
Dealing with IoT Defiant Components
Adrilene Fonseca∗, Denis Sousa∗, Matheus Chagas∗, Paulo Henrique M. Maia∗,

Lucas Alves∗†, Victor Praxedes†, and Ernandes Junior†
∗State University of Ceará, Fortaleza, CE, Brazil

{adrilene.fonseca, denis.sousa, matheus.chagas,}@aluno.uece.br, pauloh.maia@uece.br
†Instituto Atlântico, Fortaleza, CE, Brazil

{lucas alves, victor praxedes, ernandes azevedo}@atlantico.com.br

Abstract—A defiant IoT component is a smart device of an
IoT system-of-systems (SoS) that should adapt its local behaviour
to accomplish the new global requirements of the SoS only in
exceptional scenarios. There are several self-adaptive approaches
for system-of-systems in the literature. However, to handle defiant
components, there is currently only one solution, called cautious
adaptation, which relies on the use of AOP-based wrappers. That
approach may not be appropriate for IoT systems since the
components expose their communication API. Therefore, this
paper proposes a new cautious adaptation approach for IoT
SoS that adds three external components, the Configurator, the
Observer and the Effector, that realize the MAPE control loop
to apply behaviour adaptation. The solution is evaluated through
a proof of concept using two types of IoT device communication
mechanisms that demonstrated that our proposal helps the SoS
to achieve its global goals.

Index Terms—defiant component, cautious adaptation, internet
of things, smart homes

I. INTRODUCTION

A BCC Research study1 showed that, in the last 20 years,
smart home technologies have evolved and improved signif-
icantly, allowing the communication among different devices
and the interaction of them with users [1]. A smart home is
an Internet of Things (IoT) application that provides a set of
intelligent services to users by means of smart devices that
require the minimum of human intervention [2].

An IoT environment, such as a smart home, is composed by
a set of independent devices that have their local requirements
and that together cooperate to accomplish a global requirement
(e.g, saving energy or assisting elderly people), thus realizing
the notion of system-of-systems (SoS) [3]. In fact, IoT is
one of the most common example of a SoS [4]. In this
new context grounded by the communication of a variety of
devices, emergent behaviours may arise due to the fact that
the devices may behave differently from their original design.
Therefore, the need for device integration in order to achieve
a common goal may require some adaptive behaviour to meet
new global requirements or to avoid possible conflict of their
local requirements [5].

Smart devices should be able to process information,
perform self-configuration, self-maintenance, self-repair and
make independent decisions [6], thus allowing IoT systems
to become self-adaptive systems (SaS), i.e., systems that are

1https://blog.bccresearch.com/the-evolution-of-smart-home-technology

capable to adjust their behavior in response to some variation
in the environment [7]. Typically, SaS decisions are partly
made at run time through a feedback control loop, such as
the MAPE-K (Monitoring, Analyzing, Planning and Executing
over a Knowledge base), which is by far the most common
type of control loop used to devise self-adaptive software
systems [8].

Some work have already addressed self-adaptive IoT sys-
tems [9]–[14]. However, they either focus on adapting the
system infrastructure or the system exchanging messages, not
focusing on device behaviour adaptation to meet the SoS
global goals. In this direction, Maia et al. [15] proposed a
cautious adaptation solution to deal with defiant components,
which are a SoS component that should change its behaviour
only in exceptional scenarios in order accomplish the SoS
global requirement. That approach consists of creating a wrap-
per, implemented using Aspect Oriented Programming (AOP),
to change the component behavior only during the exceptional
scenario, keeping the original behavior in other situations. In
that approach, the use of wrappers was appropriate since the
application source code is inaccessible. However, in domains
where there is another level of source code access, like
IoT systems, which usually provide service APIs and whose
components communicate in a different way [14], a wrapper
may not be the most suitable solution.

Therefore, this paper brings a new cautious adaptation
strategy for IoT environments, in which the devices interact via
a communication interface, which can be either a middleware
or a broker. The proposal relies on adding three components,
the Configurator, which sets necessary parameters to run
the system, the Observer, responsible for monitoring and
analysing the message exchange among the devices in order
to detect the exceptional scenarios that trigger the adaptations,
and the Effector, which applies the planned adaptation actions
to the defiant component via API calls. Together those two last
components realize the MAPE phases. Our main contribution
is threefold: (i) a new cautious adaptation mechanism for IoT
systems; (ii) a process to instantiate the proposed approach
and (iii) two open source exemplars of the analysed system,
one with a broker communication and the other one with a
real IoT middleware, that can be reused and extended by the
community.

