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Abstract

The development, certification and evolution of de-
pendable software requires the ability to analyze soft-
ware artifacts in all their extensive detail. This, in turn,
is contingent upon availability of reliable, certified tools
that can rigorously analyze the behavior and properties
of software artifacts. One of the most difficult challenges
in the development of such a tool is the ability to derive
the function of a loop from a static analysis of its source
code. In this paper, we discuss the main tenets of our
approach to this problem, based on a relation-theoretic
refinement calculus, and outline its results, insights, and
prospects.
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1 Introduction: Posing the Problem, Out-
lining a Solution
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It is well known that code inspection is one of the
most effective techniques for ensuring software product
quality. As the size and complexity of software prod-
ucts continue to grow however, it becomes increasingly
unrealistic to conduct code inspections without auto-
mated support. Also, with software security becoming
increasingly important, it is no longer sufficient to en-
sure that a software product provides the services that
are expected from it; we must also ensure that it has no

undesirable side-effects (such as malicious code). Fi-
nally, the emergence of many third party software devel-
opment paradigms (such as COTS-based software de-
velopment or outsourcing) means that we are increas-
ingly dependent on software whose development pro-
cess we did not control, and whose quality we cannot
ascertain. The combination of these conditions places a
high premium on having the capability to automatically
extract the function of a software artifact in all its de-
tails, in all circumstances of use. It is well understood
that the problem of computing program behavior is ex-
tremely difficult; however the substantial value of such
a capability motivates a closer look at what can be done.
In this paper, we outline a refinement based approach
to the derivation of loop functions by successive ap-
proximations, and discuss its strengths, limitations, and
prospects.
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For the purposes of our discussion in this paper, we
represent program functions (that is, the behavior of pro-
grams) as conditional concurrent assignments (CCA’s)
or as closed form relational expressions. CCA’s express
non-procedural definitions of the net behavior of pro-
grams and their constituent parts. For example, if we
consider the following sequence of assignments on three
variables > , ? and @ (of type integer, say):

x:= x+1; y:= 2*x; z:= z+y

then their effect can be captured by the following con-
current assignment
>BADC=>$EGF ,
?0ADCIH$JLK/>ME=FON ,
@MADCG@PEQH$JRKS>$EIFTN .

In other words, every concurrent assignment summa-
rizes what happens to a particular variable, and takes
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into account the effects of all the sequential statements
on that variable. Relational expressions are formed us-
ing traditional relational operators such as union, inter-
section, product, and complement. The focus of our dis-
cussion in this paper is the derivation of the function of
a while loop, of the form

while t do B,

where � is a Boolean condition and � is the loop body.
The premises that characterize our approach to the prob-
lem can be summarized as follows:

� Closed Form Functions. We aim to produce a
closed form of the loop function; this premise pre-
cludes using transitive closure operators, recursive
definitions, or existential quantification over the
number of iterations. In essence, this mandates the
derivation of an inductive argument that derives the
loop function from the function of its loop body.

� Deriving the loop function by successive approxi-
mations. As a divide-and-conquer discipline, the
loop function is derived progressively, by accumu-
lating information on the loop behavior as more
and more features of the loop are analyzed and cap-
tured.

� Providing substitutes for the loop function. The
loop extraction machinery evolves as more and
more programming knowledge and domain knowl-
edge is captured. At any stage in this evolution, we
do not merely distinguish between loops that we
can handle (whose behavior we can compute) and
loops that we cannot handle; rather, we offer a con-
tinuum of functional extraction capability, where
we can extract the complete function of some loops,
most functional attributes of other loops, some
functional properties of yet other loops, etc. As
the loop extraction machinery evolves, we not only
cover more loops, but we also capture more (func-
tional aspects) of each loop. For a given loop, even
if we fail to derive its complete function, we may
capture part of its functional properties.

