offloading 
decision according to the characteristics of tasks, compu-
ting resources and network conditions [35]. In addition, 
these methods can improve the utilization rate of compu-
ting resources in MEC [36] and minimize the end-device’s 
energy consumption with the QoS constraints of users 
and reduce the cost of the service providers [37]. Compu-
tation offloading is used for solving the problems caused 
by insufficient computing power and insufficient battery 
capacity of the end-device. With the gradual promotion of 
MEC platform, computation offloading has become an 
important research topic [25]. There are many prelimi-
nary research works focusing on the problem of computa-
tion offloading in the MEC environment. 

Currently, a range of research works focuses on the 
problem of computation offloading to reduce end-
device’s energy consumption and task response time. In 
the aspect of the energy consumption optimization, 
Zhang et al. [38] focused on the multi-access characteris-
tics of the 5G and an minimize the energy consumption 
offloading strategy in 5G MEC networks is proposed. 
Chen et al. [39] consider the factor of task allocation and 
CPU-cycle frequency. Then, an energy efficiency strategy 
named TOFFEE is proposed to decrease end-device’s en-
ergy consumption. For the target of time optimization, 
Xing et al. [40] propose a MEC system that can reduce the 
task’s computation latency significantly. Currently, many 
research works are based on popular optimization algo-
rithms such as PSO and GA [33], [34]. However, most 
studies only focused on the independent tasks, and ig-
nored the computational overhead needed to make deci-
sions. Most of the tasks in real-world applications are 
highly correlated. Each task depends on the execution 
result of the previous task and provides the necessary 
data flow for the successor task [31], [41]. 

Graph as a kind of classical data structure. Many re-
search works about graph-based algorithms in Cloud and 
Edge Computing. In the cloud computing environment, 
many studies adopted graph-based algorithms to solve 
task management problems for different workflow struc-
tures. Yuan et al. [42] aimed at the problem of data set 
storage in data-intensive scientific workflow execution 
and proposed the CTT-SP algorithm to trade-off compu-
tation and storage cost in the cloud environment. Zhang 
et al. [43] proposed a highly efficient algorithm named 
PCE, which can calculate the minimum cost strategy in 
multiple clouds efficiently. In recent years, there are also 
many studies in the MEC environment. Elgamal et al. [44] 
focused on the time and memory of the pricing model in 
serverless computing and proposed an algorithm to op-
timize the price of AWS workflow applications while 
meeting deadline constraints. Khare et al. [45] focused on 
the data placement problem of operators in streaming 
applications and proposed an algorithm to convert 
streaming DAG into a set of approximate linear chains 
and perform data placement and time prediction. Most 
research focuses on resource management issues in cloud 
or edge conditions. However, these works have not paid 

attention to the problems of end-device’s limited compu-
ting power and battery capacity in the MEC environment. 
In [25], the authors proposed a graph-based strategy that 
can provide a solution for the generation of the optimal 
energy consumption offloading strategy for linear work-
flow, but this strategy cannot handle the nonlinear work-
flow of complex applications. 

Therefore, this paper deals with various problems of 
computation offloading in the MEC environment using 
graph-based technology. We focus on workflow applica-
tions with complex structures and propose the 
Graph4Edge-Nonlinear strategy as an effective solution. 

7 CONCLUSION AND FUTURE WORK 
Computation offloading is a key technology to optimize 
the QoS of MEC based applications. However, most exist-
ing strategies did not pay attention to the dependency 
between computing tasks or only focus on simple de-
pendency such as sequential relationship. Meanwhile, 
many current strategies are based on search algorithms 
which could have significant computation overhead. This 
is unacceptable for delay-sensitive applications. For solv-
ing these problems, a novel graph-based computation 
offloading strategy with the goal to minimize the end-
device’s energy consumption under the given deadline 
constraint is proposed in this paper. Motivated by a MEC-
based UAV delivery system, we first built the nonlinear 
workflow model for complex applications. Then, using 
the graph-based partition technique, we proposed the 
Graph4Edge-Nonlinear strategy to search for the best 
computation offloading decision with the lowest energy 
consumption under the deadline constraint. Finally, both 
a real-world case study and comprehensive simulation 
experiments implemented on the FogWorkflowSim plat-
form with different workflow sizes and structures are 
conducted to evaluate the effectiveness of our proposed 
strategy. The experimental results have shown that 
Graph4Edge-Nonlinear can achieve overall better per-
formance than other representative computation offload-
ing strategies. 

This paper mainly focused on computation offloading 
for workflow applications and the target of reducing end-
device’s energy consumption in the MEC environment. In 
the future, we will investigate the problem of computa-
tion offloading together with workflow scheduling at the 
edge servers to produce a holistic solution that can im-
prove the QoS for the whole MEC-based system. Besides, 
the impact of the dynamics of the network and the mobil-
ity of the end device will be further investigated in our 
future work. 
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