The remainder of the paper is structured as follows. Section



II introduces a motivating example. Section III details the
proposed approach, while Section IV explains the implemen-
tation of two exemplars of the motivating example using
different communication interfaces. Section V describes the
evaluation carried out, while Section VI discusses limitations
and a possible extension. The main related work are presented
in Section VII. Finally, Section VIII draws conclusions and
future work.

II. MOTIVATING EXAMPLE

Ross and Rachel are a couple that live in a smart home
equipped with several smart devices, like lamps, voice as-
sistants, and TVs, among others. Every night, they put their
daughter, Emma, to sleep in her bedroom. While Rachel sings
to make Emma sleep, Ross sets the baby monitor to check
baby’s health and sleep during the night. The data collected
is sent to a specific mobile app. When the app detects a
abnormality, it sends a notification to the parents’ smartphone,
but they could not see it, for being distracted by watching a
series on the streaming app of the smart TV, for example.
In this case, the app can forward the notification to the
TV, interrupting the streaming transmission and alert Emma’s
parents that she needs care.

In the above example, the IoT system-of-systems is com-
posed by the baby monitor device, the smartphone app that
receives and shows the baby’s health data, and the smart TV.
We assume that the user provides permission for the app to
send messages to the smart TV that are displayed in its screen.
The global requirement of this SoS is to increase the chances
of an emergency notification, such as no breathing detection
or intense crying detection, to be seen by parents. Hence, the
baby can be assisted when (s)he needs the most.

The devices of this IoT SoS interact by exchanging mes-
sages via a communication interface, which can be either a
middleware or a broker. The former is a software layer that
manages the heterogeneous smart devices, their functionalities
and their interaction [16], while the latter performs a publish/-
subscribe communication, collecting data from a publisher IoT
device and sending it to the corresponding subscribers [17].

Messages coming from the baby monitor can be classified
as normal, meaning that the baby is fine, or critical, indicating
that something is not right, such as the child is crying or not
breathing for more than five seconds. The first ones are not
alerted when received by the smartphone and are only visible
when the user access the application. However, critical mes-
sages generate a smartphone notification (usually accompanied
by a sound and/or a vibration alert) that requires a confirmation
within a time limit (ten seconds, in this case), otherwise
the baby monitor device will keep sending those messages.
When the confirmation is not sent, the Baby Monitor app
forwards the critical message to the smart TV and waits for the
acknowledgment of TV that the message has been displayed.
When that happens, it sends the confirmation to the baby
monitor device, thus making it stopping sending the critical
messages.

The smart TV has a feature that allows messages, which
can come from either other devices or the TV itself, to be
shown while it is displaying a channel. However, it also has
a local requirement of blocking messages to be displayed
when it is running third-party applications, such as a movie
streaming application. As the TV was not designed to work
in conjunction of a baby monitor, it did not provide the
feature of unblocking the critical messages that come from the
baby monitor app and, for this reason, may not be willing to
change its behaviour. Consequently, a conflict emerges in the
exceptional scenario in which the smart TV is in the same IoT
environment of the baby monitor device and its corresponding
mobile app, which tries to forward the notification to the TV,
but it is blocked. Therefore, in this example, the smart TV
can be seen as a defiant component [15]. In this example,
the adaptation action could be forcing the TV to stop the
application such that the critical messages forwarded by the
smartphone can be displayed, therefore increasing the chance
of the baby to be assisted.

In a general way, a possible cautions adaptation solution for
exceptional scenarios in a IoT SoS consists on a mechanisms
that monitors the messages exchanged by the devices, detects
when an exceptional scenario occurs and then executes the
necessary adaptation actions. Note that this solution is only
applicable for the identified exceptional scenario, i.e., it does
not interfere in the original behaviour of the smart devices. In
the next section we present a way to implement that approach.