� A refinement based approach. The ordering and the
lattice properties of the refinement ordering are at
the core of the divide-and-conquer strategy that we
advocate, as well as the strategy of gradually in-
creasing coverage of any loop (until it is fully mod-
eled).
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In [10] Dunlop and Basili present a heuristic in which
they derive the function of a loop by considering sim-
ple expressions of the function under special conditions
and attempting to derive the loop function as a general-
ization of these simpler expressions. The derivation of
loop invariants is closely related to the derivation of loop
functions since they both aim to derive the inductive in-
frastructure that underlies the behavior of the loop. Fur-
thermore, a theorem by Basu and Misra [2] shows how
loop functions can be used to produce loop invariants
and a theorem by Mili et al [18] shows how invariant
functions can be used to derive loop functions. Hence
the derivation of loop invariants is closely related to the
derivation of loop functions, and in the absence of exten-
sive work on deriving loop functions per se, we compare
our research to past work on deriving loop invariants.
Many researchers in the theorem proving and the pro-
gram verification communities have lent much attention
to the goal of extracting loop invariants [4–8, 11, 14–
16, 22, 23]. In the conclusion, we will discuss how these
works relate individually to our research; in this section,
we discuss in general terms how research on deriving
loop invariants differs from research on deriving loop
functions along several orthogonal dimensions.

� Different Goals. We are trying to derive the func-
tion of a loop, whereas the references cited above
are geared towards deriving loop invariants; while
this distinction is not very profound, we are still
dealing with different mathematical objects, that
involve different formulas. Perhaps most signif-
icantly, the loop invariants are typically used in
theorem provers that aim to establish the correct-
ness of a loop program; whereas the functions that
we derive are intended for human inspection. This
leads to an important distinction in the format of the
outputs: whereas loop invariants must be produced
in a format that lends itself to subsequent manip-
ulation by a theorem prover, loop functions must
be produced in a format that lends itself to human
parsing, analysis and inspection.

� Different Hypotheses. The function of a loop is de-
pendent exclusively on the loop. By contrast, a loop
invariant is typically dependent on a precondition
(that defines its basis of induction) and a postcondi-
tion (that determines how strong the loop invariant
must be to prove the desired correctness property).
This is a significant difference, because it means
that we look at different sources of information to
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derive the loop function and to derive a loop invari-
ant. It also means, incidentally, that a loop has a
unique function, but an infinity of loop invariants.

� Different Scopes. Loop invariants are meaningful
for any iterative program, irrespective of whether it
is structured or not. Hence we can talk about the
loop invariant of a program that has GoTo’s, condi-
tional GoTo’s, jumps in and out of the loop body,
even when the program does not translate into any
structured iterative statement (while, for, repeat un-
til, repeat while, etc). By contrast, loop functions
can be derived only for structured loops, at least in
the context of this paper.

� Different Methods. There is a simple reason why
loop functions can be derived only for structured
loops whereas loop invariants can be derived even
for unstructured loops: Loop invariants are derived
by induction on the execution path (the invariant
assertion at one point of the execution path is in-
ferred from the invariant assertion at a preceding
point of the execution path), whereas loop func-
tions are derived by induction on the control struc-
ture (the function of a compound structure is in-
ferred from the functions of its components). Fur-
thermore, the fact that loop invariants are depen-
dent on more information than loop functions (pre/
post conditions) means that different methods must
be called upon for these two types of tasks: with
loop invariants, one usually takes a top down ap-
proach, where conditions about program compo-
nents are inferred from conditions on larger pro-
grams (then validated). By contrast, function ex-
traction proceeds strictly in a bottom up manner:
functions of compound programs are derived from
functions of components.

2 Mathematical Background

For the sake of readability, we keep our discussions
throughout this paper at an intuitive level, so that it is
not strictly necessary to understand all the details of this
section. Those readers who want to follow the detailed
mathematics will need to acquaint themselves with the
definitions and notations introduced herein.

