An Empirical Study on Microservice Software
Development

Francisco Ramirez

I Carlos Mera-Gémez

f, Rami Bahsoon* and Yuqun Zhang?$

1 Southern University of Science and Technology of China
Email: 11756009 @mail.sustech.edu.cn, zhangyq@sustech.edu.cn
*School of Computer Science,
University of Birmingham, Edgbaston, B15 2TT, UK
Email: {fmr067, r.bahsoon} @cs.bham.ac.uk
T ESPOL Polythecnic University, Escuela Superior Politécnica del Litoral, ESPOL,
Facultad de Ingenieria en Electricidad y Computacion,
Campus Gustavo Galindo Km 30.5 Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
Email: cjmera@espol.edu.ec
§ Corresponding author

Abstract—Microservice is an approach to software develop-
ment, in which an application is designed and constructed to
maximise the benefits of modularisation. This approach improves
the testing of applications, where modularization can limit the
propagation of bugs and facilitates their detection. Though the
microservices paradigm has the potentials to ease the automation
of bugs detection and fixing, the process is still less understood by
the microservices community. To bridge this gap and accelerate
such an understanding, we extracted posts from Stack Overflow
to identify the most commonly discussed issues in microservice
development and testing and we categorised the concerns. Our
results indicate that (i) missing parameters and operations are the
most common concerns in service routing; (ii) wrong versions of
libraries, annotations, protocols, and clusters appear as the main
concerns on service discovery; (iii) the absence of authorisation
operation and web tokens exposed for a long time are the main
concerns related to service authentication and authorisation;
and (iv) the absence of configuration parameters for cache and
inadequate patterns for long-running transactions emerge as
trending concerns in service invocation. We analyse our findings
and provide suggestions for future research.

I. INTRODUCTION

Microservice is an approach towards software development,
in which an application is designed and constructed leveraging
the benefits of modularisation through a set of small and highly
cohesive services that coordinate and interact each other using
lightweight mechanisms [1], [2]. This approach enables fast
development of applications and has the potentials to localise
bugs, limits their propagation within the system, and facilitates
their automated detection and repair [3]-[6]. However, bug
localisation/debugging are complex due to efforts required to
trace the failed requests among a number of log files spread
on different containers [7]-[9]. The process of locating/fixing
bugs is eventually one of the core purposes of adopting mi-
croservices (i.e. designing for failure/recovery); the effective-
ness and efficiency of the process are important for ensuring
availability of the system, compliance with its Services Level
Agreements and maintaining its revenue streams [10].

Although the automation of bug correction helps to reduce
the time during testing stage; in practical terms, detecting bugs
on running microservices may take days or even weeks [11].
For example, a high number of microservices implies a
high number of vulnerability points, which means a large
attack surface [12]; also, a bug propagation across dependent
microservices [10] complicates the identification of the root
of the issue. Moreover, the effectiveness of existing tools in
detecting bugs varies with the context [11].

Developer’s information sourcing is commonly used in
practice for learning about development issues and their so-
lution [13]; this is simply through exploring the posts and
the suggested answers, comments and coding practices [14].
However, our research has shown that systematic compilation
and classification of microservices issues, including bugs, their
symptoms and their root causes have been lacking.

To bridge this gap, the novel contribution of this paper is an
empirical study that analyse 406 posts from Stack Overflow
[15], one of the largest source for developers [14], where we
looked at the bugs, their symptoms, root causes. We have then
categorised the posts in terms of the development lifecycle
phases, quality attributes, software construction activities and
fault classes [16]-[18]. We chose Stack Overflow for the
following reasons: (i) it is the most important online platform
for sharing development knowledge and experience; and (ii)
many microservice architects, developers, and operators inter-
act through this platform to shape and evolve their practices
[19]. For each of the collected posts from Stack Overflow,
we inspected the full thread from the question to every
corresponding response and comment.

Despite the significance of Stack Overflow as a source
of common concerns in microservice development, only one
previous work [20] has reported a taxonomy on microservices
by using topic modelling over Stack Overflow posts. Its taxon-
omy captures technical and conceptual topics based on words
frequency. However, its study excludes all the comments,
which provide clarification and relevant information about

the posts [21]. Different from that work, our study identi-
fies common development concerns from technical posts and
categorises them considering microservices lifecycle, software
construction, quality attributes, and fault classes. Moreover,
previous empirical studies on microservices have either (i)
introduced algorithms using a reduced number of issues to
evaluate their debugging approaches [9], [11], [22]-[24]; or
(ii) interviewed a limited number of developers to identify
undesired practices [25] or code smells [2] in microservice-
based applications. Different from those efforts, our study
presents the collection of issues from an open data source to
discuss concerns and draw conclusions about the construction
of microservices from community perspective.

The remainder of this paper is organized as follows. Section
I describes the life cycle of microservices at runtime, whereas
the design of our study is presented in Section III. Section
IV presents the results of this study. Section V discusses the
threats to validity of our study and future research works,
followed by a discussion of related works in Section VI.
Finally, Section VII summarizes our work.

