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This paper concerns the problem of moving a 
polyhedron through Euclidean space while avoiding 
polyhedral obstacles. 

1. Introduction 

The classical mover's problem in d-space is: 

Input: (R,S,PI,PF) where R is a set of poly­
hedral obstacles fixed in Euclidean 
d-space, and S (say, a sofa) is a rigid 
polyhedron with distinguished pdsitions 
Pr and PF. 

Propertv:	 Can S be moved (by a sequence of
 
translations and rotations in d-space)
 
from position Pr to PF without con­
tacting any element of R? 

We consider the discretized version of this
 
problem; the input Rand S are given as systems
 
of linear inequalities within a fixed accuracy
 
L,O<1:<1. 

Figure 1: A 2-D Mover's Problem: Can rectangle S
 
be moved from Pr to PF without contacting any

obstacles in R?
 

Figure 2: A Solution to the 2-D Mover1s Problem 
of Figure 1. S may be moved through positions 
Pr =PO,P1 •... 'PB =PF' 

*The author has recently moved to Aiken Computa­
tion Laboratory, Harvard University, Cambridge, 
Massachusetts. 
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A correct algorithm for the discretized 
mover's problem is allowed to yield an inconclu­
sive answer (i.e., "may be") only in the case 
that: 

1)	 S, contracted by a factor of (l-T), 
can be moved from PI to PF, but 

2)	 the move is impossible if 5 is 
expanded by a factor of (l+T). 

We present (Section 4) a polynomial-time 
algorithm for the classical mover's problem in 
2 and 3 dimensions. In spite of considerable 
previous work on this problem 1 ,2,3,4 by workers 
in the robotics field, no algorithm guaranteed 
to run in polynomial time and with fixed accuracy 
has previously appeared. 

The mover1s problem may be qenerali~ed to 
allow S (the object to be moved) to consist of 
multiple polyhedra freely linked together at 
various distinguished vertices. (A typical 
example is a robot arm with multiple joints.) 
Again, the input is specified by systems of 
linear inequalities with accuracy T. 

Generalized mover's problems have been 
considereds ,6 in addition to the previously 
sited references. 

We present (Section 3) a polynomial-space 
algorithm for the generalized mover's problem. 
Furthermore, we show (Section 2) the generalized 
mover's problem in 3-space is P-space hard, by 
a direct log-space reduction from the acceptance 
problem for polynomial space bounded Turing 
machines. 

The generalized mover's problem is thus the 
first known p-space complete computational 
geometry problem (and is one of very few known 
p-space complete combinatorial problems which is 
not a game with a polynomial time limit.) 

2. The Generalized Mover's Problem 
is P-Space Hard 

Let Mbe a deterministic Turing Machine 
with polynomial space bound s(n) > n. We assume 
without loss of generality, M haS­

1)	 one tape with tape alphabet
{O,l}, and 

2)	 a planar finite state diagram. 
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Let Q be the set of states of M, with 
distinguished initial state qI e: Q. Let we: {O,Un 

be an input string. We construct a generalized 
mover1s problem (R,S,PI,PF) in 3-space which has 
a solution if and only if Maccepts w. Assuming 
a fixed binary encoding of the generalized 
mover's problem into {O,l}*, our construction 
requires O(log n) work space on a deterministic 
Turing machine. 

In our constructed generalized mover!s 
problem, the obstacles R define a flat slab (of 
thickness 2s(n)+1). Within the slab is a net­
work of open channels. These channels are 
connected as in the finite-state control of M: 

1)	 there are IQI junctions between the 
channels and each junction is named 
for a distinct state q e: Q, and 

2)	 the channels are in one-to-one 
correspondence with the state transi­
tions of M. 

