
Security Assessment of Systems of Systems

Miguel Angel Olivero
Jstituto di Scienza e Tecnologie

dell 'Informazione
Consiglio Nazionale della Ricerche

Pisa, Italy

Antonia Bertolino Francisco Jose Dominguez-Mayo
Computer Languages and Systems

Department
Universidad de Sevilla

Seville, Spain
fjdorninguez@us.es Web Engineering and Early Testing

Research Group

Jstituto di Scienza e Tecnologie

dell 'Informazione
Consiglio Nazionale della Ricerche

Pisa, Italy
antonia.bertolino@isti.cnr.it

Univers idad de Sevilla

Seville, Spain
rniguelangel.olivero@isti.cnr.it

Maria Jose Escalona
Computer Languages and Systems Department

Universidad de Sevilla

Seville, Spain
rnjescalona@us.es

Abstract- Engineering Systems of Systems is one of

the new challenges of the last few years. This depends on

the increasing number of systems that must interact one

with another to achieve a goal. One peculiarity of Systems

of Systems is that they are made of systems able to live on

their own with well-established functionalities and re­

quirements, and that are not necessarily aware of the joint

mission or prepared to collaborate. In this emergent sce­

nario, security is one crucial aspect that must be consid­

ered from the very beginning. In fact, the security of a Sys­

tem of Systems is not automatically granted even if the se­

curity of each constituent system is guaranteed. The aim

of this paper is to address the problem of assessing security

properties in Systems of Systems. We discuss the specific

security aspects of such emergent systems, and propose

the TeSSoS approach, which includes modelling and test­

ing security properties in Systems of Systems and intro­

duces the Red and Blue Requirements Specification con­

cepts.

Keywords-Blue Requirements, Red Requirements,

Security Assessment, System of Systems

I. PROBLEM STATEMENT

Nowadays the term "System of Systems" (SoS) has
become a catchword to characterize the notion of a large
complex system made by the interconnection of a set of
independent and typically pre-existing constituent systems [I].
SoSs are not a novelty, actually, as their associated challenges
are acknowledged and studied at least since the early 90's, e.g.,
[2] [3]. However, with the growing pervasiveness of software
in all aspects of contemporary life, the huge computational
resources made available by the Cloud, and the ubiquitous
connectivity among the devices around us, the need and/or the
opportunity of using SoSs emerge in many domains,
oftentimes even without an explicit recognition of the SoS as
such. The attractiveness of SoS architectures descends from
the fact that the SoS collective behavior can achieve goals that
would be infeasible by having the constituent systems working
in isolation. In the literature such collective goals are referred
to as the SoS missions. Explicitly identifYing and modeling a
SoS mission may provide key guidance for SoS design and
validation. In fact, a mission conceptual model can help in

Haria Matteucci
Jstituto di Informatica e Telematica
Consiglio Nazionale della Ricerche

Pisa, Italy
ilaria.rnatteucci@iit.cnr.it

representing and relating the main elements of the SoS
emergent behavior, such as, among others, the involved tasks
and constraints, the mission trigger, who are the executor
systems, and so on [4].

In this direction, after having identified a gap in the
literature about how missions should be modeled, Silva et al.
have recently proposed the mKAOS mission-oriented
language and approach for modeling and designing SoS [5].
However, the problem of modeling and addressing non­
functional properties (NFPs) of SoS [6] remains largely
unexplored. While a mission success may be affected by poor
resulting global performance, security, or other NFPs, such
non-functional aspects are hardly measurable or predictable in
a SoS, due to their uncertain and dynamic nature.

In this paper, we focus on security of SoSs: security is a
non-compositional property so that, even if the individual
constituent systems are secure, their interoperability may come
together with new threats to the SoS security as a whole [3].

According to Ki-Arie et al. [7], there is yet "no clear
guidance or limited tool-support integrating different
modelling elements to visualize and assess the SoS security
consequences". As surveyed in [8], testing provides a widely
applied and practical means to assess a system security and
many techniques have been proposed, but to the best of our
knowledge there yet exists no specific approach for SoS
security testing.

Summarizing, our research aims at developing an approach
to assess security of SoS, named TeSSoS (Testing Security in
System of Systems). In this paper, we lay the scene for such
research, providing motivation and a plan of work, and a
preliminary outline of the TeSSoS approach under
development.

This paper is organized as follows: next section briefly
revises related work for modeling SoS, managing security, and
how security can be tested. Section 3 introduces a reference
scenario on which an attack involving some systems working
in a SoS is described. Section 4 frames our approach for
assessing the security. Finally, Section 5 draws the conclusions.