II. THE LIFE CYCLE OF MICROSERVICES AT RUNTIME

The life cycle of a microservice-based system at runtime is
triggered by a request (e.g Hypertext Transfer Protocol/HTTP,
Advanced Message Queuing Protocol/AMQP) and this life
cycle is composed of four system activities: service routing,
service discovery, service authentication & authorization, and
service invocation. Figure 1 shows the process that starts with
service routing and ends with service invocation, which calls
the microservices and return the required response.

2. Service Discovery

©

<4
3. Service Authentication &

1. Service Routing =
J " Authorization

' T

v

> 4. Service Invocation

Fig. 1. Microservice-based system lifecycle at runtime

Service routing has an entry point that routes all requests to
other microservices [26]. Specifically, the API gateway is the
component that receives an initial request and examines the
availability of a microservice, selects its right version and col-
lects the responses of the required microservice [27]. In case
of asynchronous responses, API gateways implement polling
for capturing them. Frameworks such as Kong, JHipster, and
Swagger [28] help to construct gateways. The service routing
communicates with all the other life cycle activities.

Service discovery collects microservices health status (i.e.
location, IP address, and ports of available instances) and
keeps this information in a component called register, which

returns these details when requested. Additionally, load bal-
ancer, databases, repositories, and other components are ini-
tialized in this activity. These components may use a configu-
ration manager to initialise and adjust the system performance
depending on changing environments or workloads.

Service authentication & authorization validates user cre-
dentials and permissions. If a request requires authentication,
the user credentials are validated. If a request requires autho-
rization, the access permissions are also checked. Depending
on the implementation, this activity communicates to the
service invocation activity to propagate access permissions
to other microservices. This activity needs the use of several
security protocols such as: (i) JSON Web Token (JWT) [28],
which is an open source JSON-based standard [28] that
enables tokens as a medium for secure message transmission;
and (ii) OAuth [29], a standard authorization protocol focused
on simple client development for Web applications.

Service invocation is the activity in which one or more
microservices are invoked. These invocations are performed
in either a synchronous or an asynchronous manner. The
former use invocation patterns such as aggregation, chain,
proxy [30]; whereas the latter use tools based on messaging
broker, streaming, and cache to send data to the invoked
microservices. Regarding the origin of the service requests,
most of these are received from the service routing, but
some other requests come from the service authentication &
authorization due to permissions propagation. For the requests
that come with a token to establish a secure invocation, the
validity of the token is checked before processing the request.

III. STUDY DESIGN

In this section, we present the key aspects of our study de-
sign, which follows well-established guidelines on systematic
studies [31] [32].

A. Research Question

The purpose of this study is to gain insights into main
concerns in microservices development. This study is an effort
to (i) prevent junior developers from introducing accidental
errors during the implementation of distributed patterns; and
(i1) suggest future research on static code analysis to recognise
and fix the misuse of annotations. In this study, we investigated
the following research question (RQ): Which are the most
commonly discussed development concerns of the microservice
community? By answering this question, we aim to provide
empirical evidence of existing microservice development con-
cerns classified according to different software engineering as-
pects. Additionally, our findings provide specific implications
for future research on complex systems.

B. Search and Selection Process

Figure 2 shows the stages of our search and selection
process and the number of Stack Overflow posts at the end
of each stage. For a better control on the characteristics of
the posts, we considered the following stages in the design of
our study: initial search, accepted answer criteria, conceptual

and technical criteria, merging and duplication removal, and
application of selection criteria.

Initial Conceptual Application of
search [Technical selection criteria
Stack i 4586 1741 664 654 406
o ¢ e &
Overflow | |

Merge and
duplication removal

Accepted
answer

Fig. 2. Numbers and stages of our search and selection process

1. Inmitial search. In this stage, we performed searches on
Stack Overflow [31] since it is one of the largest and most
popular online Question & Answer (Q&A) forums [14], in
which developers post programming issues [13]. We used the
tag microservices as the main criterion and we limited our
search to posts dated until December of 2019.

2. Accepted answer criteria. A post could have multiple
answers; however, the owner of the post can select only one
answer as accepted. We selected the post with an accepted
answer by using Query Stack Overflow [33], which is a
website to execute simple Structured Query Language (SQL)
statements against public data from Stack Overflow.

3. Conceptual and technical criteria. We manually classi-
fied the posts in two main categories, namely conceptual and
technical. On one hand, a post is considered as conceptual
when the question is too general and non-technical details are
found in the post, answers or comments. On the other hand,
a post is considered as technical when the question is more
specific and their answers/comments contain technical text.
For the next stage, we only chose posts that were categorised
as technical.

4. Merging and duplication removal. Moderators on Stack
Overflow mark posts as closed when they are duplicated,
off-topic, or unclear. Based on this, we excluded closed
and duplicated posts. Additionally, we only collected posts
suggested as main threads.

5. Application of selection criteria. We collected all the
posts and manually filtered them according to the following
inclusion (I) and exclusion (E) criteria:

I1) Microservices posts created until December 2019.
12) Posts with an accepted answer.

I3) Technical posts for microservice implementation.
El) Posts with duplicated content

E2) Posts with a status of closed.