. ��� 8)���%;& ��� � � � &'� ������

We represent the functional specification of programs
by relations; without much loss of generality, we con-
sider homogeneous relations, and we denote by

�
the

space on which relations are defined. A relation � on
set

�
is a subset of the Cartesian product

� J � , hence
it is natural to represent general relations as

�3C���K����	��
 N� �
K����	��
 N����
for some predicate �
K����	� 
 N . Typically, set

�
is defined

by some variables, say > , ? , @ ; whence an element � of�
has the structure �;C��/>�� ?�� @���� We use the notation

>
K��ON , ?-K��TN , @2K��ON (resp. >
K�� 
 N , ?-K�� 
 N , @�K�� 
 N ) to refer to the
> -component, ? -component and @ -component of � (res.
� 
 ). We may, for the sake of brevity, write > for >
K��ON and
> 
 for >
K�� 
 N (and do the same for other variables).

As a specification, a relation contains all the (input,
output) pairs that are considered correct by the speci-
fier. Constant relations include the universal relation,
denoted by � , the identity relation, denoted by � , and
the empty relation, denoted by � . Given a predicate � ,
we denote by �2K � N the subset of the identity relation de-
fined as follows:

�2K � N C���K����	� 
 N� � 
 C�� � � K��ON	�!�
Because relations are sets, we use the usual set theoretic
operations between relations. Operations on relations
also include the converse, denoted by "� and defined by

"� C#� K����$� 
 N� K�� 
 �$�ON&%'�(�!�
The product of relations � and � 
 is the relation denoted
by �*)&� 
 (or �+� 
 ) and defined by

�*)&�+
�C���K����$��
 N�� , ��A�K���� � N-%.�/�RK ���	��
 N-%.�+
0�!�
The prerestriction (resp. post-restriction) of relation �
to predicate � is the relation ��K����	� 
 N�� � K��ON��LK����	� 
 N1%2�(�
(resp. � K����$� 
 N�� K����	� 
 N3%4�5� � K�� 
 N�� ). We admit without
proof that the pre-restriction of a relation � to predicate
� is ��K � N�)6� and the post-restriction of relation � to pred-
icate � is �7)8�2K � N . The domain of relation � is defined as
dom K�� N C9�:��� ,6� 
 A'K����	� 
 N;%<�=�!� The range of relation
� is denoted by >:?�@-KA� N and defined as dom K�"� N . We
say that � is deterministic (or that it is a function) if and
only if "�;�CBD� , and we say that � is total if and only
if �EBF�G"� (or equivalently, �;� CH� ). Also, we say
that � is surjective if and only if �IBC"�+� , and that � is
injective if and only if �2"�JBK� . A relation � is said to
be rectangular if and only if �3C5�+� � . A relation � is
said to be reflexive if and only if �LBM� , transitive if and
only if �+��B*� and symmetric if and only if � CN"� .

. �/. < � �PO ��� 1I� ���RQ & ����� ����

We define an ordering relation on relational specifi-
cations under the name refinement ordering:
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Definition 1 A relation � is said to refine a relation � 

(denoted by: ���5� 
 ) if and only if

�+���'� 
 ���RKA���7� 
 N C5� 
 �

This definition is consistent, modulo differences of no-
tation, with traditional definitions of refinement [13, 21].
Intuitively, this property is the relational equivalence of
the property that provides that a specification refines an-
other if its precondition is weaker and its post-condition
is stronger. We admit without proof that the following
propositions hold, modulo traditional definitions of total
correctness [9, 13, 17]:

� A program � is correct with respect to a specifi-
cation � if and only if � �	�
� � , where � �	� is the
function defined by � .

� ��� � 
 if and only if any program correct with
respect to � is correct with respect to � 
 .

Intuitively, � refines � 
 if and only if � represents a
stronger requirement than � 
 .

