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Abstract

It is widely held that programming language extensions
that support separation of concerns and that are also inte-
grative benefit development, maintenance and reuse of soft-
ware designs and code. Such is the intent of our Synchro-
nization Units Model (Szumo), which unifies new features
for expressing synchronization in a multi-threaded program
with existing features of an object-oriented language. How-
ever, to make effective use of a language extension, a pro-
grammer needs an accurate mental model of how new con-
cepts affect and are affected by existing concepts. More-
over, good separation dictates that interactions between
these concepts should be understandable at the level of the
new concepts. This suggests that the semantics of Szumo
should be specifiable as a self-contained partial specifi-
cation, called a view, and the semantics of its integration
with other language features should be specifiable by view
composition. To our knowledge, however, view-based ap-
proaches have not been applied in specifying the semantics
of language extensions. Moreover, devising separable views
that serve to simplify comprehensibility of a complex spec-
ification is still more of an art than a science. This paper
presents a case study in the use of views in structuring a Z
specification of Szumo.

1. Introduction

The latest research developments in programming lan-
guages support improved separation of concerns by ex-
tending OO programming languages with new language
features—e.g., aspects [17], traversal strategies [19], and
typestates [9]. These new features provide powerful ab-
stractions with which to express concerns that are diffi-
cult to localize in a single class—e.g., logging, assertion
checking, and traversals of linked object structures. Such

extensions often incorporate special-purpose programming
paradigms—e.g., logic formulas and regular expressions—
that facilitate expression of some concern as a program as-
pect. It is widely held that such separation of concerns ben-
efits development, maintenance and reuse of complex soft-
ware designs and code.

One of the most challenging concerns to separate is
the logic for synchronizing threads in a concurrent pro-
gram. Proper synchronization often requires the develop-
ment of complex negotiation protocols through which mul-
tiple threads cooperate to safely access shared resources
while avoiding starvation and deadlock. In addition to being
difficult to design correctly, implementations of these proto-
cols tend to be highly interleaved with the “functional core”
of a program. To separate these concerns, researchers have
developed custom aspect languages, such as COOL [20],
for programming synchronization aspects separately and
then weaving them into the functional core. Unfortunately,
while the negotiation logic may be physically separated into
an aspect, it is often not possible to reason about this as-
pect in isolation or about its interaction with the functional
core [8].

To address this deficiency, we developed a linguistic
model for separating synchronization from functional con-
cerns in a manner that facilitates reasoning about their com-
position. Our synchronization units model (Szumo) [4, 3,
27]1 extends object-oriented languages with declarative fea-
tures for expressing the synchronization concern. Using
Szumo, the programmer writes code to allocate processes2;
however, in lieu of operational code to synchronize the pro-
cesses, he declares how his objects cluster into synchroniza-
tion units and associates a synchronization constraint with
each unit. A synchronization constraint specifies a unit’s
access needs (i.e., those units that objects within the given

1called the Universe model in early publications.
2or threads—throughout the paper we treat “processes” and “threads”

as synonyms.



unit access directly) as a function of the unit’s local state.3

At runtime, processes negotiate with one another for ex-
clusive access to units in order to satisfy these constraints,
all while avoiding starvation and a large class of deadlocks.
Automated negotiation frees the programmer from having
to implement many of the details of synchronization.

To take advantage of Szumo features, a programmer does
not need to understand the implementation of the negoti-
ation machinery. However, she does need to understand
how Szumo concepts (e.g., units and synchronization con-
straints) and operations (such as changes to synchronization
states) affect and are affected by the concepts and operations
of object-oriented programs. This suggests that synchro-
nization aspects in Szumo should be specifiable as a self-
contained partial specification, known as a view, and that the
integration of these aspects with the functional core should
be specifiable by view composition. Views afford a power-
ful separation of concern. They allow complex specifica-
tions to be constructed incrementally by composing simpler
partial specifications, each of which describes some aspect
of the full specification. Their use is recommended in struc-
turing specifications of complex systems for comprehensi-
bility [1, 6, 10, 16, 29].