C. Data Extraction and Synthesis

In this stage, (i) we classified the posts according to the
activities in the microservices life cycle, quality attributes,
software construction activities, and fault classes; and (ii) we
collected data for our study such as publication year, bug
symptom, root cause, and system activity.

The data synthesis involved a collection and a summary of
the data extracted from the posts [34]. It was aimed at under-
standing and analysing posts on microservices development.

Specifically, we performed content analysis (categorization of
posts) and narrative synthesis (explanation of findings coming
from the content analysis).

For the narrative synthesis, we created groups based on
similar contexts by using the extracted bug symptom(s) and
root cause from each post. We discussed the grouping of each
post until we reached a consensus.

D. Replicability of Our Study

For the sake of the replicability of our study, we provide
a replication package ! for interested readers. The replication
package includes: the research protocol, the SQL scripts, the
raw data with the list of the retrieved posts, the extracted and
categorised data, and the scripts for generating the information
charts.

IV. RESULTS

We present our observation of posts over the years in
Section IV-A and the main findings per life cycle activity in
Section IV-B. Additionally, in Section IV-C, we categorise the
posts based on quality attributes [16], software construction ac-
tivities [17] and fault classes [18]. Since referencing hundreds
of posts occupies a significant space, we decided to identify
the posts using the letter P (from post) followed by a unique
hexadecimal number (e.g. P1B).

A. Years vs Life Cycle Activities

Figure 3 shows the distribution of posts on microservice
development over the years. Although only a small number of
post were created during 2014, this was the year when large
organizations become interested on microservices [35]. More-
over, the trend indicates that the activity of the community in
microservice-related topics has been steadily growing among
the years, except 2019 which has a reduction of 27% of the
posts in comparison to 2018.

We also noticed that the life cycle activity with the highest
number of posts is service discovery (161/406), followed by
service invocation (136/406), service routing (69/406), and
service authentication & authorization (40/406).

Service Invocation 3 10 29 35 31 28
Service Authentication . g
& Authorization 10 11 5
13 31

Service Discovery 2 37 47 31
Service Routing 3 13 20 19 14

< wn () ~ 0 o

— — - — X Q

=} o o o S b=y

I3 5 & 54 I IS

Fig. 3. Life cycle activities over time

Thttp://www.research.propio.click/paper-empirical/replication-package/

B. Findings per Life Cycle Activities

We categorise the posts based on their pertinence to service
routing, service discovery, service authentication & authoriza-
tion, and service invocation.

1) Service Routing: Table I shows the service routing
distribution. The main tasks in service routing are client
discover 35/59, followed by send request 18/59 and polling
response 6/59. Client discover refers to diverse issues that
occur in the implementation of clients intended to discover
microservices; for instance, a multipart request for uploading
files requires to discover a microservice with an overridden
UTF-8 configuration (P7D). Send request refers to issues
that occur when routing requests such as configuration of
cross-origin in Zuul (P12B) [28]. Polling response refers to
issues that occur when receiving an asynchronous response; for
instance, an interruption in the navigation flow of a movie web
application caused by the lack of a mechanism to periodically
observe a resource status (PE1).

We observed that 40% of the posts in client discover
are related to missing parameters or operations. The former,
missing parameters, refers to the absence of parameter names
and values during the invocation of scripts or configuration
files; whereas the latter, missing operations, refers to the
absence of sentences for adding specific behaviour such as
reporting a health status.

Regarding missing parameters, we found that environment
variables, security on network access, framework settings,
health metrics, and values of annotations are the most common
concerns. For instance, the variables HOST and PORT require
valid values to connect a remote machine (P59, P85, PD7),
a configuration management as Zookeeper is required to hold
the parameters for frameworks such as Zuul, Consul, gateways
(P3E, PC6), and annotations such as ConsulConfiguration
and EnableSwagger requires values to fetch data, generate
documentation and others (PF6).

In relation to missing operations, we found that the most
common operations include the implementation of variables,
getters, setters, and rules for service discovery. For instance,
Swagger requires ApilmplicitParam on getters and setters to
generate documentation (PA7), service discovery clients ignore
the different DNS ports to get a list of microservice instances
from SRV records (P11, P55, P89), and developers miss rules
for checking the version/health/context of microservices in
Zuul, Nginx or vector clocks (P15, P76, PCB).

We observed that 56% of the posts in send request are
related to wrong configuration, 22% of posts are related to
missing publish events and missing format for case class, and
6% of posts refer to missing annotations. For instance, the
wrong configuration issues include the settings of environment
(e.g. Eureka, queue messaging, replication), relative paths,
security properties, retries (e.g. waiting time for next retry,
maximum number of retries) (P36, P39, P4F, PSF, PAS, PAA,
PD4 P124, P12F, P143). In the case of missing publish events
and missing format for case class, we observed that ActiveMQ,
RabbitMQ, Kafka, Spring Framework and Spray JSON are

required components. Unknown Exception occurs when the
CrossOrigin annotations are missed.