In [3] we have studied the lattice properties of this
ordering, and found the following results:

� Any two relations � and � 
 , which satisfy the fol-
lowing condition

�+���'� 
 � C KA���'� 
 N �
have a join (i.e. least upper bound), which is de-
fined by:

��7�+
�C ��� � 
 ���7�+
�� �+���7���'�;
��
� Any two relations � and � 
 have a meet (greatest

lower bound), which we denote by ��� � 
 , and de-
fine by

���I�+
�C �+���7�+
 ���;K����7�+
 N �

The lattice of refinement admits a universal lower
bound, which is the empty relation. It admits no uni-
versal upper bound; maximal elements of this lattice are
total deterministic relations. The expressions of join and
meet are complex because our relational specifications
can be arbitrarily partial (are not necessarily total), and
arbitrarily non-deterministic (are not necessarily func-
tions). The outline of Figure 1 shows the overall struc-
ture of the lattice of refinement.

3 Basis of a Stepwise Approach

Several approaches are possible in deriving the func-
tion of a loop. The core idea of the approach that we
are advocating in this paper is to derive the function by
considering a few statements at a time, thereby obviat-
ing the need to face the size and complexity of the loop
all at once. In this section we discuss, in turn, how to
derive partial claims about the function of the loop, then
how to combine these partial claims to obtain a (more)
complete description of the loop function.

����� � �2	������ ���9*$&'	 � ��& �=Q ��& � 1I

We distinguish between two aspects of the question
of deriving / discovering partial functional details about
the function of a loop: first, how do we discover such
partial functional details; second, how do we represent
them. We discuss the first question in section 4; and we
discuss the second question in this section. We let � be
a while statement on space

�
written as:

while t do B

and we let � ��� be the function that this while statement
defines on space

�
. All claims about the function � ���

of the while statement � take the form of a refinement
statement:

� �������
for some specification � ; the higher the specification �
in the refinement ordering (see Figure 1) the stronger
the statement. Borrowing terminology from lattice the-
ory, we refer to � as being a lower bound for � ��� . The
following theorems, due to [20], provide lower bounds
for � ��� , and form the basis for our stepwise approach;
they all assume that the loop terminates for all initial
states. In [20], we find that this assumption does not af-
fect generality, in the following sense: all initial atstes,
all final states and all initial states in the execution of a
loop � fall within the domain of � ��� . Hence if we rede-
fine the state space of the loop as its domain, we do not
exclude any state of interest; in practice, this means that
the first step we must take before deriving the function
of a loop is to find its domain (by no means a straightfor-
ward task), then we redefine its space as the domain. We
provide below the three theorems, due to [20], that we
use to derive lower bounds of the loop function; we do
not provide proofs for these theorems, but briefly com-
ment on what they mean.
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Theorem 1 We consider a while loop � on space
�

, de-
fined by � = while t do B. If � is a reflexive tran-
sitive relation such that

�2K � N )	� � ��B*�*� �E)&��K � � N )&� C5� �

then
� ����� �*)&�2K � � N �

We comment on the conditions of this theorem:

� � must be a superset of � � � . Given that the function
of the loop body is defined by a set of concurrent
assignments, a superset of this function can be de-
rived by inspecting an arbitrary (arbitrarily small)
subset of these concurrent assignments. This is a
crucial separation of concerns attribute.

� � must be reflexive and transitive. Extracting the
function of a loop consists essentially in identi-
fying the inductive argument that underlies the
loop1. We submit that the derivation of a reflex-
ive and transitive superset of the loop body captures
the inductive argument of the loop, in the following
sense: reflexivity serves the basis of induction, and
transitivity serves the inductive step of the claim
that the lower bound derived from � is refined by
� ��� .

