
Measurement-Based Worst-Case Execution Time Analysis*

Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, Peter Puschner
Institute of Computer Engineering, Vienna University of Technology

Real-Time Systems Group, Treitlstrasse 3, 1040 Vienna, Austria
{ingo, raimund, bernhard, peter}@vmars.tuwien.ac.at

* This work has been supported by the FIT-IT research project “Model-based Development of Distributed
Embedded Control Systems” (MoDECS).

Abstract

In the last years the number of electronic control
systems has increased significantly. In order to stay
competitive more and more functionality is integrated
into more and more powerful and complex computer
hardware. Due to these advances in control systems
engineering new challenges for analyzing the timing
behavior of real-time computer systems arise. The two
identified main challenges are execution-time modeling
of the hardware and the path problem that forbids
capturing the worst-case execution time (WCET) by
end-to-end measurements due to limits in
computational complexity. This work presents the
cornerstones of our new measurement-based WCET
analysis method that successfully addresses these
problems. We clearly identify our research goals and
the relevance of our research. Especially, the novel
aspects of our approach are emphasized. The
conclusion is formed by a brief presentation of an
industrial-size case study application.

1. Motivation

The last years have seen significant advances in
electronic control systems replacing more and more
conventional control systems. Control systems
continuously interact with their environment. Thus, in
order to fulfill the desired control function, these
systems do not only have to perform correct
calculations in the value domain, but also have to
provide the computed results within specified time
bounds, to react accordingly to the dynamics of the
environment.

Further, driven by the increased flexibility resulting
from the use of microprocessors in control systems,
more and more functionality is integrated into
electronic control units (ECUs) causing higher
complexity of the control applications.

Additionally, a shift towards the complete
replacement of mechanical backup solutions by
electronic control systems takes place. This causes an
increase in the number of safety-critical electronic
control systems. Safety-critical means that a failure of
such systems may result in catastrophic consequences.

The automotive industry is one of the leading fields
pushing these developments. Today, a new car contains
about 30 ECUs (in luxus cars up to 70 ECUs are
embedded [5]). In the automotive industry about 55%
of breakdowns can be traced back to problems in
electronic systems. About 30% of these incidents are
estimated to be caused by timing problems.

The worst-case execution time (WCET) is the
longest time it takes to execute a given program code.
The determination of the WCET is a tough topic and of
tremendous importance to ensure the proper function
of real-time systems.

The highly active research field of WCET analysis
has brought a number of well established static WCET
analysis methods. However, these static analysis
methods [1] cannot keep pace with the rapidly
increasing analysis complexity of modern control
systems. Especially, the task of manually modeling the
timing behavior of the hardware is very time
consuming and error-prone.

2. Proposed Approach

Within our research project “Model-based
Development of Distributed Embedded Control
Systems” (MoDECS) a completely new hybrid
measurement-based WCET analysis method is
developed. The key strength of this approach is the
fruitful combination of the advantages of static
program analysis and runtime measurements of the
application on real hardware [3]. In more detail, our
method involves the following steps:

Static Analysis: In the first step, a static analysis of
the C source code allows a concise and safe analysis of

the overall program structure. In contrast to common
methods working on object code level, this ensures a
high level of portability because C is a well established
programming language standard in control systems
engineering. Additionally, C is also used as output
format by code generation tools like Real-Time
Workshop (Mathworks Inc.) or TargetLink (dSpace
GmbH).

Partitioning: As the second step, our method
allows to overwhelm the complexity by means of
automatically decomposing the program into well
manageable subparts called program segments.
Figure 1 illustrates the control-flow graph
decomposition resulting in the program segment graph.

Test Data Generation: Next, we want to obtain the
execution times that our task spends within each of the
identified program segments. Therefore, we have to
exhaustively guide the task’s execution into those
paths that we need for acquiring timing information.
Since the paths taken through the task during execution
depend on the input data to the task, we have to find
suitable test-data vectors enforcing exactly these paths.
This problem is solved by automatic test data
generation. We introduced a new three-level test data
generation process. First, we use random test data
vectors to cover a broad number of paths. Next, we
apply an evolutionary algorithm for paths that are
harder to find.