This paper contributes a view-based specification of the
semantics of Szumo synchronization aspects and their in-
tegration into multi-threaded, but synchronization-unaware,
object-oriented programs. Using the Z notation [26], we
define a BaseV iew, which models the synchronization-
unaware programs, and a SynchView, which models the
concepts and operations related to process synchronization.
The synchronization view is understandable in its own right.
In composing the base-language and synchronization views,
inter-view invariants and joined operations define the effects
of each view on the other. The result is a view-based seman-
tics of Szumo as an extension of object-oriented languages.
We are not aware of views having been used to specify the
semantics of language extensions in this manner.

A secondary result is a set of conventions for structuring
the two views to simplify their separate specification and
later composition. In addition to being useful for composing
these two views, we were able to apply these conventions
recursively to decompose the specification of the synchro-
nization view as an orderly composition of smaller views,
each of which formalizes some Szumo concept in isolation
of the others. Page limitations prevent the depiction of the
full semantics, which can be found in [28]. Rather, we il-
lustrate key aspects of the model that lend insight into the

3The “synchronization relevant” local state of a unit is represented
explicitly via a collection of boolean condition variables. Allocation of
processes and assignments to condition variables are the only imperative
features of Szumo; the latter are currently unified with assignments to
boolean valued instance variables of designated objects, but a new version
of Szumo (under development) will abstract them into declarative condi-
tions, which could be affected by general operations in a program.

virtues that derive from the use of views and some of the
lessons we learned in doing so.

2. Background on Szumo

We invented Szumo to separate the specification of syn-
chronization from the specification of a program’s core
functionality. In a Szumo-extended programming language,
synchronization is specified in a declarative constraint lan-
guage, and the core computation is programmed in the OO
paradigm using the base (unextended) language. We for-
malize the semantics of a Szumo-extended program as the
composition of two sub-programs: the base OO program
and a synchronization program, which is an abstraction of
the processes and the objects in the base program and whose
execution is governed by the synchronization constraints.
We now informally introduce the concepts and operations
of synchronization programs, irrespective of their connec-
tion to the base program.

In a synchronization program, synchronization units
model cohesive clusters of base-program objects with simi-
lar synchronization needs, and processes operate in disjoint
realms that comprise one or more synchronization units.
A synchronization unit may reference other units to model
the existence of a client–supplier relationship in the base
program. Each client unit is annotated by a synchroniza-
tion constraint that specifies the conditions under which the
client requires exclusive access to its direct suppliers. As a
synchronization program executes, its realms dynamically
reconfigure to schedule processes for execution while en-
suring that 1) realms are always pairwise disjoint, 2) a pro-
cess is scheduled only when its realm consists of a distin-
guished root unit and all suppliers required by synchroniza-
tion constraints associated with units in the realm, and 3)
starvation and preventable deadlocks are avoided.4 Because
realms are disjoint, two processes are assured to never con-
currently access the same memory location—shared units
migrate from one realm to another, but these units are never
accessed simultaneously by different processes.

Figure 1 illustrates two snapshots in the execution of a
synchronization program that models a solution to the fa-
miliar dining philosophers problem. This program com-
prises two processes that execute over a total of four syn-
chronization units, which are uniquely named for ease of
reference. The Philosopher units (p1 and p2) run in
their own processes, whose realms are shown using dashed
or dotted boxes that enclose the units contained in the
realms. For example, in Stage 0 of Figure 1, the realms
of the two processes contain only their root units (i.e., p1

and p2). No process may access either of the two Fork

4Our reference implementation of Szumo (as an extension to the Eiffel
language) includes a run-time system that implements these features [3].
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Figure 1. Realm dynamics

units in this stage. By contrast, in Stage 1 of Figure 1, unit
p1 can access either or both of the units f1 and f2.

Each synchronization unit declares a synchronization
constraint, which is used to infer, from the given unit’s
current state, the set of units to which it requires exclu-
sive access. The constraint itself is a limited propositional
formula over two types of variables, called unit variables
and condition variables. Each unit variable names a poten-
tially distinct dependency upon some supplier unit, i.e., the
supplier unit to which the unit variable is currently bound.
For example, p1 declares two unit variables, left and
right, whose bindings we depict graphically as named
links that connect the client to the supplier. Condition vari-
ables encode synchronization-relevant states within a unit’s
lifetime. We depict these variables graphically as boolean-
valued attributes, e.g., eating.