III. THE PROPOSED IOT CAUTIOUS ADAPTATION
SOLUTION

A. Solution Overview

Our solution consists of introducing three new components
into the IoT SoS: Configurator, Observer and Effector, as
shown by Figure 1. To define the approach, we made the
following architectural decisions: (i) implementing the MAPE-
K feedback loop, since it is the most common approach for
promoting adaptation in SaS [8]; (ii) dividing the MAPE-K
activities between the new components; and (iii) using the
device’s API to adapt the defiant component, as it is a common
feature on IoT devices.

Regarding the item (ii), the Observer component is re-
sponsible for watching the system scenarios; thus, it runs the
monitoring and analysis phases. The Effector is responsible for
applying the adaptation actions on the necessary components,
hence, it performs the planning and executing activities. Both
components run collaboratively and in parallel, therefore, they
depend on each other to work effectively. Finally, to a certain
extent, we can say that the Configurator plays the role of the
knowledge base, since it contains the information about the
adaptation strategies set up at SoS initialization, even though
it is not updated at runtime.

The Configurator is responsible for providing the necessary
information to run the system and to load the Observer and
the Effector. Technically, it is a Restful web service that uses
the HTTP protocol and receives the input data from the user
in a JSON format. This data is divided into three parts: (i)



communication interface; (ii) scenarios; and (iii) adaptation
actions.

Fig. 1: Solution overview in IoT systems

The communication interface block contains the information
about the interface that the devices use to communicate to
each other, such as the type of the interface (broker or
middleware), the address where it is hosted and authentication
data. Depending on the type of interface, other parameters
may be added in order to define communication logic, protocol
definition, among others.

In the scenarios area, the user inputs the message structure
that defines both normal and exceptional scenarios. The struc-
ture can be a single or a sequence of messages. In addition,
each exceptional scenario of the system must be represented
by a name.

Finally, in the adaptation part, the user defines both the
adaptation actions and the actions to return the system original
behaviour. To implement the adaptation actions, we follow a
common practice in IoT systems that is using the devices’
API to interaction. Therefore, it is informed the method to the
API request, the endpoint (url) and the request body. For each
set of actions, they also must be represented by a name that
matches to the specified exceptional scenario.

To monitor the system, the Observer gets the messages that
are exchanged via the used communication interface. It knows
the normal and exceptional scenarios of the SoS by accessing
this information that has been loaded from the component
Configurator. Thus, for each exchanged message, it compares
them to the defined scenarios in order to analyse whether
an adaptation is needed, i. e., if an exceptional scenario is
occurring.

Likewise the Observer, the Effector also accesses the in-
formation loaded by the Configurator, but now aiming at
obtaining the sequence of actions that were planned to execute
the adaptation. Thus, every time an adaptation is required,
it executes the actions for the exceptional scenario that is
occurring.

In summary, the Observer detects when an adaptation is
required and triggers the Effector to do it. Then, when the
system returns to the normal scenario, the Effector is triggered
again to return the defiant component to its original behaviour.

B. Solution Instantiation

Figure 2 presents the process with the steps necessary to use
our solution. It is divided into two phases: modelling solution,
which occurs at design time, and application of the cautious
adaptation, whose activities happens at run time. Firstly, it is
necessary to configure the JSON used by the Configurator. We
start by setting the communication interface parameters, fol-
lowed by configuring both normal and exceptional scenarios,
and then end up defining the adaptation actions. After that,
the user starts the system execution by sending a request to
the Configurator, which loads the Observer and the Effector
with the information provided. This finalises the design-time
phase.

Considering the runtime phase, the Observer connects to the
communication interface and starts monitoring the messages
exchanged by the devices. Since the scenarios are defined by
messages, the Observer keeps comparing each message re-
ceived to the defined exceptional scenarios to analyse whether
an adaptation is needed, so it will trigger the Effector to adapt
the system.

The Effector applies the modelled actions by sending a
request to the defiant component’s API. While the adaptation
is carried out, the Observer keeps monitoring the system
expecting that a normal scenario occurs. When this happens,
it will again send a request to the Effector, but now to apply
the actions that will make the defiant component return on its
original behaviour.

IV. EXAMPLE SIMULATION

To demonstrate our solution, two IoT environments were
created: one using a communication via broker and the other
one using a middleware to manage the devices. In both
cases, the devices were simulated using Flask2. All the im-
plementations are publicly available in our Github3. In this
section, we firstly explain how the simulations work using
the two different types of communication and, subsequently,
how the solution was developed using the previous described
components.