(Finding 1: Missing parameters emerges as one of the most
popular issues on service routing. Results suggest API gateway
frameworks require those parameters for configuration.
Implication: Developers need to fix missing parameters and
environment variables for Somata, Cassandra, and Kong [28],
which may contribute to reduce bugs at the compilation stage.

Finding 2: Missing operations emerges as a popular topic
on service routing. Among these kinds of operations, we have
ApilmplicitParam for the generation of documentation, SRV
record to list microservices, and monitor of the health status.
Implication: Developers need a deeper understanding of
frameworks such as Consul, Mesos-DNS, Nginx, Swagger, and
Zuul [28]. A guide of missing operations in these frameworks
could help to mitigate part of these issues.

J

2) Service Discovery: Table I also presents the distribution
of posts related to service discovery activity. The main tasks
in service discovery are configuration 110/142, followed by
start 17/142 and registry 15/142. Configuration refers to the
lack of values, parameters, or annotations; for instance, if
a parameter discovery is disabled then localhost and port
between Java Spring and Consul are unresolved (P23) [28].
Start refers to issues that occur when starting components such
as using a wrong package version of JHipster when launching
a microservice (P112). Registry refers to issues that occur
when components interact against the registry service; for
instance, Eureka is a registry service [28] and Eureka clients
are still working despite a Eureka server stops (P121).

Regarding the configuration task, 24% of the posts are
related to the usage of frameworks such as Spring, Netflix,
Cassandra, Zookeeper, GemFire and others [28]. For example,
we have issues related to (i) lack of values for configuration
of fallback, and circuit breaker and lack of parameters for
dependency injection or binding exception; (ii) wrong version
of libraries; (iii) annotations of Spring Boot, Lombok and
GemFire are missed/misused [28]; (iv) data serialization pro-
vides communication outside private networks; and (v) miss-
ing fault-tolerant clusters to avoid single point of failure. For
instance, query performance is very low when key filter is not
an enumeration (P3A, P57, P67, P6C, PFA), BindingException
occurs when server port is absent of the Java Virtual Machine
(JVM) parameters (P22, P2E, P80, PBC, PDI1, PE4, P11D,
P134), unsupported class version occurs when using a higher
version of servo-core dependency (P33, P51, P6B, P97, PA9,
P92), UnknownHostException may occurs when RestTemplate
miss the Autowired annotation (P47, P3C, PC9, PDO0), front-
end microservices should return a ResponseEntity serialized
as JSON to include the HTTP status code (PB2, PD8, P17,
P93), and a system lose events if a central messaging hub has
no cluster and becomes unavailable (P2, P98, PES, PB1).

Regarding the start task, 47% of the posts are related to
the usage of libraries for dependency (P7, PB3, P112), for
instance, bootRepackage is no longer supported by JHipster
version 5+; container initialization due to wrong login pa-

TABLE I
CLASSIFICATION OF POSTS

[System Activity || Activity Task [Task Description | Issue Category | Ratio |
. . Issues in the implementation of Missing parameters
Client discover . mp . . 1SSINg p) 9.9%
. . clients that discover microservices Missing operations
Service routing - -
Wrong configuration of environment
Wrong settings for routing of Missing publish event
Send request g g & 1SSINE PubiLs . 5.4%
request Missing serialise mechanism
Missing annotations
Missing response (message
. Incompl nchronous ; . Lo
Polling response complete asynchronous record id, promise or link) 1.7%
response . .
Missing event listener
. Wrong configuration of frameworks
Missing values, parameters or
. > . Wrong usage of parameters
Configuration annotations for settings of . . 30.3%
. . Wrong version of dependencies
Service discovery components Missi .
1ssing annotations
Wrong version of dependent libraries
Start Failures when starting components Wrong login options 5.7%
Missing operations for services
. Issues during interaction with Load balancing error caused by
Registry LS : . S 3.7%
registry service different version of microservices
. .. Incomplete validation of a user Missing operations
Service Authentication P 1SSINE Op 5.2%
L account Missing Web tokens
authentication Miss; -
& authorization 1ssing operations
Authorization Deny the access to resources Missing Web tokens 3.4%
Missing event messages
Incomplete adoption of user roles Wrong data usage
Grants to keep authentication High workload 1.2%
& authorization High coupled microservices
Errors when calling microservices Common cache errors
Asynchronous . . - 21.9%
L . simultaneously Missing patterns for distributed systems
Service invocation L -
. . . . Cross-origin resource sharing (CORS)
Interruption of calling microservices
Synchronous sequentiall Broken contracts 8.1%
4 y Outdated databases
L Missing implementation
S Errors when validating secure ..
Token validation & Missing Token 3.4%
tokens
Unsecure zone

rameters (PBB, PEO), for instance, docker containers require
the option —with-registry-auth to forward credentials to other
nodes; and operations for a high number of services such
as backup/restoration, logs, and scaling (P18, P35, PF2), for
instance, if there is no configuration for timeouts and retries
then the system could have scaling troubles.