Theorem 2 Let � be the while loop defined by while
t do B. If �

������	��
� then

� �������
where �=C5��K � N )&� )&�2K � N )	� � �6)&��K � � N �'��K � � N��
This theorem provides a lower bound for � ��� that says,
in effect, that the final state satisfies � � , but also that the
antecedent of the final state by � � � satisfies � (i.e. that the
final state is the first state to satisfy � � in the sequence of
successive states produced by the execution of the loop).
This theorem is used whenever the condition � � is not
sufficient to determine the final state. For example, if
we consider the loop

while i<>0 do i:= i-1

then we know that at the end of the execution, �$C�� .
But if the loop were written as:

while i>0 do i:= i-1

1Unless the loop is incorrect, this consists in recovering the induc-
tive argument that the programmer used in building the loop in the first
place.

then not only do we know that at the end of the execu-
tion, ����� , we also know (by virtue of theorem 2) that
� EGF���� ; from which we infer �)C�� .
Theorem 3 Given a while statement � of the form
while t do B on space

�
, such that � terminates

for all initial states in
�

, and that �
������	��
� . Then

� �������
where � is defined as:

�GC KA� )	� � � �'� N )&��K � � N��
The lower bound provided by this theorem may be use-
ful in cases where the function of the loop body ( � � � )
is not surjective. If it is surjective, then �/) � � � CF� ,
whence �GC5�') ��K � � N , which merely expresses that the
final state satisfies � � (which is redundant with the other
theorems).

���/. Q��)1I: ��%� � � *$&'	 � ��& �(Q ��& � 1I

By applying theorem 1 repeatedly (for a variety of
combinations of concurrent assignments), and by apply-
ing theorems 2 and 3 as needed, we derive a set of lower
bounds for � ��� , which we denote by ��� , ��� , ... ��� . Then
two questions arise: first, how do we compose ��� , ��� ,
... ��� ? second, how do we know that we have enough
lower bounds to derive the function of the loop? We an-
swer these questions below:

� Combining Lower Bounds. Using a simple identity
from lattice theory, we find that if � ��� refines lower
bounds � � , � � , ... � � , then it refines their join (least
upper bound). Hence we write:

� ������� �  � �  � �  � � �
We have seen in section 2.2 that the join of specifi-
cations is not always defined; but we know from a
theorem due to [3] that a set of terms have a join
if and only if they have an upper bound (in this
case, ��� , ��� , ... ��� clearly do have an upper bound,
which is � ��� ). See Figure 1. The sequence

� � � � �  � � � � �  � �  �! ��� � � � � �  � �  � � �  � �
represents successive approximations of the loop
function.

� Convergence Condition. As we recall from section
2.2, maximal elements of the lattice of refinement
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are relations that are total and deterministic. An
element � is maximal if and only if

��� A � ����� � C�� �
Whence we find that whenever a set of lower
bounds is such that their join

� �  � �  � � �  � �
is total and deterministic, we can infer (by the
modus ponens):

� ���'C � �  ����G� � �  ��� �
In practice, it means that for a given while state-
ment � , we extract all the lower bounds we can and
take their join. If their join is total and determinis-
tic, then it is the function of the loop; if not, then it
is as much information as we can gather about the
loop with current capabilities (this will be clarified
further in section 4).

4 Extracting Partial Functionality

����� 8 

��� � � ��6 & � < � �
��	�� � � 1

In section 3.1, we have seen that we can derive lower
bounds for the loop function using theorems 1, 2 and
3. While the latter two theorems are constructive, in the
sense that they produce an explicit expression of a lower
bound for � ��� , theorem 1 requires creativity: we must
produce a relation � , then check that it satisfies the con-
ditions of the theorem; if it does, then we use � to derive
the corresponding lower bound � . To help derive such
lower bounds, we provide program patterns, called rec-
ognizers, which identify specific code patterns and map
them directly into lower bounds (skipping the intermedi-
ary step of generating � ). A recognizer is characterized
by its state space, the pattern of statements it recognizes,
and the lower bound that it provides for � ��� . Hence the
derivation of the loop function may proceed by match-
ing parts of the loop body, written as a set of CCA’s,
against existing statement patterns, and producing lower
bounds for � ��� in case of a match. This algorithm has
at its disposal a database of recognizers, which it scans
starting with 1-Recognizers (that match one assignment
statement), then 2-Recognizers (that match combina-
tions of two statements), then 3-Recognizers (that match
triplets). To keep the combinatorics tractable, we limit
ourselves to recognizers whose length does not exceed
3. In the sequel, we present sample recognizers, then
briefly discuss how the set of recognizers is structured
for optimal operation.