A. Simulation using broker

To simulate the approach that uses a broker, we used
RabbitMQ4, an open-source broker with resources like low
rate of messages loss and performs communication using
AMQP (Advanced Message Queuing Protocol), which uses
a publish/subscribe architecture to provide reliability [18].

We implemented a web page that shows at real time the
messages exchanged by the devices, as depicted by Figure
3. The interface provides buttons to interact with each device,
being able to start and stop. Considering the smartphone, there
is a possibility to confirm a notification, if any, while the smart
TV can be blocked by the user.

Before the communication execution begins, the broker
must be configured with exchanges, queues and routes settings

2https://flask.palletsprojects.com/en/1.1.x/
3https://github.com/BabyMonitorSimulation
4https://www.rabbitmq.com/



Fig. 2: Solution instantiation process

Fig. 3: Interface of Baby Monitor simulation using broker

according to the AMQP protocol. In this example, an exchange
was defined to be responsible for routing the messages to the
correct queues. In addition, each device has its own queue,
which consumes the messages that it receives and that is linked
to a route. Thus, a message is sent by a publisher object and
delivered to the subscriber’s queues.

B. Simulating using a middleware

Fig. 4: Execution flow on Dojot platform

For the simulation with a middleware, we used Dojot5, an
open-source platform that helps developing IoT ecosystems.
It provides the devices’ management, creates data stream and
rules for the system, and other features to help developers
building IoT systems using best practices. Each device (baby
monitor, smartphone and smart TV) was implemented as
servers that provide APIs to interact with them.

To make the Dojot working as expected, we must define
each device with a virtual representation inside it, so it will
be able to receive and manage the data. Also, from the
virtual devices, we define a flow that the data will follow.
Each message sent from the device to the middleware uses
MQTT (Message Queuing Telemetry Transport) protocol. For
the messages coming from the middleware to the device, the
HTTP is used. Furthermore, to help the Dojot identifying
who the message is for, its structure includes labels with
information about where it comes from and where it is going
to.

To simulate the Baby Monitor, we created the flow pre-
sented in Figure 4. Any interaction between the devices is
made through the Dojot using the virtual devices. Thus, the
middleware reads the messages received by the virtual devices
and sends them to the proper simulated device, according
to what has been defined in the flow. For instance, when a
message is received by the virtual baby monitor, it checks if it
is coming from the baby monitor device (baby’s data) or from
the smartphone (confirmation). In the first case, it sends the
data to the smartphone device, while in the other one it sends
to the baby monitor device. This way, the data in the Dojot
and in the simulated devices remains synced.

C. Solution implementation

Firstly, we developed the Configurator, which provides an
API that has an endpoint to receive the configuration that
comes as a JSON. When the request is received, it uses
methods to separate the information destined to the Observer
and for the Effector. Each component also has endpoints to
configure them, so the Configurator sends the configuration
information to them using these endpoints. Additionally, the

5http://www.dojot.com.br/



Effector provides routes to request an adaptation and to return
to normal behavior. These routes call the methods that execute
the adaptation strategies configured and they are used by the
Observer.

Fig. 5: Configuration JSON of broker communication

After that, the Baby Monitor system was modelled. Firstly,
we modelled the normal scenario by normal messages coming
from the baby monitor, that is, messages of type status. At the
exceptional scenario, “tv blocked” was defined as an order
of receiving messages. Initially, it is sent a notification type
message to the smart TV and then a message from the TV
containing the information that it is blocked is sent. To adapt
the “tv blocked” scenario, a POST request must be sent to
TV’s API with the body indicating that the lock must be false.
To return the system to the previous state, the same request
is sent but with the body indicating the lock must be true.
Thus, this modelling corresponds to the knowledge that the
components have about the system.

Figure 5 depicts an example of a JSON configuration file
to the broker communication interface. As our implementation
used RabbitMQ, we use the API that it provides to connect
to it (lines 1-7). When the Observer establishes a connection,
it makes a request looking for all the routes associated to the
exchanged defined in the configuration. Then, the Observer

creates its own queue and links it to the routes found. As for
the scenarios, they were defined indicating the topic where
they are published (which corresponds to the routes), the
type they have and the body message (lines 8-18). Thus, the
Observer compares each message received with them, looking
on the route it came from and the type it is. Therefore, the
Observer runs as a thread to keep receiving the messages, so
it can monitor and analyse them.