Figure 3 illustrates the object S to be 
moved; it consists of a vertical bar of' length 
s(n) units, with s(n) "arms" freely 1inked to 
the bar at unit intervals. The cross-section of 
a typical channel is illustrated in Figure 4, 
and consists of 2s(n)-1 lI arm slots ll at levels 
{1,2, ... ,2s(n)-I}. 5 is positioned within a 
channel as in Figure 5, with each arm in either 
the left or right portion of an arm slot. (The 
Il elbow" at the end of each arm constrains the 
arm to remain either to the left or to the 
right.) The key idea is that the position of S 
encodes the tape contents of M: 

1)	 the position (left,right) of the ith 
arm describes the symbol (0 or 1, 
respectively) on the ith tape cell, 
and 

2)	 the vertical position of S describes 
the position of the read/write head of 
M (in particular, the arm of S 
currently in the arm slot of level s(n) 
corresponds to the currently scanned 
tape cell). 
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Figure 3: The object S to be moved, encoding 
tape contents 0,0,1, ... ,1,1,0. 

.. Figure 4: A typical cross-section of a channel . 

Figure 5: A position of S within a cross-section of 
a channel, with s(n) = 5. S encodes tape contents 
0,0,1,0,1 and tape cell 4 is currently under the 
tape head. 

We now provide the further details of the 
construction of the channels which simulate the 
state transitions of M. 

If the tape is moved to the right in a 
state transition, then in the corresponding 
channel the arm slots slant upward one unit so 
as to force S to be moved vertically ~ one 
unit. A symmetric construction is used in the 
case a tape is moved to the left (see Figure 6). 

Figure 6: A lengthwise cross-section of a channel 
which forces S up one unit in a state transition 
from q to q'. 

To test if the currently scanned tape cell 
is °or 1, we construct a junction which forces 
S to branch to left or right channels, depending 
on the position of the arm within the arm slot 
of level s(n). (If this arm is originally posi­
tioned to the left, then S branches left, and 
vice versa.) See Figure 7. 

Figure 7: Cross-section at level s(n) of a 
junction which forces S to branch left or right 
depending on the position of that arm at level 
s(n). 
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We assume that the read/write head of Mis 
not moved on any transition during which a tape 
cell is written. 

In a state transition in which the current­
ly scanned tape cell is set to 1, we have a 
corresponding channel with a special cross­
section described in Figure 8, which forces the 
arm at level s(n) to move from the left to the 
right. (Note: the arms of S are so configured 
that it is not possible for an arm to be 
positioned in the center of a channel cross­
section.) The case in which a tape cell origi­
nally 1 is set to 0 ;s symmetric. 

Figure 8: A channel cross-section at level s(n) 
which forces the arm of S at depth s(n) from the 
left to the right position of the arm slot. 

In the initial position PI' let S be within 

the junction corresponding to the initial state 
qI and with the arms of S encoding the input 

string w. Let the final position PF haye S 
within the junction corresponding to the final 
state qF and with the arms of S in some arbitrary 
position. (We assume that this final junction 
does not constrain the arms of S.) 

In the resulting generalized mover1s 
problem, S can be moved from position PI to posi­

tion PF if and only if Maccepts input string w. 

3. A Polynomial-Space Algorithm
 
for the Generalized Moveris Problem
 

We now sketch a simple polynomial-space 
algorithm for the generalized mover's problem in 
d-space, with a set of polyhedral obstacles R 
fixed in d-space and a connected set S of poly­
hedra freely linked at various distinguished 
vertices, and distinguished positions PI and PF 
of S. The input is assumed to be specified
within accuracy 1',0<,<1. 
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A position p of S will be specified by a 
sequence p= (x1, ... ,xd,) of length d ' =d+(d-l)h+l 

with each element of xi given within accuracy ~. 

We wish to determine if S can be moved from posi­
tion PI to position PF without contacting any 
of the obstacles of R. 

Let ~R,S(P) be the predicate which is true 
iff position p is both a feasible position of S 
and S contacts no element of R. ~R,S can be 

specified by a system of multinomial inequalities 
(of size polynomial in the input) over given 
values of the variables x1,x ' ... ,xd' . Thus2 
~R,S(P) can be computed, within accuracy T, in 
polynomial time for any given position p. 