���/. 8)&
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Generally, 1-Recognizers answer the question: what
can we infer about the loop function if we know that this
statement (in the loop body) gets executed an arbitrary
number of times? We present and illustrate a sample
1-Recognizer given in Figure 2. For illustration, let’s
consider a while loop whose loop body is written as a
set of concurrent assignments, as follows:

while y>0 do
{... ... ...
x:= x+c,
... ... ...}

where > is an integer variable and 
 is an integer constant
greater than 0. Application of this sample recognizer
provides that � ��� refines the following specification:

�GCK� K����$� 
 N� >������
 CG> 
 �����
 �0? 
 ��� �!�
Note that we could make this claim on the loop function
using very little information on the loop, regardless of
what the ellipsis in the loop body stands for.

����� 8)&
1I: ��� .�� � ����� �)���	����	�

Generally, 2-Recognizers answer the question: what
can we infer about the loop function if we know that
these two statements get executed the same number
of times? We present and illustrate two sample 2-
Recognizers given in Figure 3, where head and tail
represent respectively the head of the list (its first ele-
ment) and its tail (the remainder of the list), and � is an
arbitrary function on sometype. For illustration, we
consider a while statement that contains the following
statements:

while not empty(x)
{
... ... ...
y:= y.head(x),
x:= tail(x),
i:=i-1,
... ... ...
}

Application of the first semantic recognizer to the first
and second statements produces (after simplification)
the following lower bound for � ��� :

� � C���K����	� 
 N� > 
 C�� �+? 
 CG?�� > �
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Figure 1. Successive Approximations of the Loop Function

State Space Semantic Pattern Lower Bound
x: int �GC
const c: int � 0 x:=x+c ��K����$� 
 N�� >������
 CG> 
 �� ��
 � � � K�� 
 N	�

Figure 2. Sample 1-Recognizer

State Space Semantic Pattern Lower Bound
x: listType y:=y.head(x) �GC
y: listType x:=tail(x) ��K����	� 
 N� > � ? C=> 
 � ? 
 � � � K�� 
 N��
i: int i:=i-1, �GC
x: sometype x:=f(x) ��K����	� 
 N� ��� KS>2N�C ����� K/> 
 N � � � K�� 
 N��

Figure 3. Sample 2-Recognizer

State Semantic Lower
Space Pattern Bound
i: int i:=i-1, �=C
x: sometype x:=f(x) � K����$� 
 N� ��� K/> N�C ����� KS> 
 N �
a: sometype a:=a+x 	 E�
�� ���� � � KS>2N�C�	 
 E�
�������� � � KS> 
 N � � � K�� 
 N	�

Figure 4. Sample 3-Recognizer
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where � is the empty sequence. Application of the sec-
ond recognizer to the second and third line produces (af-
ter simplification, using the axiomatization of lists) the
following lower bound for � ��� :

���PCK� K����$� 
 N� > 
 C � � � 
 C���� ��� ?�@ ��� KS>2N����
where

��� ?�@����
K/> N is the length of > . Taking the join, we
find

� �����#��K����	��
 N� >P
 C ���$? 
�CG?8� >1� � 
�C���� ��� ?�@ ��� KS>2N����
��� � 8)&
1I: ��� ��� � ����� �)���	����	

Generally, 3-Recognizers answer the question: what
can be infer about the loop function if we know that
these three statements get executed the same number of
times? We present and illustrate a sample 3-Recognizer
in Figure 4. This pattern can be generalized in many
ways (generalizing the ’+’, the increment of � , the direc-
tion of the increment, etc) but we keep it simple here.
The basic idea of this pattern is to combine the compu-
tation of a variable ( > ) with the use of that variable (in
the assignment of 	 ); this is clearly a recurring situation
in programs. We briefly illustrate this pattern:

w =
while (i<>0) do

[i:= i-1,
x:= x-1,
y:= y+x]