By the moment the Observer gets the sequence of messages:
(i) messages going to the TV of type notification; and (ii)
messages coming from the TV with the block key stated as
true, it sends a request to the Effector to adapt the component
indicating that the scenario “tv blocked” is happening. Then,
the Effector applies the actions defined (lines 29-37), i.e., it
sends a request to the TV’s API with the lock element set
to false. As an adaptation was required, when the Observer
detects that the normal scenario is running again, it sends
a request to the Effector to return the defiant component to
original behaviour, that is the “tv blocked” scenario. Thus,
the Effector sends a request to TV’s API, setting the lock
status to true again, as defined on lines 38-46. In summary,
the Effector acts when it is triggered since it is responsible for
the adaptation strategies.

Considering the middleware, the configuration is very sim-
ilar. To connect with Dojot, we used a socket connection,
so that the Observer receives in real time each message
exchanged inside the middleware. Also, we defined a topic
instead of an exchange, to get messages from the Baby Moni-
tor system. To define the scenarios, we defined the destination
of the message, instead of the route, as it is present in the body
of the message. The adaptation actions and the interaction
between the Observer and the Effector work in the same way.

V. SOLUTION VALIDATION

The validation was done through a proof of concept that
intended to show whether the approach is viable in an IoT
context. We sought to evaluate the following research question:

RQ: Does the approach contribute to increase the
chances of a critical message being seen by the parents?

To perform the validation, we used the two simulation tools
described in the previous section considering three possible
scenarios, based on the exceptional situation described in Sec-
tion II. Each scenario consisted of a different probability of the
defiant component being blocked to receive critical messages
and were defined as favorable, medium and critical, in which
the TV has 10%, 50%, and 90% of chance of being blocked,
respectively.

For each scenario, we performed three tests, called T1, T2
and T3, in which we varied the chances of a confirmation
of the critical message being seen by the parents on their
smartphone on 90%, 50% and 10%, respectively, which in-
dicates when there is no need to forward the message to the
TV. For each combination of scenarios, which encompasses
the probability of the messages being sent to the TV and
probability of the TV being blocked, 100 executions were



Fig. 6: Experiments Results

performed, half of them with the proposed solution and the
other half without the solution. We consider an execution
as successful when the critical message sent from the baby
monitor device to the smartphone is forwarded to the TV and a
confirmation that the message has been displayed is sent back,
otherwise the execution is said to be failed. The probability
values were inserted directly into the source code. Finally,
we run the tests with both the broker and the middleware
simulation.

The experiment results can be seen in Figure 6. Considering
the experiments using broker and without our solution, we can
see that, for a favorable scenario, there was failure only in
cases where the parents were more inattentive (the notifications
were seen only 10% of the times), when 8% of the critical
messages were lost. Considering the experiment with the
middleware, the failure rate increases as the parents see less
the notifications, having also 8% of the critical messages being
sent. For the same scenario, but now using our proposed
solution, for both types of simulation, 100% of the executions
were successful. In addition, we can see that the Observer and
Effector components were triggered in only 10% of the times
(maximum).

As expected, the more serious the scenarios become, the
more important is our solution to achieve the global require-
ment of the SoS. For example, in the medium and critical
scenarios, in the worst situation, there was a failure rate of 40%
and 84%, respectively, for the simulation with the broker, and
52% and 84%, respectively, for the middleware counterpart.
This represents great risk to the baby’s health.

By analysing the experiments with the components in-
tervention, we can see that, regardless of the scenario and
the communication interface, there was no block of critical
messages by the TV, which means that whenever the baby
needed assistance, the parents were able attend to him/her.
Furthermore, still considering the worst case of the medium
and critical scenarios, the proposed components intervened in
54% and 82% of the times in the simulation with the broker,
respectively, and 48% and 70% of the times in simulation
with the Dojot middleware. Therefore, it is noteworthy that
the proposed approach has a great influence on the success of
the IoT SoS global requirement.

By comparing the tests of the simulation with the broker
and with the middleware, we can see that the results were
very similar, being the differences caused by the randomness
of the probability distributions of each scenario. This shows
that our solution can work well considering both types of
communication interface, wherefore we can answer the posed
research question affirmatively, i.e, the approach does con-
tribute to increase the chance of a critical message being seen
by the parents.