Figure 1. Control-flow graph partitioning

The great aspect of using evolutionary algorithms

this way is that we definitely know if a result delivered
by the algorithm is a solution to our problem. The
better the results delivered by this algorithm, the fewer
test cases remain to be generated by the third and last
step. For generating the remaining test cases we
adopted model checking for test-data generation. Using
this relatively expensive method (in terms of
computational resource needs) guarantees a test-data

vector can be found whenever one exists. Using these
three levels of data generation, our method efficiently
generates the required test data.

Execution Time Measurements: The generated
test-data are used to execute the calculated paths within
the program segments. The timing information is
captured by code instrumentations that are
automatically generated and placed on block
boundaries. The used modifications do not change the
timing behavior or at least modify it in a predictable
way.

Calculation Step: The obtained execution times are
safely combined; thus yielding the overall WCET
bound by a final calculation. This calculation step
makes use of the structural information acquired in the
first step.

3. Research Goals and Methodology

Our main research goal is to demonstrate the proof-
of-concept of our approach. Before we started
implementing the ideas of this new method, we
performed a feasibility analysis. Now, a framework
incorporating all steps of our method is being
implemented. When implementing the static analysis
step, a lot of pre-existing knowledge from static
analysis methods can be reused. To show the proof-of-
concept, a number of highly exciting questions subject
to our research arise:
• Automatically parameterizable control-flow graph

partitioning for complexity reduction. A basic
decomposition algorithm has been implemented;
finding optimizations in the partitioning algorithm
is subject to our research.

• Incorporating path information in the time
modeling process. Are there alternative strategies
for optimizing the tightness of the WCET bound
delivered by this approach?

• Development of the automated test data generation
process. Will it be practicable to generate all the
required test-data vectors?

• Allow schedulability analysis using the
determined WCET bounds. Especially, when
modeling complex hardware this question is of
high impact. Is it possible to allow the safe
composition of WCET analysis results at
component level?

• Due to increased complexity in control systems,
companies use high-level design tools like
MATLAB/SIMULINK to model these systems. Then,
out of these models the actual control code is
automatically generated by using code generators
(e.g., Real-Time Workshop, TargetLink). Unfortu-
nately, this automatic generation leads to a high

Program Segment GraphControl-Flow

Partitioning Algorithm

zoom

complexity of the generated code. However, we
want to investigate how to use structural features
resulting from this automatic generation in order
to simplify the analysis.

4. Relevance of the Approach

The currently established WCET analysis
approaches are not able to cope sufficiently with the
rising demands resulting from the highly dynamic
developments in the field of electronic control
engineering [1]. However, as outlined in the beginning,
the fulfillment of the temporal constraints in safety-
critical applications is a stringent imperative to be
satisfied in order to avoid catastrophic consequences.
When considering the current situation, there is urgent
call for action.

First, a main deficiency of existing WCET methods
is the high dependence on the hardware platform of the
target system [2]. The execution time of all instruction
types has to be modeled manually. This is a very
complex, cost-intensive and error-prone task. Often,
especially for every new processors, huge parts of the
whole analysis framework have to be rewritten. Our
method addresses this problem in an elegant way:
instead of statically calculating the execution time, we
guide the execution of the program and measure the
execution times. These times are then combined by
analytical methods to compute a safe WCET bound.

Second, existing methods are highly dependent on
the deployed software tools and tool chains. A number
of approaches modify the compiler source code in
order to integrate the WCET analysis tool, but this
turned out not to be a practical way. Additionally,
every time when new versions of the compiler tool
chain are released the WCET analysis tools have to be
adapted. Our method works on the level of C source
code and uses the unmodified tool chain to compile
and execute the program to measure the execution
times.

Third, our method makes use of code structures that
can be found inherent in automatically generated
program code since automatic code generation is of
high increasingly high importance in control systems
engineering [4].

