
McFSM: Globally Taming Complex Systems
Florian Murr

Siemens AG, Corporate Research
Otto-Hahn-Ring 6
81739 München

florian.murr@siemens.com

Wolfgang Mauerer
Technical University of Applied Sciences Regensburg

Siemens AG, Corporate Research
Regensburg and München

wolfgang.mauerer@oth-regensburg.de

Abstract—Industrial computing devices, in particular cyber-
physical, real-time and safety-critical systems, focus on reacting
to external events and the need to cooperate with other devices
to create a functional system. They are often implemented with
languages that focus on a simple, local description of how a
component reacts to external input data and stimuli. Despite the
trend in modern software architectures to structure systems into
largely independent components, the remaining interdependen-
cies still create rich behavioural dynamics even for small systems.
Standard and industrial programming approaches do usually
not model or extensively describe the global properties of an
entire system. Although a large number of approaches to solve
this dilemma have been suggested, it remains a hard and error-
prone task to implement systems with complex interdependencies
correctly.

We introduce multiple coupled finite state machines (McFSMs),
a novel mechanism that allows us to model and manage such
interdependencies. It is based on a consistent, well-structured
and simple global description. A sound theoretical foundation
is provided, and associated tools allow us to generate efficient
low-level code in various programming languages using model-
driven techniques. We also present a domain specific language
to express McFSMs and their connections to other systems, to
model their dynamic behaviour, and to investigate their efficiency
and correctness at compile-time.

I. INTRODUCTION

Tackling complex systems usually entails two tasks: Local-
izing effects to components of a system, and appropriately
treating interdependencies between the components. Most
theoretical advances in computer science have been focused on
the objective of localizing effects, as can be seen in concepts
like functional or object-oriented programming that try to limit
side-effects to manageable portions of the code, as do common
techniques like information hiding or separation of concerns.
Most of these are rooted in a solid theoretical basis. The
available options for treating interdependencies in industrial
systems are less plentiful.

Such systems are often implemented with mechanisms
originating from programmable logic controllers and finite state
machines, or by using reactive programming techniques. They
rely on languages as defined in the ISO EN 61131-3 standard,
or employ patterns similar to these. Finite state machine
(FSM)-like approaches, in particular sequential function charts
(SFC), are central to algorithms in these domains. FSMs are
in widespread use in most areas of computer science: Net-
work protocol dispatchers in operating systems, cryptographic
handshakes, formal specifications (like UML) for embedded

systems design [2], formalizations of representational state
transfer (REST) based web applications [12], etc. All these
and many more are based on FSMs. The theoretical properties
of FSMs are extremely well known. Some specialised languages
(e.g., [1], [7]), especially reactive languages, are directly based
on state machines, as are many other approaches (e.g. recent lan-
guages for intuitive robot control [5]). A considerable number
of extensions to FSMs, like hierarchical state machines [11],
some based on the seminal statechart idea [8], have been
suggested.

Albeit libraries to implement FSMs and related approaches
are available for most languages, most of them do not provide
explicit expressive constructs to describe the global structure of
composite systems. 1 Using the state machine pattern [6], FSMs
are usually hand-crafted with generic language techniques, for
instance using case statement dispatchers in C or similar
constructs. This way, it is easy to (inadvertently) mix the pure
simplicity of the FSM-approach with Turing-complete language
features, thus sacrificing compile-time provability. The same
observation holds for Turing-complete reactive programming
systems.

For distributed systems, the description of the state machine
that comprises the system is often spread across multiple
physical or virtual machines or at least multiple local program
components, making it hard to obtain a consistent and coherent
picture of the global system that is required to guarantee
system-wide properties, like overall safe behaviour. The level
of diversity in industrial cyber-physical systems is still sub-
stantially more pronounced than the diversity in, say, operating
systems, tools, programming languages etc. This suggests that
despite the previously suggested multitude of approaches, the
practical, real-world aspects of the field are far from being
solved satisfactorily.