Formulas in curly braces (‘{’ and ‘}’) depict synchro-
nization constraints, which are interpreted as describing
the unit’s data-access needs in terms of its synchroniza-
tion state. As a unit cycles through its various synchro-
nization states, the set of units that it entails, i.e., those
units which it may directly access from within the given
state, changes. Consider, for example, p1’s constraint,
which is read, “eating entails left and eating en-
tails right.” According to this constraint, p1 may access
f1 (the unit referenced by its left variable) and f2 (the
unit referenced by its right variable) when the eating
variable is true, and moreover it will not access either unit
when this variable is false. Unit p2 declares an analogous
constraint.

Constraints relate to realms and the synchronization of
processes as follows. We say that a realm is sufficient if it
contains all supplier units that, according to the constraints
of the units in the realm, the process may access; and that
it is minimally sufficient if it contains only a root unit and
units that are needed for it to be sufficient. For example,
the two realms in Stage 0 of Figure 1 are minimally suf-
ficient because they contain only a root unit (either p1 or
p2) whose constraint states that no shared units are accessed
while eating is false. By contrast, the realm that contains
p2 is not sufficient in Stage 1 because p2’s constraint states

that it may access both its left and right forks, but these
units are not in the realm. Our model dictates that a process
is enabled if its realm is minimally sufficient; otherwise, it
is blocked. Graphically, we depict the realm of a blocked
process using a dotted (as opposed to a dashed) outline.

Because sufficiency depends on the values of condition
variables and unit variables, an operation that modifies these
variables may affect the set of units that a process may ac-
cess. We call such operations realm affecting because they
trigger renegotiation of the affected constraints, thereby af-
fecting the contents of realms. Such renegotiation involves
the migration of units among realms. For example, the
realm of the process running within p1 is expanded in going
from Stage 0 to Stage 1 as a result of modifying the value
of eating. We say that f1 and f2 migrate into the realm
containing p1 to satisfy p1’s constraint.

To extend an OO language with Szumo requires adding
syntax for declaring synchronization constraints and adding
(or reusing) mechanisms for creating and configuring syn-
chronization units and realms. Parsimony behooves us to
add a minimal number of new features. Indeed some or-
dinary operations are made to trigger corresponding oper-
ations on units and realms, e.g., the construction of a new
process object by a program triggers the construction of a
new realm. However, to capitalize on these side-effecting
operations requires a clean semantic model that allows the
programmer to reason about what is triggered by each op-
eration and about the consequences of those actions.

3 Foundations of our semantic model

The key to separately defining and then composing the
BaseView and SynchView was to use a shared framework
for structuring these specifications. This framework derives
from the structure of a metamodel of object-oriented pro-
grams, i.e., a model of models of such programs. Our meta-
model is defined as a four-tuple of Z schemas—one that rep-
resents type information, one that represents instance infor-
mation, one that imposes a conformance invariant between
types and instances, and a frame condition that imposes in-
variants over instance operations. We found this four-way



ClassModel[CLS, ASC, ATR, TYP]
Classes : P CLS
attrType : ATR 7→ TYP
attrOfClass : ATR 7→ CLS
assoc : ASC 7→ (CLS × CLS)

. . .

ObjModel[CLS, OBJ, ASC, LNK, ATR, VAL]
objClass : OBJ 7→ CLS
objData : OBJ 7→ ATR 7→ VAL
linkAssoc : LNK 7→ ASC
linkSource : LNK 7→ OBJ
linkDest : LNK 7→ OBJ

. . .

ObjConformsToClass[CLASS, OBJ, ASSOC, LINK, ATTR, TYPE, VAL]
ClassModel [ CLASS, ASSOC, ATTR, TYPE ]
ObjModel [ CLASS, OBJ, ASSOC, LINK, ATTR, VAL ]

ran(objClass) ⊆ Classes ∧ ran(linkAssoc) ⊆ dom(assoc)
. . .

StableMap[D, R] =̂
[ map : D 7→ R;

map′ : D 7→ R |
dom(map ∩ map′) =
dom(map) ∩ dom(map′) ]

ObjModelFC[CLASS, OBJ, ASSOC, LINK, ATTR, VAL] =̂
[ ∆ObjModel [ CLASS, OBJ, ASSOC, LINK, ATTR, VAL ] |

StableMap [ OBJ, CLASS ][ objClass/map, objClass′/map′ ] ∧
StableMap [ LINK, ASSOC ][ linkAssoc/map, linkAssoc′/map′ ] ∧
StableMap [ LINK, OBJ ][ linkSource/map, linkSource′/map′ ] ]

Table 1. Generic class/object meta-model.

partitioning to be useful for defining individual views and
for composing them. The remainder of this paper unfolds
and illustrates the consequences of this key idea.