II. RELATED WORK AND BACKGROUND

In the literature about SoSs architecture, we find four
different SoS categorizations [9][10]: Directed,
Acknowledged, Collaborative, and Virtual. The difference
among such SoSs is how the constituent systems communicate

and interact one with another to accomplish the common SoS
purpose. In fact, the four architec�es can be d

_
istinguished

according to the answer to the followmg two quest10ns: (1) Are
there any central entity? ("Yes" for Directed and
Acknowledged, and "No", for the others)

_
and (2) _Do

guidelines about the interaction among constituents exist?
("Yes" for Acknowledged and Collaborative, and "No" for the
others). .

The four different architectures are affected by different
security issues depending on the responsi?ilities of syst�
owners. In Directed and Acknowledged architectures, the mam
responsibility is from the central entity owner, w�c�. is
responsible of coordinating the course of �e actiVities.
However in Collaborative and Virtual architectures the
responsible is not so well-defined. For Collaborative
architecture it can be assumed that the responsible is the system
that request for the joint work to accomplish the miss�on; on
the other hand, in the case of Virtual each system iS self­
responsible, with the disadvantage of not having explicit
collaboration from other systems side to support a common
security policy. For the reference scenario, we are in this la�er
case because constituents are doing joint work without bemg
conscious of this.

There exists work in progress for modeling these different
SoS architectures based in Goal Oriented Requirement
Engineering (GORE) [11], known as mKAOS [5]. This
modeling language is an extension of KAOS/SySML [12],
which is a language provided by the Object Management
Group, (OMG).

In mKAOS each constituent system in a SoS is assigned a
set of missions to accomplish, in the understanding that a
mission is an objective that is carried out by two or more
constituents. In this mKAOS language, the functionality of the
whole system can be described as the sum of all joint functions
of the systems. However, mKAOS does not support the
representation of non-functional requirements . so far. N�n­
functional requirements, and thus the representation of secunty
requirements in the SoS, is still a pending work in the field. In

particular, additional studies addressing security in the SoS
according to its architecture and its validation through some
test cases are needed.

To the best of our knowledge, there is not so much recent
literature about security in SoS. Existing studies in SoS context
are mainly related with risk evaluation [13] inste�d of the
security requirements. Security is of course a topic largely
addressed in isolated and distributed systems. These works
outline some techniques that are used to manage the security
in software system including models like CORAS, Attack
Tree Misuse cases, among others [14][15][16]. They help in
earl; phases in representing the assets, vulnerabilities,
weaknesses and attackers that the system may have. In this
work we introduce an approach that aims to model security
requirements for SoS for each So� archi�cture. . . .

Regarding to testing, according to i.ts �efrmtion, i� �e
dynamic verification of a program analyzmg if the �ehavio� iS
as expected on a finite set of test cases. Secunty testmg
techniques are used to guarantee that security mech�sms are
implemented as expected, avoiding intended and unmtend�d
malicious behaviors. Security testing of a system focuses m
testing security requirements and verifying

_
sys�em co�pli�ce

with properties like authentication, authonzation, avallabihty,
confidentiality, and non-repudiation. In our approach we
include testing for the SoS covering the vulnerabilities that ru:e
not only from the specification of a single system, but of therr
joint work.

III. REFERENCE SCENARIO

Considering a real scenario, we would like to analyze the
attack against Mat Honan [17]. This journalist had a personal
blog, a twitter account, an amazon account as well as s�v�
email addresses, that we consider as constituent systems m his
personal virtual SoS.

Honan had an enemy that wanted to delete all his tweets.
Despite the attacker knew the Twitter username, Honan had a
strong enough password. The attacker started to look for some
relevant data that could help him in gaining access. At this time
the attacker went to Honan's personal blog and read the whois
info. This disclosed some personal information like email
address, postal address and phone number. Attac�er tried then
to go into this email account, supported by Gmall. Howeve�,
once more, Honan's password was strong enough. Gmall
account used the reset password feature, that exposed another
email address for recovery. This second email address was
supported by iCloud. The attacker used again the recover-my­
password function. This time the recovery method was not
another recovery email, but to insert some digits of Honan's
credit card. At this juncture, the attacker had no more available
sources of information. However, the attacker started thinking
where they could find credit card data and ended by focus�g
Amazon. Recovering the password from Amazon website
required to use an email address; this time �ey decide� to use
social engineering and made a phone call rmpersonatmg Mr.

Honan. In a frrst call the attacker used the personal data they
had got from the whois to impersonate Mr. Honan and asked
for adding a new credit card to Honan's Amazon account. The
Amazon Service Desk did not notice anything strange and
added this new and fake credit card. In a second call, using
social engineering again, the attacker requested for password
reset. To do so, the Service Desk asked to the pseudo Mr.