This paper introduces a novel mechanism – multiple coupled
finite state machines (McFSMs) – together with a domain spe-
cific language (DSL) for model-based development and abstract
specification. The mechanism uses multiple FSMs coupled by
notifications to make the structure of a cooperating system
explicit. It aims at retaining the simplicity and advantages of
local FSMs by enveloping them with a global superordinate
structure that takes care of the intricacies brought about by their

1We deliberately ignore regular expressions. These are in fact an integral part
of many languages and stem from FSM based origins, but are used as acceptors
of languages without making the underlying state machines accessible.

ar
X

iv
:1

70
2.

07
95

1v
1 

 [
cs

.S
E

] 
 2

5 
Fe

b 
20

17



interdependencies. As a low-level mechanism, it lends itself to
an efficient implementation. As a global superordinate structure,
it avoids the pitfalls of scattered observers acting largely
agnostic of their interdependencies. Owing to a theoretical
foundation, it lends itself well to rigorous scrutiny and formal
verification.

McFSMs aim primarily at explicitly describing and handling
interdependencies between components at compile-time. They
also have a thorough theoretical basis that allows us to prove
various system properties. McFSMs can be used to reduce
implicit or undesired dependencies between components and
foster a consistent and well-structured global description of
interdependencies. The approach can also serve as basis for
deterministic hard real-time systems, and is therefore applicable
to a wide class of industrial systems.

Finite state machines are one of the earliest theoretical
concepts in automated computing, and also form the basis
of many modern software engineering mechanisms like UML
state machines [11]. Code for (real-time) systems can be syn-
thesized from FSM based descriptions (see, e.g., [4], [7]). It is
known that when systems comprising multiple components are
modelled using a straightforward product automaton approach,
an exponential increase in both the number of states and edges
can occur, which makes the approach inherently unfeasible
for practical software engineering purposes. It creates very
dense and confusing diagrams even for systems of moderate
complexity, or might use up to much space. Our approach
allows to describe industrially relevant coupled systems while
avoiding such an exponential “state space explosion”.

II. MODELLING INTERACTING SYSTEMS

Systems based on interacting components, either logical or
physical, need to propagate information about state changes
between their constituents. When a state change occurs in
one part of the system, the change propagates to related
components, and may trigger further state changes. This notion
is generically captured by the observer pattern [6]: An object
A (the subject) maintains a list of dependent objects (the
observers) {B1, B2, . . . , Bn} and notifies them when any state
change takes place in object A.

There is growing evidence that the observer pattern is
problematic (see, for instance, Ref. [10]). Industrial experience
endorses these findings with the observation that modelling even
superficially extremely simple systems, for instance displays
for multi-function household appliances with a small number
of controls, often results in complex and error-prone systems
that require substantial implementation and testing efforts when
the architecture is based on the observer pattern. The authors
are aware of industrial projects where the initial estimated
effort of a few weeks resulted in several months worth of
implementation effort.

We want to emphasise four major challenges: Firstly, ob-
servers promote side-effects since their states are only implicitly
available, but not explicitly represented by programming
language constructs. Shared states need therefore be made
available in a context that is accessible from multiple observers,

or even globally, of course without violating information
encapsulation principles. Secondly, observers can execute
arbitrary Turing-complete code, which can easily lead to
violating the principle of separation of concerns. Thirdly,
traditional programming languages make it hard or even
impossible to statically analyse and understand the dynamic
control flow when chains of dynamically registered observers
are used. Finally, any state change apart from the one in subject
A triggering the notifications is not part of the observer pattern
and is therefore “invisible” from its point of view.

Nonetheless, the observer pattern enjoys wide-spread use
in many software systems, and likewise do the very similar
publish-subscribe and signal-slot mechanisms. Handling asyn-
chronous interrupts on the system level is also closely related
to the described mechanisms.

Possible solutions to the aforementioned problems include
the use of reactive programming techniques [10] that require
only a specification of dependencies between interacting
components, as compared to manual encoding execution flows.
However, such techniques often require intensive run-time
support and advanced language features that are not available
in languages conventionally used for systems programming.