Recall how Z can be used to model a program P as an
abstract data type of the form:

(P, PInit, {i : I • POpi})

Here, P is a schema that represents the set of conceivable
program states, PInit is an initialization schema, I is a finite
set of indices, and the indexed set contains schemas that rep-
resent operations over P. In our semantics, the set of con-
ceivable states instantiates a metamodel of object-oriented
programs, rather than a model of an individual program.
That is, our equivalent to P represents models of classes and
objects in an object-oriented program. Likewise, our equiv-
alent to PInit represents initial configurations of programs
whereby only a single object exists, and the operations in
the indexed set represent metamodel operations, which we
now describe in more detail.

Metamodel Operations model the construction/deletion
and configuration of objects and data values. We draw
a sharp distinction between a metamodel operation and a
method that one normally associates with classes in an
object-oriented program, e.g., a method that retrieves the
head of a list. A metamodel operation may represent one
step in the execution of a method on some object or mul-

tiple concurrent steps of different methods. For example,
one metamodel operation could specify the construction of
an object by one process concurrent with the update of an
attribute of some other object by a different process. This
abstract treatment of program operations is meaningful be-
cause our purpose in modeling is to understand the com-
position of language features rather than to understand the
meaning of a particular program in a Szumo-extended lan-
guage.

Table 1 depicts the structure of our metamodel of pro-
grams. Structurally, this model is reminiscent of prior work
in formalizing UML in Z [14] and in Object-Z [18], except
that we provide a frame condition to constrain the behav-
iors of metamodel operations and our schemas are generic
so as to be easily reused among multiple views. The generic
schema ClassModel models the static typing information of
programs in a class-based language as if this information
had been specified in a class diagram using the conventions
of [24].5 The set Classes records all of the classes that a pro-
grammer has declared. The partial function attrType maps
an attribute (element of the generic parameter set ATR) to its
declared type (element of the generic parameter set TYP),
and the function attrOfClass maps an attribute to the class
(element of the generic parameter set CLS) in which that at-

5Most notably: Class attributes are of only primitive types; references
to objects are modeled using links of associations.



tribute is declared. Finally, the function assoc models the
set of associations as a mapping from an association (ele-
ment of the generic parameter ASC) to a pair of associated
classes.

The generic ObjModel schema defines configurations of
objects, each of which may be attributed with values, and
links, each of which connects two objects. This schema
is parameterized by several of the same sets that param-
eterized ClassModel, and in addition: OBJ, LNK, and
VAL, which represent objects, links, and attribute values
respectively. Here, objClass associates each object with
the class it instantiates, and objData associates each object
with a binding of attributes to values. The partial functions
linkAssoc, linkSource, and linkDest record analogous infor-
mation about links. This model captures the notion that a
program is a dynamic configuration of attributed objects.

The generic schema ObjConformsToClass codifies what
we expect to be true of an object model that conforms to a
given class model. It states that every object and link in the
object model instantiates some class or association in the
class model, and that attribute values (resp. link source and
destination objects) are of the appropriate type (resp. class)
according to the class model. Here and elsewhere in our
semantics, we express type–instance conformance using a
separate invariant because doing so simplifies the specifi-
cation of both the type and instance state schemata (e.g.,
ClassModel and ObjModel). This separation is particularly
useful for integrating declarative concurrency extensions,
such as Szumo, because the syntactic extensions adorn the
definition of classes (i.e., types) but have an implicit effect
on objects (i.e., instances).

Finally, we define frame conditions that impose sound-
ness constraints on the invocation of metamodel operations.
The generic schema ObjModelFC6 prohibits program oper-
ations from changing the class to which an object belongs,
the association to which a link belongs, or the source ob-
ject of a link. We refer to this condition as stating that
the objClass, linkAssoc, and linkSource mappings are sta-
ble under change. The stability property applies to other
mappings in other views; thus we abstract it here using a
generic schema definition.