The recognizer provides (after ample simplification) the
following lower bound for � ��� :

� ��������K����	��
 N� >	���8��>P
 C�>
� � �
? 
 C=? E >�K/>$EGFTN

H � � K �-E=FON
H � � 
 C�� �

� � K����$��
 N� >	� ���+>8
2CG>
� � �
? 
 CG? E >
KS>MEGFTN

H � K ���R>2N K ��;>ME=FON
H � � 
 C�� �!�

This function is clearly total, since the domains of the
two terms are complementary. It is also deterministic,
since the domains of the two terms are disjoint and each
term is deterministic. Whence we infer that � ��� not only
refines this function; it actually equals it.

����� <��Q���2	 &'	�� � � ��6 � ����� �)���	����	�

We view the set of semantic recognizers not as an un-
structured monolith, but rather as a hierarchical structure

ordered by generality. Also we envision that an algo-
rithm that attempts to recognize patterns in the source
code to derive lower bounds of the loop function at-
tempts first to match lower level patterns (for any length:
1, 2, or 3), and climbs up the tree only if lower level
patterns do not produce a match with the source code.
There exists a tension between generality/ usefulness
and genericity/ usability that arises in defining these pat-
terns. To illustrate the contrast between generality (use-
fulness) and genericity (usability), we consider the fol-
lowing example: We know from [20] that if the loop
body contains two statements such as

SR: i:= i-1, x:= x+i

then the loop refines the following relation (where � is
the loop condition)

�GC#� K����$� 
 N� >$E � K � EGFTN
H C=> 
 E � 
 K � 
 EGFTN

H � � � K�� 
 N	�!�
Because these two statements are too specific, we may
want to generalize them into the following form:

SR’: i:=i-c, x:=x � i.

Now the step by which we decrement � is arbitrary, and
the operation by which we compose > and � is also arbi-
trary; whence we have obtained a more general pattern,
that is more widely applicable. But this additional gen-
erality comes at a cost in terms of usability, since now
the lower bound of the loop function has the following
form (provided � is associative):

� 
�C���K����$��
 N�� >�� ������
������ J 
 C=>P
�� ��������

������ J 
:�!�

SR’ is more general than SR, hence more widely appli-
cable, but the relation it produces is less tractable (less
usable) since now we must parse it with the instantiated
operator, simplify it by means of algebraic properties of
the instantiated operator, use identities that are specific
to the instantiated operator, etc. By contrast, relation �
is readily usable as it is.

5 Conclusion

� ��� 8���131I&'	 � & ��� <;%4��%%1I� ���

In this paper, we have presented an approach to ex-
tracting the function of a while loop. Due to space re-
strictions, we could not present the approach in detail,
hence we focused primarily on discussing its motiva-
tions, its premises, and its main tenets. The main idea of
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this paper is that the function of a loop can be derived in
a stepwise fashion, by successive approximations, where
each increment is derived by an arbitrarily partial, arbi-
trarily localized, analysis of the loop statements. This
stepwise approach is based on three theorems (theorems
1, 2, 3), which provide lower bounds of the loop func-
tion, and a composition rule, which provides means to
compose these lower bounds to obtain the function of
the loop. The most important theorem, theorem 1, al-
lows us to compose the inductive argument underpin-
ning the loop by identifying reflexive transitive relations
that are supersets of the loop body’s function. We have
illustrated the application of this theorem by showing
sample recognizers, which derive reflexive transitive su-
persets of the loop body by matching statements of the
loop body against pre-catalogued patterns. For the sake
of combinatorics, it makes sense to build a database of
small recognizers (recognizing no more than three con-
current statements at a time), so that a wide range of
loop body structures can be covered with combinations
of smaller patterns.