VI. DISCUSSIONS

The validation showed that our approach contributed to
achieving the SoS global requirement. This section discusses
some limitations and new opportunities to apply this work
when there are more defiant components.

Limitations and Threats to Validity. Firstly, although the
good results, it is not possible to generalise the solution,
since the tests were based on a specific example and executed
through simulations. Even though we have used a real IoT
middleware, the devices were simulated. That factor may affect
the results, as it may contain some variables that were not
considered. Moreover, the tests were performed using random
values that may not reflect what happens in the real life.

It is important to highlight that our approach is not designed
to reveal all conflicts in an IoT environment, since the conflicts
are particular to the exceptional scenarios caused by the SoS
composition. To help that task, there are other approaches,
such as a process for modelling adaptation scenarios for SoS
[19].

Regarding the validation, the experiments were performed
only considering variations of the same scenario of the Baby
Monitor system and the smart TV. Therefore, for other scenar-
ios involving other components, new validations are necessary
to evaluate the approach.

In the simulations, differences between the execution of
the two types of communication were evidenced. For the
simulation using broker, due to the execution in a local host,
the availability of resources and communication was more
stable. Regarding the Dojot middleware, there was a perceptive
delay on attending requests because it is hosted on the Cloud.
Therefore, the simulation using the broker obtained better



Fig. 7: Voice Assistant JSON Configurator

performance due to is local host structure. On the other hand,
the simulation using Dojot is closer to a real world application,
since it is a concrete platform for IoT system development.

New Defiant Component. In the motivating example, we
considered only one defiant component and one exceptional
scenario. Nonetheless, in a more realistic IoT environment,
there can be other devices for which the Baby Monitor app
could forward the notification to. For instance, consider that
in the smart home of the analysed example there is a voice
assistant device that could also receive the critical messages
not seen by the parents and then speak them out to alert that the
baby needs help. Assume that the voice assistant has a “Do not
disturb” mode, which disables notifications. Then, following
the same rationale applied to the smart TV in Section II, we
can say that the voice assistant is also a defiant component
in the exceptional scenario of alerting the parents about the
critical condition of the baby.

This new scenario could be configured in the JSON file that
is inputted to the component Configurator as shown in Figure
7. It can be seen as an extension to the JSON file shown
in Figure 5 to increment the original motivating example
with a new defiant component. Note that lines 2, 11 and 17
represent the pieces of code shown in lines 12-18, 20-23, and
25-28, respectively, of Figure 5. Lines 3-9 defines this new
exceptional scenario, which occurs when the smartphone app
forwards a critical message (type notification) to the voice
assistant. Lines 12-15 describe the actions that should be taken
to adapt the behaviour of the new defiant component. In this
case, turning the “do not disturb” mode to off. Lately, lines
19-21 represent the actions to return the voice assistant to its

original “do not disturb” mode.
The Observer detects the exceptional scenario that is hap-

pening (whether regarding the smart TV or the voice assistant)
by verifying the message structure that has been sent. In
case where both devices are available in the smart home, the
solution can apply a prioritization strategy to decide which
defiant component should be adapted. For instance, a baby-
crying message may be less important than a no-breathing
one. In the first case, the Observer may decide to adapt only
one of the defiant components, while in the second one both
components should be adapted to maximize the chance of the
baby being assisted. This prioritization is a property that is also
addressed in the original cautious adaptation proposal [15].
After the correct exceptional scenario has been identified, the
Effector applies the corresponding adaptation actions.

VII. RELATED WORK

Self-adaptive IoT systems have been addressed recently.
Focusing on architecture-based adaptation, MARTAS is a
model that uses probabilistic models in the feedback loop,
where the adaptation decision is based on the quality estimate
of each configuration of adaptation available, and provides
verification that is suitable for the resource constraints that
are present in IoT systems [9]. In [10] the authors propose a
control architecture model that uses multiple MAPE-K loops
that interact and provide a decentralized adaptation. That
architecture model aims at providing autonomic capabilities
and decentralized control to smart homes.

The previous approaches propose a way to use feedback
loops to perform a better adaptation of the IoT devices.
Similarly to our work, those studies focus on the devices
configuration as the target of the adaptation. However, they
use the architecture of the system to apply the adaptation,
while in this work we use the devices’ API.