In relation to the registry task, 40% of the posts are
concerned about a load balancing between different versions of
microservices (P16, P108, P10D), for instance, load balancer
considers a version of microservices unless the older version is
marked as OUT OF SERVICE; and detecting the connectivity
of services and components (P13, P1E, P69), for instance, if
health checking is not enabled then a system cannot detect
when microservices are down.

Finding 3: Wrong version of libraries is one of the top issues
on service discovery. Consequently, compilers do not find the
requested classes in the library.

Implication: Developers may benefit from the usage of project
management tools like Apache Maven, or build automation
tools like Gradle [28]. Both kind of tools offer support for
library and dependency management.

(Finding 4: Annotations, protocols and clusters appear among
the top issues on service discovery. According to our survey,
microservice-based applications benefit from (i) the usage of
NonNull annotation to warn about the presence of null values;
(ii) the adoption of JSON protocol for external communica-
tions; and (iii) the activation of clusters with dynamic IP.
Implication: Developers could reduce these issues by using
static code analysis to recognise the misuse of annotations,

L protocols and clusters.

3) Service Authentication & Authorization: Table 1 il-
lustrates the task distribution of service authentication &
authorization. The main tasks in service authentication & au-
thorization are authentication 18/37, authorization 14/37, and
grants 5/37. Authentication refers to issues that occur when
trying to validate an user account (P48). Authorization refers
to issues that occur when trying to provide access permissions
to specific functionality (PE8). Grants refer to issues that occur
when adopting the user roles to avoid repeating authentication
& authorization processes (PB).

We observed that 44% of the posts in authentication & au-
thorization are related to missed operations and usage of web
tokens. On one hand, missed operations refer to the absence

of sentences for the usage of user credentials, configuration,
and others. On the other hand, web tokens refer to the time
life of tokens and excessive validation.

Regarding missed operations, we found concerns related to
the usage of user credentials, configuration to avoid failures
such as unique constraints, and missing annotations. For
instance, requests return 401 unauthorized response when
credentials are unavailable into Eureka or Spring Cloud [28]
(P46, P52, PBE, PFE); transactions could include the username
field as part of unique constraints (P3F, P48, PAC); and clients
should use RestTemplate with the LoadBalanced annotation to
support multiple instances of microservices (P62).

In relation to exposing web tokens, there are two concerns:
(1) a slow response of the overall system due to multiple
validations of a token (P9, P1D, P2A, PF7), for instance,
developers could pass valid JWT token to other microservices;
and (2) tokens that live longer than expected (PSF, P8B),
for instance, developers could pass short live tokens between
microservices that stay in the same domain.

p

Finding 5: The absence of authentication & authorization
operations as JNDI lookup with connection factory causes
issues when getting user credentials in a centralized solution.
Implication: Developers could choose a fully decentralized
solution that includes Zookeeper, ZeroMQ, or Consul [28] to
reduce the response time of overall system.

Finding 6: Exposing the web tokens for a long time makes
a microservice-based application vulnerable to attacks and
hacks.

Implication: Developers could use short timelife tokens to
minimize risks.

J

4) Service Invocation: Table I depicts the task distribution
of service invocation. The main tasks in service invocation are
asynchronous 78/118, followed by synchronous 26/118 and
token validation 14/118. Asynchronous refers to issues that
occur when simultaneously calling microservices like using
eventual consistency pattern to handle inconsistent states over
multiple responses (P19). Synchronous refers to issues that
occur when sequentially calling microservices like using the
right HttpHeaders to send JSON data for HttpEntity instances
(P1C). Token validation refers to issues that occur when a
token has been received by microservices and needs an internal
validation; for instance, a token is validated when passed by
the header between microservices (P4E).

Regarding the asynchronous task, 29% of the posts are
related to common cache errors and missing patterns for
distributed systems. The most common cache errors include
missing Terracotta servers for backing up the cache [28§]
(P95), missing shared cache layer on top of a database to
respond with latest data even when dependant microservices
are inactive (P50, P11A, P5D), wrong cache parameters for
the avoidance of data duplication, reduction of unnecessary
communication, and validation of outdated data (P3, P1B,
P7A, PED, PF3). In respect of the missing patterns for dis-
tributed systems, we observed that sagas, event-store, eventual

consistency, aggregator, reporting, shared database, and pro-
duce/consumer are the most mentioned patterns. For instance,
a sagas pattern is used to get fresh data for completion of
complex processes by keeping a trace of events (PBF, PDA,
PC4, PE2). The event-store is used to replay events when the
system provides outdated user information (PBF, PDA, PC4,
PE2). The other design patterns are combined for easy and
fast access to connected data (P19, P4D, P8E, P96, P135).
Regarding the synchronous task, 31% of the posts are
concerned about (i) missed HTTP headers for microservices
in different domains; (ii) change of bounded context that
results in broken contracts; and (iii) data synchronization after
data structure modification. For instance, Cross-origin resource
sharing (CORS) filter is required in Zuul, Azure Service Fabric
and request headers with Access-Control-Allow-Origin is also
required on the client side (P34, P74, P75), bounded contexts
of microservices change according the data structure depen-
dency (P6F, PA3, PF9), and microservices without versioning
produce error after data structure modification (P107, P111).