III. MULTIPLE COUPLED FSMS

A. Example and DSL

To facilitate the practical use of McFSMs, we provide a
domain-specific language (DSL). An example to illustrate
the language is based on an application pattern that occurs
frequently in automation and control. Consider a distributed set
of binary (on/off) switches that reside at different locations in
a plant or a residential building; triggering one of the switches
changes the state of one shared dependent entity, perhaps a light
bulb (on/off) or a status indicator (green/yellow/red). Even for a
system as simple as two binary switches and one ternary status
indicator, a straightforward FSM approach leads to 22 = 4
possible combinations of switch settings (off/off, on/off, off/on,
and on/on) and three different values for the indicator resulting
in 3 × 4 = 12 states. For each state, two edges describing
the result of flipping the switch are necessary. For the more
general case of n switches and an indicator with m levels, the
amount of states is m × 2n. The FSM grows exponentially
in the number of switches, which obviously makes it hard to
obtain an intuitive understanding of the problem from whatever
graphical representation might be chosen.

Now in contrast how our formalism describes the scenario:
Each binary switch Si is modelled with two states, and the
ternary indicator I with three states, as shown in Figure 1. All
couplings between the switches and the indicator are introduced
by edge labels: Labels fi below the edges of switch i emit
event fi (a flip of switch i) that is consumed by the ternary
indicator, as indicated by the labels above the edges. Thus I
cyclically switches its state in response to these events. The
visual representation of the scenario is as shown in Figure 1.

FSM c l a s s ” H e a l t h S i g n a l ” {
hop g r e e n y e l l o w += x F l i p yYellow
hop y e l l o w r e d += x F l i p yRed



0 1 0 1

G Y R

f0

f0

f1

f1

f0, f1 f0, f1

f0, f1

Fig. 1: McFSM visualization of a ternary status indicator
controlled by two binary switches. The exponential state space
explosion of traditional FSMs is replaced by a linear growth in
the number of states (and edges) depending on the (increasing)
number of switches.

hop r e d g r e e n += x F l i p yGreen
}

FSM c l a s s ” Swi tch ” {
hop up down += x P r e s s y F l i p
hop down up += x P r e s s y F l i p

}

McFSM c l a s s ” ComboSwitches ” {
Swi tch i n s t S1 {

S t a r t : up
cap &xPress += . . / x P r e s s S 1

}
Swi tch i n s t S2 {

S t a r t : up
cap &xPress += . . / x P r e s s S 2

}
H e a l t h S i g n a l i n s t L i g h t s {

S t a r t : ye l l o w
cap &xFlip += . . / S∗ / y F l i p

}
}

The DSL distinguishes between classes and instances, which
is familiar to most programmers. Classes are very similar to
traditional FSMs (as indicated by the keyword FSM) in that
they are characterised by their states and transitions. However,
they do not require an initial state. We distinguish between
incoming transitions (identifiers prefixed by “x”) triggered by
external events, and outgoing transitions (identifiers prefixed
by “y”).2

Edges correspond to state transitions (hops) constructed e.g.
by hop up_down += xPress yFlip: This generates a
directed edge from state “up” to state “down”, and labels it
with xPress and yFlip. Thus this transition is triggered
in state up when event xFlip is observed (when the button is
pressed), causing the edge-id to be added to an internal list of
events that will be processed. The output yFlip may be used
in the DSL to group or abstract from concrete edge-ids. Note
that edge constructions implicitly create states as well.

2The rationale for using prefixes x and y is the form y = f(x) of
algebraic equations, where x is an input and y an output value. In the visual
representation, this corresponds to labels above and below the edges.

Classes, instances, states, edges and events can be hier-
archically nested. If an object obj2 is hierarchically below
obj1, the DLS represents this using the syntax /obj1/obj2.
We cannot fully describe the concept here, but in the above
example, the McFSM class ComboSwitches is on level 1 of
the global hierarchy, and so are the input events xPressS1
and xPressS2. FSMs instantiated as part of the McFSM
reside in level 2, and so on. The syntactic element ../ refers
to the previous hierarchy level.