FIoT is a framework that uses artificial intelligence based
agents to provide IoT environments that can be managed and
recognise smart objects [11]. For each device, an adaptive
agent is set and, for the collection of devices, there is an
observer agent whose job is to check the environment and
if an adaptation is needed. Those agents actions are very
similar to the ones proposed in this work, but the main
difference is that they set an agent to an individual device,
while our agents (Observer and Effector) work over the whole
system. Also, their adaptation focuses on the environment
management, while in this work we aim at attending the SoS
global requirements.

Dealing with queuing messages and real time process, in
[12] the problem of queues bottleneck in real-time system pro-
cess, which can decrease the system performance, is addressed.
Similarly to us, the authors also observe the message exchange
to perform adaptation. However, the messages are the adap-
tation target, whereas in this work, they are used to verify
the occurrence of exceptional scenarios and, consequently, the
need of adaptation.

Motivated by the difficulties faced by IoT engineers on
identifying exceptional problems that can appear at runtime,



in [13] three approaches for self-adaptive IoT systems that are
linked to infrastructure aspects, like network interference and
bandwidth, are presented. Differently, we perform behavioural
adaptations that may not related to the system hardware
resources.

In [14] it is proposed an approach to adapt the message flow
of a SoS through a server. Similarly to it, we also use the data
traffic to adapt the systems, but while their adaptation target
is the server, in this work we adapt the devices

At last, but not least, none of the aforementioned approaches
address the adaptation of defiant components in IoT systems.
Therefore, our solution brings a novel contribution for this
topic.

VIII. CONCLUSION

In this paper, we proposed a new cautious adaptation
approach of IoT defiant components that consists of adding
three new components, called Configurator, Observer and
Effector, into the system. The Configurator sets the necessary
parameters to run the system, while the Observer is responsible
for monitoring the messages exchanged among the devices and
triggers the Effector to perform the adaptation actions when
an exceptional scenario occurs.

To evaluate our solution, we executed two simulations
considering a smart home example, one using a message
broker and another one using a real IoT middleware called
Dojot. In both cases, the experiments demonstrated that our
approach helps the system-of-systems to achieve its global
requirement. We also discussed how to deal with a new defiant
component introduced in the example.

We are aware that the tests carried out in this work may not
fully demonstrate its effectiveness. Thus, we intend to make
more exhaustive and efficient tests to validate the proposed
solution. Also, as future work, we intend to extend the example
with new exceptional scenarios and apply the solution to other
IoT systems with different architectures. Finally, we also plan
to investigate uncertainties in the context of IoT system-of-
systems and propose new adaptation mechanisms.

IX. DATA AVAILABILITY

All data and source code related to the implementation of
this work are publicly available at the links mentioned in the
footnotes throughout the paper.

X. ACKNOWLEDGMENTS

This work is partially supported by CNPq/Brazil under
grant Universal 438783/2018-2 and Funcap/Brazil under grant
UKA-0160-00005.01.00/19.

REFERENCES

[1] A. Zaidan, B. Zaidan, Q. M. Yas, O. S. Albahri, A. Albahri, M. Alaa,
F. Jumaah, M. Talal, K. L. Tan, W. Shir, and C. K. Lim, “A survey on
communication components for iot-based technologies in smart homes,”
Telecommunication Systems, vol. 69, pp. 1–25, 2018.

[2] M. Soliman, T. Abiodun, T. Hamouda, J. Zhou, and C.-H. Lung,
“Smart home: Integrating internet of things with web services and
cloud computing,” in 2013 IEEE 5th international conference on cloud
computing technology and science, vol. 2. IEEE, 2013, pp. 317–320.

[3] M. W. Maier, “Architecting principles for systems-of-systems,” Systems
Engineering: The Journal of the International Council on Systems
Engineering, vol. 1, no. 4, pp. 267–284, 1998.

[4] H. Cadavid, V. Andrikopoulos, and P. Avgeriou, “Architecting systems
of systems: A tertiary study,” Information and Software Technology, vol.
118, p. 106202, 2020.

[5] T. Viana, A. Zisman, and A. K. Bandara, “Identifying conflicting
requirements in systems of systems,” in 2017 IEEE 25th International
Requirements Engineering Conference (RE), Sep. 2017, pp. 436–441.