To summarize, our metamodel comprises four distinct
kinds of schemas:

1. a space of conceivable types and relations among types
(e.g., ClassModel),

2. a space of conceivable instances and configurations of
instances (e.g., ObjModel),

3. a conformance invariant that relates the space of con-
ceivable instances to the space of conceivable types
(e.g., ObjConformsToClass), and

6Here and in the sequel, schemas whose names end in “FC” denote
frame conditions.
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Figure 2. View-based semantics of
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4. an instances frame condition that must be conjoined
with any metamodel operation (e.g., ObjModelFC).

Because we are interested only in extensions to statically-
typed languages, there are no operations over the types com-
ponent of our model and thus no need to specify “types
frame conditions” other than that the types are unaffected
by an operation. Organizing the specifications of both the
BaseView and the SynchView according to these conventions
greatly simplifies their composition.

4. Architecture of our semantic model

Figure 2 depicts the high-level architecture of our view-
based semantics of synchronization-aware programs (i.e.,
the composition of BaseView and SynchView). Each itali-
cized entity indicates a cohesive view, which is organized
according to the structuring conventions described in Sec-
tion 3. Notice that SynchView is itself composed from sev-
eral smaller views and that this decomposition of SynchView
is used to incrementally compose it with the BaseView. We
now briefly describe the BaseView and use it to illustrate
one level of view composition, namely the composition of
base programs and unit programs into UnitAwarePrograms.
Using this example, we then discuss some of the interesting
properties of the architecture.

4.1. The base view

Our BaseView comprises a specification called
Programs, which defines metamodels of object-oriented
programs that are concurrent but synchronization unaware.
Commensurate with our conventions for modularizing
views as schema tuples, we first define the language’s static
type information. The declarations:

[PCLASS, PASSOC, PATTR]



PTYPE ::= pBool
PCond ::= . . .
PLocalCond ::= . . .

PConstr ::= pcTrue | pcRef〈〈PASSOC〉〉
| pcRefWhen〈〈PASSOC × PCond〉〉
| pcENTAILS〈〈PLocalCond × PConstr〉〉
| pcAND〈〈PConstr × PConstr〉〉

introduce basic types needed to instantiate the various meta-
model schemas and a free type that models declarations
in our language of synchronization constraints. Schema
ProgTypes then models the static type system as follows:

ProgTypes
ClassModel [ PCLASS, PASSOC, PATTR, PTYPE ]
procClass : PCLASS
SynchClasses : P PCLASS
RealmClasses : P PCLASS
synchClassConst : PCLASS 7→ PConstr

SynchClasses ⊆ Classes

RealmClasses ⊆ SynchClasses

procClass ∈ Classes \ SynchClasses

dom(synchClassConst) = SynchClasses

In addition to instantiating the generic schema
ClassModel, ProgTypes introduces four schema vari-
ables, procClass, SynchClasses, RealmClasses, and
synchClassConst. The distinguished procClass denotes
a class which, when instantiated, should produce both
a new object and a new process that is associated with
that object. The sets SynchClasses and RealmClasses
contain programmer-designated synchronization classes
and realm classes respectively. When instantiated, a class
in SynchClasses should produce both a new object and
a new synchronization unit that contains the new object.
In the sequel we will refer to the object whose lifetime
coincides with the lifetime of the corresponding unit as the
root object of the unit. A realm class is a synchronization
class whose instantiated units may serve as the root unit of
a realm. The root object of a unit is a distinct concept from
the root unit of a realm. Every instance of a synchronization
class is a root object of some unit; this unit will be the root
unit of a realm precisely when the synchronization class is
also a realm class. Each synchronization class is associated
with a concurrency constraint (i.e., element of PConstr).

Notice that while ProgTypes defines mechanisms for rep-
resenting Szumo declarations, none of the semantics of
these declarations are depicted in this schema. This is by
design: To properly specify their effects requires an un-
derstanding of units and realms, which are not part of the
BaseView.