Connecting edges in FSM instances with events requires a
generic syntax that can select instances of interest. Consider, for
instance, the statement cap &xPress += ../xPressS1:
It selects every instance of /ComboSwitch/S1 that al-
ready has an event annotation xPress, and adds an
additional annotation ../xPressS1 (in absolute form:
/ComboSwitch/xPressS1). This connects the input event
xPressS1 with the relevant transitions in the button instance.
Every time a (possibly physical) button, mapped to the
external McFSM event by system mechanisms, is pressed,
the appropriate transitions are triggered in the class instance
that models the switch.

In general, cap expects an edge list as parameter, and adds
labels to these edges using the += operator. Edge lists and
lists of labels may be specified in three ways: 1) As a list
of absolute/relative edges/labels, 2) using glob patterns as
in ../S*/yFlip (this selects all yFlip labels on switch
instances S1 and S2), and 3) as semantic references of the
form &xFlip, which selects the set of all edges labelled with
xFlip.

B. Formalism

An FSM F is given by a four-tuple F = (Q,Σ, δ, q(0)),
where Q is a finite set of states, Σ is a finite set of events,
δ : Q×Σ→ Q denotes the transition function that determines
the next state given the current state and an input event, and
q(0) ∈ Q is the initial state of the machine.

A McFSM M = (Q,Σ, δ, q(0)) comprises a set of n >
1 interacting FSMs {F1, F2, . . . , Fn}, with state space Q =
Q1 × · · · × Qn, event set Σ = Σext ∪ Σint and initial state
q(0) = (q

(0)
1 , . . . , q

(0)
n ).

The events in Σext constitute the “interface” of the McFSM
and can be connected, for instance, to inputs of physical sensors
as parts of a larger program. Σint is invisible to the outside. It
consists of pairs of states (qji , q

k
i ) ∈ Qi that create couplings

between the FSMs Fi, because the internal event ei,j,k =
(qji , q

k
i ) occurs every time the state transition qji 7→ qki occurs

in Fi, but can be associated with any Fx by defining δ(qx, ei,j,k)
(qx ∈ Qx), thus notifying the observing FSM Fx.

Operationally, events a ∈ Σext can be provided by arbitrary
system sources; their processing by a McFSM generates internal
coupling events b ∈ Σint, because state transitions themselves
are considered to be events.

The transition function δ of the McFSM M combines the
transition functions δ1, . . . , δn of the constituent FSMs by
providing any input event a and the ensuing coupling events b



to the machines Fi in a predefined order that may be event-
dependent, but usually just follows the order of the machines
F1, . . . , Fn.

To realise the described event distribution and coupling, we
use a data structure called XQueue that combines queue- and
stack-like features and enforces that 1) all events are treated in
the order they occur, as in a queue, and 2) all ensuing coupling
events are treated before the next event a is processed, as in a
stack. Processing is performed as an atomic step before any
side effect handlers are called. A precise formulation of the
algorithm is given in the accompanying website and the system
source code.3

The UI can show an upper bound to the amount of steps
required to distribute an external event to the components, and
execute their actions. This makes the formalism suitable for
real-time systems.

IV. RELATION TO OTHER APPROACHES

McFSMs share many desirable properties with ordinary
FSMs, in particular the ability to prove predicates on their
state-spaces, which is relevant for safety-critical systems.

In the observer pattern, the observers B1, B2, . . . , Bn can
again be subjects of further observers. All these objects can be
viewed as multiple FSMs that are coupled through notifications,
that is, function calls of event-handlers. These cascading
notifications can induce substantial hidden complexity that
can only be tested at run-time. A McFSM combines the state
spaces of the constituent FSMs, but makes coupling events
(observer notifications) explicit at compile-time, which provides
the basis for debugging and proving static correctness properties.
A McFSM handles state transitions as one single atomic action
and then calls event handlers that can perform any necessary
side-effects.

While the available space does not permit to discuss all
differences and similarities with previous approaches in detail,
we note that McFSMs share the idea of dividing a system
into sub-automata with UML hierarchical state machines (our
ability to generate instances from classes provides a template-
like extension to the idea). Likewise, the concept of emitting
signals from edge transitions also appears in statecharts and
related formalisms.