[6] Lu Tan and Neng Wang, “Future internet: The internet of things,” in
2010 3rd International Conference on Advanced Computer Theory and
Engineering(ICACTE), vol. 5, 2010, pp. V5–376–V5–380.

[7] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee,
J. Andersson, B. Becker, N. Bencomo, Y. Brun, B. Cukic,
G. Di Marzo Serugendo, S. Dustdar, A. Finkelstein, C. Gacek,
K. Geihs, V. Grassi, G. Karsai, H. M. Kienle, J. Kramer, M. Litoiu,
S. Malek, R. Mirandola, H. A. Müller, S. Park, M. Shaw, M. Tichy,
M. Tivoli, D. Weyns, and J. Whittle, Software Engineering for
Self-Adaptive Systems: A Research Roadmap. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 1–26. [Online]. Available:
https://doi.org/10.1007/978-3-642-02161-9 1

[8] R. Calinescu, S. Gerasimou, K. Johnson, and C. Paterson, “Using
runtime quantitative verification to provide assurance evidence for self-
adaptive software,” in Software Engineering for Self-Adaptive Systems
III. Assurances, R. de Lemos, D. Garlan, C. Ghezzi, and H. Giese, Eds.
Cham: Springer International Publishing, 2017, pp. 223–248.

[9] D. Weyns, M. U. Iftikhar, D. Hughes, and N. Matthys, “Applying
architecture-based adaptation to automate the management of internet-
of-things,” in Software Architecture, C. E. Cuesta, D. Garlan, and
J. Pérez, Eds. Cham: Springer International Publishing, 2018, pp. 49–
67.

[10] P. Arcaini, R. Mirandola, E. Riccobene, P. Scandurra, A. Arrigoni,
D. Bosc, F. Modica, and R. Pedercini, “Smart home platform supporting
decentralized adaptive automation control,” in Proceedings of the 35th
Annual ACM Symposium on Applied Computing, 2020, pp. 1893–1900.

[11] N. M. do Nascimento and C. J. P. de Lucena, “Fiot:
An agent-based framework for self-adaptive and self-organizing
applications based on the internet of things,” Information
Sciences, vol. 378, pp. 161 – 176, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020025516313664

[12] P. Chindanonda, V. Podolskiy, and M. Gerndt, “Metrics for self-adaptive
queuing in middleware for internet of things,” in 2019 IEEE 4th Inter-
national Workshops on Foundations and Applications of Self* Systems
(FAS*W), 2019, pp. 130–133.

[13] D. Weyns, G. S. Ramachandran, and R. K. Singh, “Self-managing
internet of things,” in SOFSEM 2018: Theory and Practice of Computer
Science, A. M. Tjoa, L. Bellatreche, S. Biffl, J. van Leeuwen, and
J. Wiedermann, Eds. Cham: Springer International Publishing, 2018,
pp. 67–84.

[14] R. Bustamante and K. Garcés, “Managing evolution of api-driven
iot devices through adaptation chains,” in Proceedings of the XXIII
Iberoamerican Conference on Software Engineering, CIbSE 2020, Cu-
ritiba, Paraná, Brazil, November 9-13, 2020. Curran Associates, 2020,
pp. 85–95.

[15] P. H. Maia, L. Vieira, M. Chagas, Y. Yu, A. Zisman, and B. Nuseibeh,
“Cautious adaptation of defiant components,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 974–985.

[16] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, “Middle-
ware for internet of things: A survey,” IEEE Internet of Things Journal,
vol. 3, no. 1, pp. 70–95, 2016.

[17] S. Sen and A. Balasubramanian, “A highly resilient and scalable broker
architecture for iot applications,” in 2018 10th International Conference
on Communication Systems Networks (COMSNETS), 2018, pp. 336–341.

[18] N. Naik, “Choice of effective messaging protocols for iot systems: Mqtt,
coap, amqp and http,” in 2017 IEEE International Systems Engineering
Symposium (ISSE), 2017, pp. 1–7.

[19] M. Maciel, P. H. Maia, F. C. M. B. Oliveira, and F. Maciel, “Adore:
An adaptation-oriented requirement modeling approach for systems
of systems,” in Proceedings of the XXXIII Brazilian Symposium
on Software Engineering, ser. SBES 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 166–171. [Online].
Available: https://doi.org/10.1145/3350768.3353814