Honan to say provide some digits of a credit card, and the
attacker used the fake credit card they gave in the previous call.

At this point the attacker had enough to attack everything.
They could enter Amazon and see Mr. Honan's

_
credit card

number. Used this info to reset the password of iCloud and
login. With the iCloud email they could then reset the Gmail
password and once they were inside the Gmail inbox use the
restore password of Twitter to delete every tweet.

What this true story teaches us is that, despite every system
in the Mr. Honan SoS was secure per se, the connection
existing among these systems involved a set of insecurities that
promoted the attack.

IV. CONTRIBUTION

The goal of our approach, named Testing for Security in
System of Systems, (TeSSoS), is to design security
requirements models in the target SoS and produce a set of test
cases that help in evaluating the security of the SoS.

Security assessments are designed to measure an
information system according to some criteria and seek
potential security weaknesses. In this meaning, to assess the
security of a SoS is to evaluate the security of the process that
systems share when doing joint working to reach goals that
these systems cam10t reach by their own.

TeSSoS takes the attacker perspective to discover security
flaws and propose new defensive features to developers.
Common cyber-attacks have five stages [18]: Reconnaissance,
Scan, Gaining Access, Maintain Access and C�earing Tracks.

An attack begins with the reconnaissance, t.e., the attacker
gathering data about the SoS. This is important because the
attacker needs to be sure that the risks involved with the attack
are worthy for the benefits of perpetrating such attack.

Once the attacker has decided if attacking the company
system is worthy enough, they move to scan. When the
attacker starts scanning, they start discovering services, public
IPs, and vulnerabilities, including social engineering.
Attackers could consider even external services or systems,
conforming their own SoS. When an attacker has designed an
attack vector according to the vulnerabilities discovered, they
can start to gain access. By exploiting the vulnerabilities found
the attacker may successfully get into the SoS by trespassing a
system through an existing vulnerability. After the attacker can
access the system, they must maintain access by generating
additional backdoors in case their initial accesses get patched
and to avoid other attackers to kick them. Finally, the attacker
begins clearing tracks to avoid get caught by forensics.

To avoid attacks to SoS succeed we introduce TeSSoS. The
approach begins by discovering the SoS to be secured and
helps analysts in finding threats and defining security features
to enhance the security and test its correct development. The
stages that comprises this approach are: SoS Discovery, Red
Requirements Specification, Blue Requirements Specification,
Security Implementation, and SoS Evaluation and Validation.
In cyber-warfare, there are two teams: Red Team, responsible
of identify vulnerabilities and find security holes, and Blue
Team, responsible of finding and patching vulnerabilities.
These names inspired us for the names of Red Requirements
Specification and Blue Requirements Specification.

A. SoS Discovery

We start with SoS Discovery to discover what we are trying
to secure. This stage, carried out by SoS analysts, focuses on
producing a model that comprises the SoS. Since we need to
discover each potential entry point an attacker could use, this
is one of the most important stages. This SoS model helps in
considering every constituent as well as the architecture that
supports it. For each constituent we need to know what its
operational capabilities and the handled data model are.
Attacks could be also perpetrated against the database
provider, our cloud service provider, and any digital provider
on which we trust. To consider every perspective from an
attacker, we must also consider third parties' systems and
humans that are involved as soon as we are delegating on them
our success, but also our failure. At this point, we have enough
information about the architecture that supports the SoS.

The diagram for representing the SoS can be done by using
mKAOS [5] diagram model that helps in knowing what we can
consider the good and correct behavior. This is useful at the
time of analyzing defenses because it allows us to observe if
there is some strange or bad behavior as trace of an attack. The
mKAOS model should be performed by an analyst jointly with
a security expert.

Considering that SoS are geographically distributed and
owned by different companies, for a full mKAOS model,
collaboration among each constituent system owner is needed.

To balance the ratio of effort and cost to outcome, the
assessment of the security for our assets starts by defining the
scope. The scope must describe which attack are we defending
from. It is needed to analyze what is the most dangerous threats
for us, and thus develop most efficient and effective defenses
for these ones. Once we have decided which are our most
valuable assets and the most dangerous threats, we must
determine potential attack vectors.

It is not always clear who is doing this. In Honan case
which is a virtual SoS, he may be aware of potential attack and
do by himself, or with guidance of an expert. The SoS of Mr.

1 https://cucumber.io/docs/reference#gherkin

Honan could include which data is being shared, which
systems are connected by any trace, what are the capabilities
of each one, etc.