5. Novelty and Originality

Besides the high importance of a practically useful
WCET analysis method, we are able to contribute a
number of completely new ideas in the research field.
The main contributions of our approach have been
identified as follows:

• The introduction of a hybrid WCET analysis
approach using a measurement-based execution
time model.

• Using heuristics in a deterministic manner for test
data generation, i.e., we know whether the
calculated results are solutions to the problem.

• We use model checking for test-data generation.
Model checking usually is used for formal system
validation where complex problems have to be
solved efficiently. We apply this technique for
solving the problem of automatic test data
generation.

• We automatically perform a breakdown in the
application complexity while concurrently
incorporating path information into the timing
model (implicit feasible path partitioning).

• We develop clear architectural constraints that
allow the safe modular combination of the WCET
bounds from individual tasks. In other words, we
establish the requirements of stable boundaries
between the WCET of tasks and their scheduling.

6. Case Study Application

In this project, a close cooperation with two leading
suppliers in the automotive industry takes place
(Magna Steyr Fahrzeugtechnik Graz and AVL List,
both located in Graz, Austria) enabling the great
opportunity to check our ideas against industrial
control applications.

Figure 2. Case study application

We have set up equivalent tool chains and are able

to use real-sized state-of-the-art models for code
generation. A simplified version of such a tool chain is
depicted in Figure 2. Starting from a
MATLAB/SIMULINK model, a code generator is invoked
to generate highly optimized C-code for the desired
target platform. This C-code is analyzed by our tools.
We add instrumentations to perform the required
measurements. Then the compiled executable is
uploaded into the target hardware where it is executed
and runtime measurements take place. For the final
production code, the instrumentations are removed and
the code can be deployed into the power train control
unit. In more detail, one real-time task subject to our
investigation contains about 1032 paths. Our algorithm

partitions this program into 25 program segments and
needs a total of about 30,000 measurements (those can
be captured in about 6 minutes on the HCS12 target
platform) to determine the execution time model.
However, due to intellectual property issues no
detailed information about the code can be presented.

7. Conclusion

The presented WCET analysis approach
successfully addresses the hardware modeling
challenge by applying our paradigm the “best hardware
model is the hardware itself”. We successfully deploy
this idea by using measurements for execution-time
modeling. Further, we solve the path problem by
automatically decomposing the program control-flow
graph into well manageable units and use automatically
generated test-data for guiding the program executions.

We have outlined the novelty of our approach,
especially important is the new way of generating the
required test-data, applying implicit feasible-path
partitioning and investigating stable boundaries for
composing the WCETs of tasks.

The practical strength of our method has been
shown by an application of the method on

automatically generated industrial-sized control
applications.

References

[1] “Discussion of Misconceptions about WCET Analysis”,
Raimund Kirner, Peter Puschner; Proc. 3rd Euromicro
International Workshop on WCET, 2003

[2] “The Influence of Processor Architecture on the Design
and the Results of WCET Tools”, Reinhold Heckman, Marc
Langenbach, Stephan Thesing, Reinhard Wilhelm; IEEE
Proceedings on Real-Time Systems, 91(7):1038–1054, 2003

[3] “Automatic Timing Model Generation by CFG
Partitioning and Model Checking”, Ingomar Wenzel,
Bernhard Rieder, Raimund Kirner, Peter Puschner; Design
Automation and Test in Europe (DATE), March 2005

[4] “A Study of Automatic Code Generation for Safety-
Critical Software: Preliminary Report”, L. Crawford, J.
Erwin, S. Grimaldi, S. Mitra, A. Kornecki, D.P. Gluch; High
Assurance Systems Engineering. Proceedings. Eighth IEEE
International Symposium on, pp. 287 – 288, 2004

[5] “The electrical/electronic diagnostic concept of the new 7
series”, A. Deicke; In Convergence International Congress
& Exposition On Transportation Electronics, Detroit, MI,
USA; SAE, 2002