The following algorithm runs in nondetermi­
nistic polynomial space (and can be implemented 
in deterministic polynomial space 7 ). 

Algorithm A 

Input (R,S,PI,PF) 

[lJ	 P+Pr 

[2J	 .if ~R,S(P) "f true then fail 

[3J	 ..if. p = PF then accept 

[4J	 nondeterministically choose a position pi 
of S so that no vertex of S is moved more 
than ~ 

[5J	 p+p' 

[6J	 goto [2J. 

To solve a generalized mover's problem 
(R,S,PI'PF) within accuracy" we let S+, and 
S_T be derived from S by expanding by a factor 
(1+,) and contracting by (1-,), respectively. 

First apply algorithm A to (R.S+"PI'P F); 
if the algorithm accepts then output "yes" and 
halt. Else apply algorithm A to (R,S_"PI'P F); 
if the algorithm does not accept then output 
"no." Otherwise, output "maybe." (Recall that 
a correct algorithm for the mover's problem is 
allowed to output an inconclusive answer if the 
problem is not determinable within accuracy,.) 
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4. A Polynomial-Time Algorithm
 
for the Classical Mover1s Problem in 2 and 3-D
 

We consider here the classical mover's 
problem (R,S,PI,P F) for dimensions d =2 and 3. 
Recall from Section 1 that this problem is 
restricted to moving a si)gle polyhedron S (with 
no freely connected links through d-space avoid­
ing polyhedral obstacles R. Our basic approach 
is to transform the classical mover's problem to 
the problem of moving ~ single point in d'-space 
(where d' =3 if d=2 and d' =6 if d=3), avoid­
ing certain obstacles (forbidden subspaces). 
Each position of S corresponds to a point in 
d'-space, and each of the obstacles in the 
transformed mover's problem·ccrresponds to posi­
tions in which S contacts an obstacle of R (see 
Figure 9). 

Figure 9: Transformed mover's problem from 
Figure 1. The I-contact sets (the obstacles of 
the transformed problem) define a torus with 
cross-sections CS illustrated for _a 
e = 0, rr/4, rr/2, 3rr/4, rr. S may be moved through 
positions PI = PO,P I ,,·, ,PS =PF as in Figure 2. 

Certain previous research has also taken 
this approach 3 ,4. The fundamental difficulty is 
that the obstacles in the transformed problem 
are nonlinear. Lozano-Perez and Wesl ey4 approxi­
mate the obstacles in the transformed problem by 
linear constraints; however, to solve the mover·s 
problem within the accuracy T of the input, in 
the worst case an exponential number (in the 
input size) of linear constraints are required to 
approximate the obstacles in the transformed 
problem. To solve the 2 and 3 dimensional mover's 
problems within both polynomial time and accuracy 
T, we describe the obstacles in the transformed 
problem by systems of multinomials of low degree 
with coefficients specified within accuracy T. 
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Some definitions are now required. For 
each position p of S, let the contact vertices 
of p be those vertices of R contacting S, and 
those vert ices of S contacting R. For u >0, 1et 
a u-contact set be a maximal connected set of 
positions with at least u common contact . 
vertices. If IRI,lsl are the number of inequali­
ties defining R,S, then there are O(IRIU!S[U) 
u-contact sets. 

We can show that for u >dI, any lJ-contact 
set is a1so a d I -contact se~ For u = 2,3, ... ,d I 

the u-contact sets will be constructed by inter­
secting all (J,l-l)-contact sets with I-contact 
sets. 