As for the differences, we would like to highlight two salient
points: Firstly, our pattern matching based interdependency
specification does not only lead to considerably increased
expressive power, but further economises the number of arrows
appearing in charts – our formalism can be seen as hybrid
between a reactive programming language (intentionally not
Turing-complete) and a visual modelling mechanism where
both aspects complement each other. Secondly, McFSMs (in
particular using the XQueue mechanism) have been designed
from the ground up to provide well-defined mathematical
semantics, which eliminates one major criticism (see, e.g., [3])
of statechart-like approaches.

3To be published under an open source license.

Another related approach, the Labelled Transition System
Analyser (LTSA, see [9]), aims specifically at modelling
concurrency, and proving certain properties of concurrent
systems. Although LTSA is also centered around appropriately
combining finite state machines, our approach differs in that
concurrency is not the core focus, which is also reflected
in the substantially different description language that aims
on system design, not at describing concurrent processes.
The language also avoids mixing any side-effects into the
description language, and strives that expressive power is
combined with utmost syntactic and conceptual simplicity,
which is especially desirable in efforts that require (safety
or other types of) certification. Despite the impossibility of
making such statements objective, we have tried to leverage
decades of industrial experience to achieve the goal to the best
of our abilities.

V. TOOLS & OUTLOOK

The approach described in this paper is accompanied by
an integrated set of tools and a graphical user interface
(GUI) that combines the DSL with a visual representation,
and can be used to experiment with our new approach .
More information is available on the supplementary website
https://hps.hs-regensburg.de/maw39987/icse/icse.html.

Future work will focus on testing the efficiency of the
specification language and the GUI on practical problems from
various domains: Using experts from the fields, we intend to
collect typical problems, and implement solutions using the
McFSM formalism. By carefully evaluating the results, we will
further improve the DSL, the GUI and other tools involved,
especially regarding their intuitive usability.

REFERENCES

[1] G. Berry and G. Gonthier, The Esterel Synchronous Programming
Language, Science of Computer Programming 19 (2), 87–152, 1992.

[2] E. Borger and R. F. Stark: Abstract State Machines: A Method for
High-Level System Design and Analysis, Springer, New York, 2003.

[3] P. Derler, E. A. Lee, A. Sangiovanni-Vincentelli, Modeling Cyber-
Physical Systems, Proc. IEEE 100(1):13-28, 2012.

[4] Ch. Dietrich, M. Hoffmann, and D. Lohmann: Back to the Roots:
Implementing the RTOS as a Specialized State Machine, 11th WS on
Op. Sys. Plat. for Emb. RT Applications (OSPERT), 2015, 7-12.

[5] A. Diewald, S. Voss, and S, Barner,: A Lightweight Design
Space Exploration and Optimization Language, Proc. 19th WS on
Soft. Comp. Emb. Sys. (SCOPES), 2016.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides: Design patterns:
elements of reusable object-oriented software, Addison-Wesley Longman,
Boston, MA, USA, 1995.

[7] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud The synchronous
data flow programming language LUSTRE, Proc. IEEE 79(9), 1991.

[8] D. Harel, Statecharts: a visual formalism for complex systems, Science
of Computer Programming 8(3), 1987.

[9] J. Magee and J. Kramer, Concurrency: State Models & Java Programs,
John Wiley & Sons, New York, 1999.

[10] I. Maier and M. Odersky, Deprecating the Observer Pattern with
Scala.React, Technical Report EPFL-REPORT-176887.

[11] OMG Unified Modeling Language Superstructure, OMG document
formal/2009-02-02

[12] I. Zuzak, I. Budiselic, and G. Delac, A finite-state machine approach for
modelling and analyzing RESTful systems, J. Web Engineering, 10(4),
353–390, 2011.

https://hps.hs-regensburg.de/maw39987/icse/icse.html

	I Introduction
	II Modelling Interacting Systems
	III Multiple Coupled FSMs
	III-A Example and DSL
	III-B Formalism

	IV Relation to other approaches
	V Tools & Outlook
	References