T : N
Finding 7: The absence of configuration parameters for cache

are one of the most common issues on service invocation. Our
study indicates that communication processes among microser-
vices require those parameters for an optimal performance.

Implication: Developers could use configuration parameters of
cache (e.g. Ehcache enable with Terracotta server) in external

L files such as YML configuration files.)

()

Finding 8: Patterns for long running transactions are another
common issue on service invocation. Results suggest that
transaction patterns reduce code duplication on services.

Implication: Developers need to focus on transaction patterns
such as SAGAS, try/cancel/confirm, and event-store to maintain

L data consistency across microservices.)

C. Further Categorisation

1) Quality Attributes: Quality attributes are the system
characteristics assessed by a quality management team to
judge the quality of software [16]. Table I1a shows the distribu-
tion of posts in terms of quality attributes. The main attributes
that we identify are reliability 105/406 and security 90/406,
followed by performance 65/406 and availability 64/406. Posts
related to different quality attributes are presented in a category
called Others 83/406. Security refers to issues that are related
to security quality attribute; for instance, microservices inside
a private network with IP addresses that expose them to public
networks (P32, P98, PAF). Reliability refers to issues that are
related to reliability quality attribute like missing handlers,
retries, publish events or incomplete rollback that affect the
operation time of a system (P3C, P8, PF, P10). Performance
refers to issues that are related to performance quality attribute;
for instance, response time is affected when no cache is
implemented (P4, P105, P7A, P3, P1B). Availability refers
to issues that stop the execution of a system; for instance,
Zuul filter launches error when missing the http header X-
Forwarded-Host (P87, PA3, PC5, PE3).

2) Software Construction: Construction of software refers
to the elaborated creation of software by combining coding,

[Quality attributes | #Posts (%)]

TABLE II
FURTHER CATEGORISATION

Software construction [| #Posts (%)

Fault class [#

Posts (%) |

Availability 64 (16%) Coding and debugging 128 (32%) Input/output faults 65 (16%)
Performance 65 (16%) Detailed design 57 (14%) Logic faults 171 (42%)
Security 90 (22%) Integration 152 (37%) Interface faults 92 (23%)
Reliability 105 (26%) Unit testing 6 (01%) Data faults 48 (12%)
Others 83 (20%) Others 63 (16%) Others 30 (07%)

(a) Quality Attributes

(b) Software Construction

(¢) Fault Class

verification, debugging, unit testing, integration testing, and
debugging [17]. Table IIb presents a distribution of posts in
terms of software construction activities. The main tasks in
software construction are integration 152/406 and code &
debugging 128/406, followed by detailed design 57/406, unit
testing 6/406 and others 63/406. Integration refers to issues
that occur during the integration of multiple components such
as missing operations to keep a clean state of data(P2C),
single-sign-on with discovery (P1A, P23) or aggregator with
integration platform (in P4C, P4D). Code & debugging refers
to issues related to missing code for cache (P3), handling
events (in P19, P3C), overriding methods (in P6C, P7B,
P86), and annotations to validate and enable transactions (in
PC9, PDO). Detailed design refers to issues concerned about
(i) approaches to build reports based on information from
multiple microservices (P43); (ii) event store with the usage
of cache to keep updating the user information (P79, P7A);
and (iii) usage of data-streaming with eventual consistency to
decouple the database and transfer data (P7C).

3) Fault classes: Fault classes are a classification of bugs
that can be detected by static analysis with the intention of
detect anomalies introduced in a piece of code [18]. Table Ilc
shows a distribution of posts in terms of fault classes. The
main fault classes that we identified are logic faults 171/406
and interface faults 92/406, followed by input/output faults
65/406, data faults 48/406, and others 30/406. Logic faults
refers to issues when code statements are right written but
they produce a wrong behaviour; for instance, developers have
logic concerns on reading/writing a model, changing versions
of microservices, making notifications, implementing events,
tolerant clusters, JSON protocols and others (P41, P6B, P73,
P93, PA6, PAF, PB1, PB2). Interface faults refer to issues that
occur during the interconnection of components like adding
identifiers, implementing failure recovery, aggregated patterns,
and others (P6, P8, P4C, P66, P8E, P91). Input/output faults
refers to issues given wrong values of process inputs/outputs
like missing or using wrong version of libraries, location of
parameters, and others (P31, PA2, P123, P33, P2E, PD1). Data
faults refers to issues when accessing/formatting/storing data
like optimising cache, managing persistent messages, using
decorators and others (P3, P50, P7F, PD5, P109).

V. THREATS TO VALIDITY

Theoretical validity. To reduce potential biases, we itera-
tively refined our posts classification, we aligned the extraction

process with our research question, and we also used descrip-
tive statistics to show the syntheses of collected data.

Internal validity. To mitigate the correctness of our posts
classification, we rigorously defined a research protocol by
using guidelines from Di Francesco et al. [1]. Another threat
is a personal bias during the manual classification, but we
mitigate it by involving more than one author during the
process of analysis and synthesis of posts.