B. Red Requirements Specification

During the Red Requirements Specification, security
analysts take the role of an attacker and try to find
vulnerabilities by analyzing each constituent system and
shared data among them. In those constituents for which we do
not have additional information, we must consider it as a black­
box and discover the vulnerability as a real attacker would do,
just by analyzing the behavior of the systems when it is
perturbed with some inputs [19].

The potential attacks found can be written in Gherkin
language' which is used for having test cases that, additionally
in our case, simulate these attacks. These attacks, designed by
security or penetration testers, could be written in templates
like these:

Feature: Attack action
Scenario: Using {threat} over {vulnerability}
GIVEN {attacker}finds{vulnerability} in {asset}
WHEN {attacker} uses {threat}
AND {attacker} is targeting {vulnerability}
THEN {asset} is exposed

A set of attacks written as features can be summarized into
a Red Product Backlog that is used afterwards for designing
Blue Requirements Specifications. This product backlog is

useful for estimating the attack speed and eases the reading for
design defensives features.

Some criteria to consider when prioritizing Red
Requirements Specification could include the resources that
attacker needs, what makes the SoS so important to be
attacked, or how much effort is needed to succeed, among
others. These criteria are important because an attacker will
only use an attack in case they know their attack capabilities
are higher than defensive ones, and thus they can succeed.

In Honan case, every constituent system is working as a
black-box. Nevertheless, the attackers could still set up some
attacks exploiting delegation of responsibility and
sensitiveness of public data that could be subject to social
engineering attacks, e.g. each system whose login is made
through an email address is as secure as this email provider is;
or having several systems that individually do not expose
confidential data, when they are put together can reveal some
sensible data.

C. Blue Requirements Specification

To prevent the attacks identified during the Red
Requirements Specification, some countermeasures are
designed during the Blue Requirements Specification stage, so
the development team can implement them into the SoS.

One or more actions may be necessary to be protected
against each attacker feature in the red product backlog. These
defensive features written as User Stories [20] form the Blue
Product Backlog. User Stories, written by SoS analysts and
security analysts make it easier for developers and analyst of
constituent systems to understand and implement those
improvements into the constituents in the SoS. Honan's SoS is
fully virtual, and he cannot modify the processes of these
constituents. However, he could modify how these constituents
are connected and reduce the amount of personal data that is
publicly available to avoid being identified or tracked in case
any constituent become attacked.

Defending user stories could be written in a template like
this:

AS {role} I WANT TO {defensive action} TO {protection
against}

As result, a product backlog with Defensor user stories is
produced, summarizing the new security features to be
implemented. At the time of producing this product backlog, it
is important to give higher priority to user stories related to
those vulnerabilities that expose the SoS the most, or those that
could have a higher impact. This prioritization must be done
by a security expert instead of development team that may not
have such knowledge about security.

D. Security Implementation

In the stage of Security Implementation, different
development teams of different SoS use the blue product
backlog and encode new features that avoid attacks to be
perpetrated successfully. Since new development features are
written as user stories, the backlog can be used in agile
development methodologies at any sprint. Updates can also be
necessary to the operative systems, plugins, servers, etc. and
the security and privacy policies may need to be changed to be
more restrictive. Those blue user stories that apply to humans
may consist on training courses instead of coding
countermeasures.

E. SoS evaluation and validation

The last stage of TeSSoS is to validate if the security
measures have been developed properly according to Blue
Requirements Specifications. This validation must be carried
out by security experts trying to have success in the attacks
described in the Red Requirements Specifications using the
Gherkin language. Notwithstanding, this validation must also
consider the new security features that could have included
new vulnerabilities not existing before in the SoS. Letting the
security experts be creative and innovative as a real attacker
would do may help in discovering new attack vectors that were
not discovered at first sight.

If despite of the countermeasures, the security expert
succeeds in the attack, our defenses would have failed, and it
is needed to repeat the whole TeSSoS cycle again. Otherwise
security experts could ensure that the system is robust enough
to avoid the attacks that were considered. To continue being
protected, TeSSoS could be relaunched considering a broader
attack scope.

The evaluation in Honan's case would be to review a
checklist to be sure that there is not a huge dependence from a
single constituent to avoid an attack in cascade or confirm that
no sensitive data are publicly available to prevent
impersonation.

V. CONCLUSIONS

The contribution of this research is to provide an approach
for assessing the security for SoS named TeSSoS. This security
assessment takes the attacker perspective to discover security
flaws and propose development of new features. SoS needs
further research in this topic for providing mechanisms to
support the security requirements in this context.