Consider, for example, a classical mover's 
problem (R,S,PI,PF) restricted to 2-space, with 
the obstacles R consisting of a set of line seg­
ments and S a single polygon. A position of S 
can be specified by a triple (::,y,e) where (x,y) 
are the cartesian coordinates of some fixed 
vertex of Sand e is the angle of rotation around 
this vertex. We define a mapping t from the 
position of S to 3-space. Let t(x,y,e) = 
(xl,y',ZI) wherey=z', tan(e)= x1jy', and 

x= (x')2+{yIF-o, for some sufficiently 
1arge constant 0 > O. (o may be taken as the 
diameter of a circle enclosing S.) See Figure 10. 

Figure 10: The mapping t(x,y,e) = (x',y',ZI). 

In thi s case wi th d = 2, the I-contact sets 
(the obstacles in this transformed problem in 
3-space) are quadratic surface patches of the 
form: {r(x,y,e)laox+8oY=Cos{e-eo) and 
a.X+S·y>A.cos(e-e.) for i=1,2} where the

1 1 - 1 1 

ai' Si' Ai' ei are constants given within the 
accuracy L of the input. 

The quadratic inequalities describing each 
of these O( IRII SI) I-contact sets can be deter­
mined in constant time from pairs of line seg­
ments and vertices taken from Rand S. 

The 0(IRI 2 ISI 2 ) 2-contact sets are formed 
from intersections of all pairs of I-contact 
sets. Comba 8 presents an efficient procedure 
for determining the intersection of general 
quadratic surface patches. Since the I-contact 
sets are linear x and Y in the case of d=2, 
each of the 2-contact sets are quadratic and can 
be simply determined without the application of 
Comba's procedure. The 3-contact sets may be 
computed by Comba1s procedure from intersections 
of 1 and 2-contact sets, both of which are quad­
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In the 3-dimensional version of the classi­
cal mover's problem (R,S,PI,PF)' a position of S 
can be specified by a tuple (X,y,z,81,8 2 ,83) 
where (x,y,z) are the cartesian coordinates of a 
distinguished vertex of Sand 81,e2,83 specify 

the angular displacement of S. An appropriate 
mapping t can be defined from positions of S to 
6-space. In thi s case I-contact sets (the 
obstacles in this transformed problem) can be 
defined by constraints of the form: 

{t(x,y,z,e,~)laox+8oY+Yoz = 
cos(el-~OI)·cos(e2-~02)·cos{e3-~03) 

and 

ai x+13 iY+Y i z ~ Aicos{e(~il)cos(e2-~i 2)cos( 83-Wi3) 

for i = 1,2, ... ,k} where the a·, 8., y., A., ~ .. 
1 1 1 1 lJ 

are constants. 

Again, each of these systems of inequalities 
describing a I-contact set can be easily 
constructed by considering pairs of fa~es and 
vertices of Rand S. 

For l.l =2,3, ... ,6 =d I the ]..l-contact sets are 
constructed by intersecting all I-contact and 
(]..l-I)-contact sets. (These intersections require 
the repeated solution with accuracy T of multi­
nomials of low degree with many subcases; the 
details will be presented in a later version of 
this paper.) 

Now we sketch the further computations 
required to solve the mover's problem in 2 and 3 
dimensions, assuming the ]..l-contact sets have 
been determined. 

Let a l.l-unigue contact set be a maximal 
connected set of positions, each with precisely 
the same set of contact vertices of size !.l. 

Our goal is to determine all O-unique contact 
sets; these are the maximal connected sets of 
positions between which S may be moved without 
contacting an obstacle in R. 



10 

For each 0= 0,1, ... ,d', let Co be the class 
of jl-contact sets of dimension 0, with jl>l. 
Also, let Co be the class of all jl-unique! 
contact sets of dimension 0, with jl >O. Observe 
that Cd' is the' set of all o-unique ~ontact sets, 
as required. 