External validity. We mitigate the generalizability of ob-
tained results by (i) applying the best practices coming from
two different guidelines on systematic studies [31], [32], and
(i1) using a big datasource that provides a variety of posts [14].
Another threat is the number of databases to collect the posts,
but we mitigate it by selecting one of the largest database used
by developers [13], [20].

VI. RELATED WORK

While microservice systems have been widely studied under
various domains [36]-[39], there exists only one previous
work that refers to Stack Overflow for extraction of topics in
microservice development. Bandeira et al. [20] implemented a
topic model, which is an unsupervised machine learning that
detects word or phrase patterns in Stack Overflow posts to
build a general taxonomy of subjects on microservices. The
topic model uses a textual content to build the frequency of
each word. However, it excludes relevant information from
comments and possible key answers from the authors of posts.
Stack Overflow comments provide clarification and guide
the authors to improve the posts [21]. Our research differs
from their work in two dimensions. First, the classification
framework is based on recognized aspects of software en-
gineering such as software quality attributes, software con-
struction activities, and fault classes. Second, we partially
follow systematic mapping guidelines with the corresponding
replication package to increase the reliability and replicability
of our study results.

Regarding the origin of the data in previous empirical
studies on microservices, they either: (i) introduced algorithms
using a reduced number of faults or issues to evaluate their
debugging approaches [9], [11], [22]-[24]; or (ii) interviewed
a limited number of developers to identify undesired practices
[25] or code smells [2] in microservice-based applications. In
this context, to the best of our knowledge, our work consti-
tutes the first attempt to reveal active development concerns

from Stack Overflow as a big data source, relevant for the
development community, which may serve as a baseline for
future empirical works.

VII. CONCLUSIONS

We surveyed Stack Overflow to provide a classification of
posts based on microservice life cycle activities at runtime,
namely service routing, service discovery, service authentica-
tion & authorization, and service invocation. The results of our
study indicate that (i) missing parameters and operations are
the most common concerns in service routing; (ii) wrong ver-
sions of libraries, annotations, protocols, and clusters appear
as main concerns on service discovery; (iii) the absence of
authorisation operation and web tokens exposed for a long
time are the key concerns related to service authentication
and authorisation; and (iv) the absence of cache parameters
and inadequate patterns for long running transactions emerge
as trending concerns in service invocation. Additionally, our
study reveals that the development concerns are mostly fo-
cused on security and reliability. Integration testing and logic
faults also represent a significant number of posts.

Based on our findings, we suggested potential research
directions and identified some implications of our work such
as (i) the usage of short timelife token to reduce applications
vulnerabilities; (ii) the usage of static code analysis to recog-
nise misuses of annotations, protocols and clusters; (iii) the
storing of configuration parameters in external files to improve
the cache performance; and (iv) the use of transaction patterns
to maintain data consistency across microservices.

ACKNOWLEDGEMENTS

This work is partially supported by the National Natural
Science Foundation of China (Grant No. 61902169), Shenzhen
Peacock Plan (Grant No. KQTD2016112514355531), and
Science and Technology Innovation Committee Foundation of
Shenzhen (Grant No. JCYJ20170817110848086).

REFERENCES

[1] P. Di Francesco and et al., “Research on Architecting Microservices:
Trends, Focus, and Potential for Industrial Adoption,” in ICSA, 2017.

[2] P. Jamshidi and et al., “Microservices: The Journey So Far and Chal-
lenges Ahead,” IEEE Software, vol. 35, no. 3, pp. 24-35, 2018.

[3] M. Mazzara and B. Meyer, Eds., Present and Ulterior Software Engi-
neering. Springer, 2017.

[4] D. Yu, Y. Jin, Y. Zhang, and X. Zheng, “A survey on security issues
in services communication of microservices-enabled fog applications,”
Concurr. Comput. Pract. Exp., vol. 31, no. 22, 2019. [Online].
Available: https://doi.org/10.1002/cpe.4436

[5]1 T. Zheng, Y. Zhang, X. Zheng, M. Fu, and X. Liu, “Bigvm: A
multi-layer-microservice-based platform for deploying saas,” in Fifth
International Conference on Advanced Cloud and Big Data, CBD 2017,
Shanghai, China, August 13-16, 2017. IEEE Computer Society, 2017,
pp. 45-50. [Online]. Available: https://doi.org/10.1109/CBD.2017.16

[6] T. Zheng, X. Zheng, Y. Zhang, Y. Deng, E. Dong, R. Zhang, and
X. Liu, “Smartvm: a sla-aware microservice deployment framework,”
World Wide Web, vol. 22, no. 1, pp. 275-293, 2019. [Online]. Available:
https://doi.org/10.1007/s11280-018-0562-5

[71 A. Saba, “4 challenges you need to address with microservices
adoption,” 2016. [Online]. Available: https://bit.ly/35Mfr4O

[8] A. Whitepaper, “Challenges of microservices.” [Online]. Available:
https://amzn.to/3a0XRgl

[9]
(10]

(11]

[12]
[13]

[14]

[15]

[16]
(17]

[18]
[19]

[20]

[21]

[22]
(23]

[24]

[25]

[26]
[27]

[28]

[29]
[30]

[31]
(32]
[33]
[34]
[35]

[36]

(37]

(38]

(39]

V. Heorhiadi and et al., “Gremlin: Systematic Resilience Testing of
Microservices,” in ICDCS. Nara, Japan: IEEE, 2016.

Y. Gan and et al., “Seer: Leveraging Big Data to Navigate the Com-
plexity of Performance Debugging in Cloud Microservices,” in ASPLOS,
2019.