� �/. � ����&-� ���)� � ���B� � ��	 � ��	 


In section 1.3 we have discussed in general terms how
research on loop invariants is similar to our research
on functional extraction, and how it differs from it. In
this section we briefly mention some samples of current
research on loop invariants, and characterize their ap-
proach. In [11] Ernst et al. discuss a system for dynamic
detection of likely invariants; this system, called Daikon,
runs candidate programs and observes their behaviour
at user-selected points, and reports properties that were
true over the observed executions, using machine learn-
ing techniques. Because these are empirical observa-
tions, the system produces probabilistic claims of in-
variance. In [8], Denney and Fischer analyze generated
code against safety properties, for the purpose of certi-
fying the code. To this effect, they proceed by matching
the generated code against known idioms of the code
generator, which they paramerize with relevant safety
properties. Safety properties are formulated by invari-
ants (including loop invariants), which are inferred by
propagation through the code. In [6], Colon et al. con-
sider loop invariants of numeric programs as linear ex-
pressions and derive the coefficients of the linear expres-
sions by solving a set of linear equations; they extend
this work to non linear expressions in [22]. In [15, 16]
Kovacs and Jebelean derive loop invariants by solving
recurrence relations; they pose the loop invariants as so-
lutions to recurrence relations, and derive closed forms
of the solution using a theorem prover (Theorema) to

support the process. In [4] Rodriguez Carbonnell et al.
derive loop invariants by forward propagation and fixed
point computation, with robust theorem proving support;
they represent loop bodies as conditional concurrent as-
signments, whence their insights are of interest to us as
we envision to integrate conditionals into our concur-
rent assignments. Less recent work on loop invariants
includes work by Cheatham and Townley [5], Karr [14],
Cousot and Halwachs [7], and Mili et al [18]. Work on
loop analysis and loop transformations in the context of
compiler construction is also related to functional ex-
traction, although to a lesser degree than work on loop
invariants [1, 12].

� ��� *0	��
%: �����%

The work we are presenting in this paper is in its in-
fancy; in this section, we briefly discuss how we envi-
sion to expand it.

� Expanding the Hierarchy of Recognizers. The ca-
pability of the proposed approach is clearly very
dependent on the set of recognizers that we have:
their number, their generality, their hierarchical
structure, etc. We envision to expand the hierarchy
of recognizers, at both ends of the tree: at the lower
end, to produce more specialized recognizers; and
at the higher end, to produce more general recog-
nizers. We envision that our practical experience
(instances where we fail to extract a loop function)
will drive this growth process.

� Integrating Conditionals. Many of the proposed
recognizers are based on the premise that some
statement gets executed the same number of times
as another; this is no longer true once we consider
conditional concurrent statements. Mathematics
must be developed to consider such statements.

� Integrating ADT axiomatizations. Most of the cur-
rent recognizers are focused on the control struc-
ture of the loop body, and are assuming numeric
data types, whose axiomatization is implicit. More
advanced data types require that we integrate the
axiomtization of the relevant ADT’s into the func-
tional extraction machinery.

� Integrating Loop Invariant Methods. Many of the
methods we discussed in section 5.2 provide means
to derive loop invariants automatically, from a run-
time analysis of the loop structure. By contrast, the
method discussed here is based on a set of patterns
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that are derived off-line and matched against state-
ments of the loop body. Dynamic procedures must
be developed to extract loop invariants (that play
the role of relation � in theorem 1) even in cases
where no pre-stored patterns provide a match.

� Managing Recognizer Libraries. Many of the
tradeoffs that arise in defining, storing and manag-
ing recognizers are reminiscent of those that arise
in managing reusable software assets. The body of
knowledge and experience gained in the manage-
ment of software asset libraries may prove valuable
in managing recognizer libraries [19].
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