Next, we model the space of instance configurations in
our Szumo-extended language. The declarations:

[POBJ, PLINK, PROCESS]

PVAL ::= pFalse | pTrue

introduce a space of objects, links, processes, and at-
tribute values, which for brevity in this paper we restrict to
booleans. Schema ProgInstances models the dynamic con-
figuration of objects and processes in programs written in
an object-oriented language:

ProgInstances
ObjModel [ PCLASS, POBJ, PASSOC,

PLINK, PATTR, PVAL ]
procToObj : PROCESS 7� POBJ

ran(procToObj) ⊆ dom(objClass)

In addition to instantiating the generic metamodel
schema ObjModel, ProgInstances introduces an injective
mapping (procToObj) between processes and objects. The
objects in the range of this mapping must be instances
of class procClass; and indeed every instance of class
procClass must be represented in this mapping. This type–
instance conformance invariant is formalized as follows:

ProgConforms
ProgTypes
ProgInstances

ObjConformsToClass [ PCLASS, POBJ,
PASSOC, PLINK,
PATTR, PTYPE, PVAL ]

ran(procToObj) =
dom(objClass B {procClass})

Finally, the schema ProgInstancesFC incorporates the
generic frame condition over object models and further re-
quires that the procToObj mapping be stable, which means
that the binding of a process to an object is invariant modulo
the creation/deletion of processes.

ProgInstancesFC =̂
ObjModelFC [ PCLASS, POBJ, PASSOC,

PLINK, PATTR, PVAL ] ∧
StableMap [ PROCESS, POBJ ]

[ procToObj/map, procToObj′/map′ ]

The Programs view may now be expressed formally as:

Programs == ( ProgTypes, ProgInstances,
ProgConforms, ProgInstancesFC )



[UCLASS, UOBJ, UASSOC, ULINK, UATTR]

UTYPE ::= uBool
UVAL ::= uFalse | uTrue
UConstr ::= ucTrue

| ucRef〈〈UASSOC〉〉
| ucRefWhen〈〈UASSOC × UCond〉〉
| . . .

UnitTypes
ClassModel [ UCLASS, UASSOC,

UATTR, UTYPE ]
[ UnitClasses/Classes,

uattrOfUClass/attrOfClass,
uattrUType/attrType,
uassoc/assoc ]

uClassConstraint : UCLASS 7→ UConstr

dom(uClassConstraint) = UnitClasses

UnitInstances
ObjModel[ UCLASS, UOBJ, UASSOC,

ULINK, UATTR, UVAL ]
[ unitClass/objClass,

unitData/objData,
unitLinkAssoc/linkAssoc,
unitLinkSource/linkSource,
unitLinkDest/linkDest ]

unitConstraint : UOBJ 7→ UConstr

dom(unitConstraint) = dom(unitClass)

UnitInstancesFC =̂
ObjModelFC [ UCLASS, UOBJ, . . . ][. . .] ∧
StableMap [ UOBJ, UConstr ]

[ unitConstraint/map,
unitConstraint′/map′ ]

UnitConforms
UnitTypes
UnitInstances

ObjConformsToClass[ UCLASS, UOBJ, . . .][. . .]

∀ u : dom(unitConstraint) •
unitConstraint(u) =

uClassConstraint(unitClass(u))

Table 2. Components of the Units view.

Clusters[ELEM, CLUSTER]
root : CLUSTER 7� ELEM
in : ELEM 7→ CLUSTER

root∼ ⊆ in

dom(root) = ran(in)

StrictClustersFC[E, C] =̂
StableMap[C, E][root/map, root′/map′] ∧
StableMap[E, C][in/map, in′/map′]

Table 3. Anciliary definitions

4.2 Unit programs

The Units view models synchronization units in the
abstract—i.e., as object-like structures irrespective of how
they relate to program objects. We define it as:

Units == ( UnitTypes, UnitInstances,
UnitConforms, UnitInstancesFC )

in a manner analogous to the definition of Programs. Units
is essentially just an instantiation of the metamodel with
a few additional syntactic extensions. Table 2 depicts the
declarations and constituent schemas.

Units are “object-like” structures; thus the basic types
introduce unit classes and instances (UCLASS and UOBJ),
unit associations and links (UASSOC and ULINK) and
unit attributes (UATTR). The free type UConstr defines
the language of synchronization constraints, phrased in the
terminology of unit classes rather than program classes.
The mapping uClassConstraint in schema UnitTypes asso-
ciates these constraints with unit classes, and the mapping
unitConstraint in schema UnitInstances associates them
with individual units.7 The conformance invariant relates
these mappings in the obvious way.