We can easily show that Co = Co. For 
0= 1, ... ,d' we have an efficient algorithm for 
constructing Co from the previously constructed 

Coand Co, ... ,Co-I. (In the case that 0= 1, the 
CI are Ill-dimensional curves II and the C1 
correspond to the "curve segments ll partitioned 
by the II po ints" of Co =Co. In the case that 
0=2, the C2 are II surface patches" partitioned 
into planar maps by Co (the II vertices ll ) and Cl 
(the lI edges"). The C2 are the faces of these 
maps. The cases 0> 2 are similar, with Co parti ­
tioned by Co, ... ,Ca-l into a a-cell complex.) 

Finally, to determine if S may be moved 
from position PI to PF without contacting an 
obstacle of R, we test if: 

1)	 ~R,S(Pr) =~R,S(PF) =true (where <tlR,S 
is the polynomial-time predicate of 
Section 3 which holds for all posi­
tions for which there is no contact 
between Sand R) and 

2)	 Pr,PF a~,in the same o-unique contact 
set Pe: C 

If this test is successful, we construct a 
move for S from PI to PF' as follows. Let Pr' 
(PF') be any position of S on the boundary of 
the o-unique contact set P, reached by a linear 
translation of 5 from Pr (PF). Then simply move 
5 on the boundary of P from Pr' to PF'. 

The worst case time cost ofd9ur algorithm 
for the mover's problem is O(IRI ISld'), 
(where IRI and 151 are the number of inequali ­
ties defining Rand 5). 
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The time complexity of this algorithm can 
be significantly improved in certain special 
cases by applying the divide and conquer tech­
niques of Preparata and Muller9 and Zolnowskylq 
For example, the 2-dimensional mover's problem 
requires O(k 4 IRI lSI) time if S is convex and R 
consists of k convex obstacles. Also, in the 
case where the mover1s problem contains numerous 
obstacles with very fine detail (i.e., many 
vertices) we have developed efficient approximate 
techniques which enclose nonconvex sets of 
obstacles with convex polyhedra, using again the 
convex hull algorithms of Preparata and Muller 
and of Zolnowsky. 

5. Conclusion: Applications ­
Theoretical &Ap~lied 

This work was originally motivated by 
applications to robotics: the author felt it was 
important to examine computational complexity 
issues in robots given the recent development of 
mechanical devices autonomously controlled by 
micro and minicomputers, and the swiftly 
increasing computational power of these 
controllers (see Paul ll ). 

However, our computational complexity 
results have more general applications, both 
theoretical and applied (those detailed below 
are discussed more thoroughly in the full 
paper). 

The technique (used in our polynomial time 
algorithm for the mover1s problem) of mapping ~ 
optimization problem ~ low dimension to ~ 
simpler problem ~ higher dimensions can also be 
applied to a variety of other optimization 
problems in computational geometry. For example, 
we present a polynomial time algorithm for a 
packing problem discussed by Shamos1 2 involving
the optimal orientation of identically shaped 
polygons so as to minimally pack the polygons 
within a thin rectangular strip (each polygon 
must have the same orientation). The trans­
formed problem in this case is to find the mini­
mal width cross-section (corresponding to an 
optimal orientation) of a torus defined by quad­
ratic surface patches. 
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The reduction technique used in Section 2 
to show that the generalized mover's problem is 
P-space complete can also be used to show a 
variety of other combinatorial problems P-space
complete. (This is significant, since almost 
all known P-space complete combinatorial problems 
are games.) For example, we show the following 
coloring problem to be P-space complete: 

Input	 Graph G= (V,E) with initial and final 
k-colorings CI,CF respectively, and 
integer m> o. 

Problem	 Is there a sequence of k-colorings 
of G, CI=CO,C1" .. ,Cj_1,Cj=CF 
such that C. differs from C. 1

1	 1­

on at most m vertices? 

(Similar P-space complete problems can be 
derived from other known NP-complete problems 
such as 3-SAT, KNAPSACK, and HAMILTONIAN­
CIRCUIT. ) 
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Figure 10: The mapping t(x,y,e)=(x·,y·,zl) . 