Consequently, we introduce TeSSoS, our security
assessment approach. It is an ongoing work to assess the
security of SoS. Security of the SoS can be analyzed by
modeling security requirements from the attacker perspective,
describing the security features to be later developed and
generating relevant test cases. SoS security can be evaluated

and validated by launching defined test cases that simulate real
attacks.

In the future we will enhance the ideas presented in this
paper by considering the security of SoS in a broader scope and

continue TeSSoS development, considering more particularly
the security testing, security features modelling, human factors
relevance evaluation and control policies among others.

ACKNOWLEDGMENTS

This work has been partially supported by the GAUSS national
research project (MIUR, PRIN 2015, Contract
2015KWREMX) and by the Spanish Ministry of Economy
and Competitiveness (POLO LAS, TIN 2016-76956-C3-2-R)

REFERENCES

[I] C. B. Nielsen, P. G. Larsen, J Fitzgerald, J Woodcock, and J Peleska.
"Systems of systems engineering: basic concepts, model-based
techniques, and research directions'' ACM CSUR, 48(2), 18, 2015.

[2] J D. Richardson and T J Wheeler, "An object oriented methodology
integrating design, analysis, modelling, and simulation of systems of
systems," 4th Armual Conference on AI, Simulation and Planning in
High Autonomy Systems, Tucson, AZ, USA, 1993, pp. 238-244.

[3] D. J. Bodeau, "System-of-systems security engineering". In Proc. lOth
ACSAC, 1994. (pp. 228-235). IEEE

[4] E Silva, E Cavalcante, T Batista, F Oquendo, F C. Delicato, P.F.
Pires, "On the characterization of missions of systems-of-systems". In:
Proceedings of the 2014 ECSA Workshops. ACM, 2014. p. 26.

[5] E. Silva, T. Batista, and F. Oquendo, "A mission-oriented approach for
designing system-of-systems," in 2015 lOth SoSE Conference, 2015,
pp. 346-351.

[6] V. Chiprianov, K. Falkner, L. Gallon, and M. Munier. ''Towards
modelling and analysing non-functional properties of systems of
systems". In 9th Int. Conference on SOSE, 2014 (pp. 289-294).

[7] D. Ki-Aries, S. Faily, H. Dogan, and C. Williams. "Assessing system
of systems security risk and requirements with OASoSIS" In Proc.
IEEE 5th International Workshop on ESPRE (pp. 14-20). IEEE. 2018

[8] M. Felderer, M. Buchler, M. Johns, A D. Brucker, R Breu, and A
Pretschner, "Security testing: A survey," Adv. Comput., val. 101, no.
March, pp. 1-51,2016.

[9] W. G. J. Halfond, S. R. Choudhary, and A Orso, "Penetration testing
with improved input vector identification," Proc. - 2nd lnt. Conf. Softw.
Testing, Verif Validation, !CST 2009, pp. 346-355,2009.

[I 0] J S Dahmann and K. J. Baldwin, "Understanding the current state of
US defense systems of systems and the implications for systems
engineering," SysCon 2008, pp. 99-105, 2008.

[II] A vanLamsweerde, "Goal-oriented requirements engineering: a guided
tour," Proc. Fifth IEEE lnt. Symp. Requir. Eng., pp. 249-262, 2001.

[12] S. Tueno, R. Laleau, A. Mammar, & M. Frappier, "The SysMUKAOS
domain modeling approach". arXiv preprint arXiv:1710.00903, 2017.

[13] C. Guariniello and D. DeLaurentis, "Communications, information, and
cyber security in systems-of-systems: Assessing the impact of attacks
through interdependency analysis," Procedia Comput. Sci., vol. 28, no.
Cser, pp. 720--727, 2014.

[14] J H. Allen, S. Barnum. R J Ellison, G. McGraw, and N. R Mead,
"Requirements engineering for secure software" Addison-Wesley
Professional, 2008.

[15] D. Meyer, J. Haase, M. Eckert, and B. Klauer, "A threat-model for
building and home au tomation," Proc. IECON 2017- 43rd Annu. Conf
IEEE lnd. Electron. Soc., val. 2017-Janua, pp. 8126-8131, 2017.

[16] B. Solhaug and K. Stelen, "The CORAS Language- Why it is designed
the way it is," Safety, Reliab. Risk Life-Cycle Perform. Struct.
Infrastructures, pp. 3155-3162, 2013.

[17] How Apple and Amazon Security Flaws Led to My Epic Hacking
{https://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/}
Last visited: 16/Jan/2019

[18] K. Graves, CEH: official certified ethical hacker review guide. 2007.

[19] B. Beizer, "Black-box testing: techniques for functional testing of
software and systems." 1995.

[20] M. Cohn, "User stories applied: For agile software development "
Addison-Wesley Profession, 2004.