X. Zhou and et al., “Fault Analysis and Debugging of Microservice
Systems: Industrial Survey, Benchmark System, and Empirical Study,”
IEEE TRANSACTION ON SOFTWARE ENGINEERING, p. 1, 2018.

C. Esposito and et al., “Challenges in Delivering Software in the Cloud
as Microservices,” IEEE Cloud Computing, pp. 10-14, 2016.

S. M. Nasehi and et al., “What Makes a Good Code Example? A Study
of Programming Q&A in StackOverflow,” in /CSM. IEEE, 2012.

C. Rosen and et al., “What are mobile developers asking about? A
large scale study using stack overflow,” Empirical Software Engineering,
2016.

Jeff Atwood and Joel Spolsky, “StackOverflow,” 2008. [Online].
Available: https://stackoverflow.com/

I. Sommerville, “Software engineering (tenth edn. global edition),” 2016.
P. Bourque, R. E. Fairley et al., Guide to the software engineering body
of knowledge (SWEBOK (R)): Version 3. 1EEE Computer Society, 2014.
P. Jorgensen, “Software testing, a craftsman approach,” 2014.

N. Meng and et al., “Secure coding practices in java: Challenges and
vulnerabilities,” in 40th ICSE. Washington, DC, USA: IEEE, 2018.
A. Bandeira and et al., “We Need to Talk about Microservices: an
Analysis from the Discussions on StackOverflow,” in MSR, 2019.

Jeff Atwood and Joel Spolsky, “StackOverflow Comment Everywhere,”
2008. [Online]. Available: https://stackoverflow.com/help/privileges/
comment

A. Panda, M. Sagiv, and S. Shenker, “Verification in the Age of
Microservices,” in HotOS, vol. 7. Whistler, BC, Canada: ACM, 2017.
X. Zhou, X. Peng, T. Xie, J. Sun, W. Li, C. Ji, and D. Ding, “Delta
Debugging Microservice Systems,” in ASE 2018, vol. 18. ACM, 2018.
X. Zhou, X. Peng, T. Xie, and et al., “Latent Error Prediction and Fault
Localization for Microservice Applications by Learning from System
Trace Logs,” in ESEC/FSE, 2019.

D. Taibi and V. Lenarduzzi, “On the Definition of Microservice Bad
Smells,” IEEE Software, pp. 56-62, 2018.

H. Upreti, “4 Essential Strategies for Testing Microservices,” 2018.

N. Alshuqayran and et al., “A Systematic Mapping Study in Microser-
vice Architecture,” in 2016 IEEE SOCA. Macau, China: IEEE, 2016.
[n.d], “Common components used in Microservices,” 2020. [Online].
Available: https://bit.ly/302uHEJ

RFC6749, “OAuth,” 2006. [Online]. Available: https://oauth.net/2/

A. Gupta, “Microservice Design Patterns,” 2015. [Online]. Available:
https://goo.gl/pd5d1x

B. Kitchenham and P. Brereton, “A systematic review of systematic
review process research in software engineering,” pp. 2049-2075, 2013.
K. Petersen and et al., “Guidelines for conducting systematic mapping
studies in software engineering: An update,” 2015.

[n.d.], “Query Stack Overflow,” 2020. [Online]. Available: https:
//data.stackexchange.com/stackoverflow/queries

B. Kitchenham and S. Charters, “Guidelines forperforming systematic
literature reviews in software engineering.” 2007.

C. Pahl and P. Jamshidi, “Microservices: A Systematic Mapping Study,”
in CLOSER 2016. Rome, Italy: ACM, 2016.

J. Hua, Y. Zhang, Y. Zhang, and S. Khurshid, “Edsketch: execution-
driven sketching for java,” STTT, vol. 21, no. 3, pp. 249-265, 2019.
[Online]. Available: https://doi.org/10.1007/s10009-019-00512-8

M. Zhang, Y. Li, X. Li, L. Chen, Y. Zhang, L. Zhang, and S. Khurshid,
“An empirical study of boosting spectrum-based fault localization via
pagerank,” IEEE Transactions on Software Engineering, pp. 1-1, 2019.
X. Li, W. Li, Y. Zhang, and L. Zhang, “Deepfl: integrating multiple fault
diagnosis dimensions for deep fault localization,” in Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2019, Beijing, China, July 15-19, 2019, 2019, pp.
169-180. [Online]. Available: https://doi.org/10.1145/3293882.3330574
M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad:
Gan-based metamorphic testing and input validation framework for
autonomous driving systems,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE
2018, Montpellier, France, September 3-7, 2018, 2018, pp. 132-142.
[Online]. Available: https://doi.org/10.1145/3238147.3238187