4.3 View composition: Unit-aware programs

We now show how to incorporate one level of view com-
position. A composite view is specified by composing two
or more other views in our framework. Figure 2 depicts
five composite views, one of which defines the unit-aware
program abstraction. A unit-aware program is a base pro-
gram whose objects cluster into synchronization units. In
terms of behavior, it can be thought of as a base program
running alongside a unit program with operations on the

7This latter mapping, while not strictly necessary, simplifies the com-
position of Units with Realms (details not provided in this paper).



former implicitly affecting the latter. The structure and be-
havior of unit-aware programs is defined by a view called
UnitAwarePrograms, which is formed by composing the
Programs and Units views. We now step through this com-
position to give a sense of how it works and how compo-
sition is simplified by our structuring conventions. Space
limitations prevent our showing the integration of realm-
and synchronization- awareness, but these are incorporated
in a similar manner.

The “types” component of the unit-aware programs view
is defined as follows:

UnitAwareProgTypes
ProgTypes
UnitTypes
synchClassMap : PCLASS 7� UCLASS

dom(synchClassMap) = SynchClasses
. . .

Notice that we conjoin the analogous schemas from
the Programs and Units views and relate them using an
invariant. Here, the mapping synchClassMap associates
classes that were designated as synchronization classes in
the BaseView with unit classes in the SynchView. Other in-
variants (elided for brevity) impose a correspondence be-
tween unit classes and associations and program classes and
associations.

The instances component of this view is defined by
conjoining the analogous “instances” components from the
Programs and Units views and relating these instances by
requiring units to cluster program objects. A cluster is es-
sentially a set of entities with one entity distinguished as a
representative (called root) for the others (Table 3). Each
unit is a cluster of program objects, one of which is desig-
nated as the root of the unit:

UnitAwareProgInstances
ProgInstances
UnitInstances
Clusters[POBJ, UOBJ][unitRoot/root,

objInUnit/in]

dom(objData) = dom(objInUnit)

dom(unitRoot) = dom(unitData)

This schema imposes two invariants: Every object must
be an instance of some unit and the units referenced in the
clustering mappings must coincide with those referenced in
the Units view. Consequently, a program object cannot exist
without being clustered into some unit, and every unit must
cluster some non-empty set of program objects.

The conformance invariant (UnitAwareProgConforms)
connects the set of units to the set of objects that instantiate
a class in SynchClasses.

UnitAwareProgConforms
UnitAwareProgTypes
UnitAwareProgInstances
ProgConforms
UnitConforms

dom(objClass B SynchClasses) = ran(unitRoot)

Finally, the frame condition imposes a “strictness” prop-
erty on the clusters, meaning that the “root status” of an
object in a unit may not vary over the lifetime of the unit
and that objects cannot migrate among units.

UnitAwareProgInstancesFC =̂
[∆UnitAwareProgInstances |

ProgInstancesFC ∧ UnitInstancesFC ∧
StrictClustersFC[POBJ, UOBJ]

[ unitRoot/root, unitRoot′/root′,
objInUnit/in, objInUnit′/in′]]

4.4 Properties of the architecture

While only a small part of the larger composition of
views, the specification of UnitAwarePrograms serves to il-
lustrate several useful properties of our architecture. Each
component of a composite view is built up systematically
from the corresponding components of the more primitive
views that are being composed. Moreover, what is added
beyond the inclusion of dependent components is not large
(e.g., the addition of the synchClassMap in the types com-
ponent, the addition of the Clusters invariant in the in-
stances component, one line in the predicate part of the
conformance-invariant component, and one additional con-
junct in the frame-condition component). These properties
are typical of the other composite specifications named in
Figure 2.

By structuring each view according to the our con-
ventions, we were able to decompose the SynchView
into a two-dimensional complex of views that nicely
separates concerns and simplifies composition with the
BaseView. For example, programs in this BaseView are
not synchronization-aware, despite having been adorned
with the declarative features of Szumo. These programs
are made synchronization-aware by incrementally incorpo-
rating the components of the Programs view with corre-
sponding components from the Units, RealmAwareUnits,
and SynchAwareUnits views, as indicated by the arrows in
the first column of the diagram.

By design, each named view contributes some significant
capability to the overall semantics without mixing in unnec-
essary details. As indicated by the diagram, the SynchView
is itself a complex of specifications, and indeed we found
it quite difficult to compose our early specifications of this



view with the BaseView. However, by carefully decompos-
ing the SynchView specifications as depicted in the diagram,
we found that we could exploit this structure to incremen-
tally compose it with the BaseView specifications.

The rows and columns of this structure constitute seman-
tically meaningful but mutually cross-cutting concerns. The
columns define the various conceptual models that a pro-
grammer must manage when building systems in our ex-
tended language. For example, the second column defines
the conceptual model of unit programs, which are more ab-
stract (and compact and easier to visualize) than the corre-
sponding base programs. This column begins with the most
basic model of a unit program—one whose operations can
modify the state of a collection of units, with no notion of
realms or synchronization. Subsequent refinements incre-
mentally incorporate these additional concepts. For exam-
ple, RealmAwareUnits uses a relation for judging the satisfi-
ability of synchronization constraints to partition units into
disjoint realms. The refinement of this specification into
SynchAwareUnits ties the enabling of realms to their mini-
mal sufficiency.

By contrast, the rows encapsulate and define cross-
cutting features of our extended language. For example, the
third row defines realm-awareness, starting with a most ba-
sic model of realm programs (i.e., Realms). Concepts in this
most basic view are incrementally integrated into the other
conceptual models (e.g., Units and Programs) that a pro-
grammer must manage when building applications in our
extended language.

5. Discussion

Formal semantics of real programming languages are
large and complicated, and some of the details that such
a semantics would prescribe are irrelevant to the integration
of our concurrency model. We therefore opted to use a very
abstract BaseView—one that attempts to capture only the
“essence” of the object-oriented languages we wish to ex-
tend.8 This paper contributes a view-based framework for
incrementally specifying complex language extensions in a
form that demonstrates clean separation of concerns.

Early work on specification in Z using views [6, 1,
10] treats issues of composition (called amalgamation in
these papers) of unrestricted views and consistency be-
tween them. In contrast, we impose additional structure on
component views, which simplifies composition and more
clearly delineates the specification of the new language fea-

8Of course, over-abstraction may mask a critical but unforeseen fea-
ture interaction. For example, our abstraction does not allow us to reason
about the potential for inheritance anomalies. Our purpose in this paper is
to use the formal model to understand how one should “think about” the
integration of object-oriented and Szumo concepts, and for this purpose,
abstraction is critical.

tures and the specification of how they affect and are af-
fected by existing features of a language.

The resulting view-based semantics of synchronization-
aware programs is modular and extensible. Modular se-
mantics are of interest to language designers. For example,
Reppy extends the formal semantics for a subset of Stan-
dard ML using combinators [23]. Mosses and Musicante
extend a sequential language with message-based concur-
rency primitives, and then show that an action semantics of
the sequential language can be augmented without modifi-
cation to produce a definition of the extended language [21].

Domain-specific languages frequently extend an existing
base language. Ekman and Hedin [12, 13] describe a tool
for creating reusable modules for domain-specific language
extensions from algebraic specifications. Hudak [15] uses
monads for a similar purpose. We do not propose to gener-
ate tools from our view-based semantics.

It is well known that separating program aspects can
introduce errors if they are not sufficiently orthogonal be-
cause of the difficulty of reasoning about unanticipated in-
teractions [11]. Schmied and Hauck propose extending as-
pects with meta-level pre- and post-conditions resembling Z
schemas in order to be able to cleanly compose them [25].
Brichau et al. [7] use logic metaprogramming to create com-
posable domain-specific aspect languages.

The organization of our specification (Figure 2) resem-
bles those proposed by advocates of multi-dimensional sep-
aration of concerns (MDSOC) [22]. MDSOC organizes the
space of basic software elements by grouping them along
different dimensions, such as by classes or by features. Ba-
tory et al. [2] also note that multi-dimensional models pro-
duce more compact program specifications, which can be
composed in very powerful ways. Our approach applies the
same principle to a specification of a language extension
instead of to executable program code, with the rows and
columns of our design each supporting a different dimen-
sion.

Our experience in specifying the semantics of negotia-
tion affirms the sentiments of Bjorner and Jones, who argue
that formal models should be constructed during the defini-
tion of a language rather than after the fact [5]. In fact, as a
result of the work presented in this paper, we made several
modifications to our synchronization constraint language.
Most notably, we abandoned the use of disjunctions be-
cause of problems in providing a clean semantics—despite
the fact that we had already implemented support for dis-
junctions in early prototypes of our Eiffel extension. We
were fortunate to discover these problems before releasing
the language and its compiler to a large audience.
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